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Abstract: Cottonseed is one of the important by-products of the cotton crop. Researchers claim
that cottonseed with less than 0.45% of gossypol is quite good for human consumption and animal
feeding because it is a rich source of protein, edible oil, and energy. Total and free gossypols are
the influencing parameters that reduce the edible nature of the cottonseed. In the present work,
multiple quadratic regression models have been prepared to predict the reduction in the free and total
gossypol percent. This response surface method (RSM)-based approach was applied to investigate
the combined effect between input parameters such as acetone level, time of extraction, liquid-to-
solid ratio (LSR), and the number of extraction cycles, whereas output responses are free and total
gossypol reduction percentage. Analysis of Variance (ANOVA) has been performed to determine the
highly significant parameter. The optimum combination of input parameters was determined using
the RSM-based desirability approach, and confirmatory experiments were performed to validate
the combination. Results revealed that the number of extraction cycles and liquid-to-solid ratio
significantly affects the reduction of free and total gossypol levels. The values of r-square were found
above 0.9, which indicates that the developed models are suitable and reliable for predicting free and
total gossypol reduction percentage.

Keywords: cottonseed; gossypol; optimization; response surface methodology; toxicity

1. Introduction

Cottonseed is the main by-product of cotton obtained after the ginning process. It
constitutes a two-thirds portion of the seed cotton. Cottonseed has the potential to develop
nutritional food supplements for human foodstuffs [1–4]. However, the development
of these kinds of products from cottonseed has been restricted, primarily because of the
presence of the toxic compound gossypol (2,2′-Bis(formyl-1,6,7-trihydroxy-5-isopropyl-3-
methylnaphthalene). Many studies determined that low levels of cottonseed meal can be
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included as a protein source in animal feed, but higher replacement levels can lead to sig-
nificantly decreased growth performance and mortality due to the presence of gossypol [5].
Gossypol is a polyphenolic compound that has a bulky hydrophobic bi naphthalene struc-
ture that can easily diffuse through the cell membrane and cause toxicity. The reactivity
of phenolic hydroxyl groups and carbonyl groups makes gossypol chemically reactive.
Gossypol is generally present in two forms, viz. free and bound gossypol. According to
the American Oil Chemists Society (AOCS) (Ba 7-58-1986), the gossypol and its derivatives,
which can be extracted using 70% aqueous acetone, are known as free gossypol [6]. Bound
gossypol (BG) takes the form when cottonseed is processed, where gossypol reacts with the
epsilon group of amino acids, especially lysine and arginine. Total gossypol (TG) (FG and
BG) is defined as gossypol and its derivatives, which can hydrolyze and complexed with
3-amino-1-propanol in dimethyl formamide solution to form a diamino propanol complex
(AOCS Ba 8-78) whereas BG is TG minus FG.

U.S. Food and Drug Administration (FDA), 1974 set the limit for free gossypol in-
human food products at 450 ppm [7]. While the United Nations Food and Agriculture
Organization (FAO) and World Health Organization (WHO) has set limits for free and
total gossypol at 600 ppm and 12,000 ppm, respectively [3]. Gossypol reduction (both FG
and TG) up to safe limits may increase its importance and application as food and animal
feed in India and other developing countries. Gossypol toxicity in cottonseed is the major
concern that causes many problems in monogastric animals, such as decreased growth
rate, fertility depression, internal organ abnormalities, feed conversion, and low protein
digestibility. On the other hand, if gossypol is suitably extracted from cottonseed, it may
be employed for various medicinal purposes such as anti-cancer, antiseptic, anti-fertility
agents, and antiviral activity [8].

Several approaches have been performed for the reduction of gossypols such as
pressure cooking [9], hydraulic pressing, screw pressing [10], solvent/alkali-salt extrac-
tion [3,11,12], liquid cyclone process [3,13], microbial fermentation [14–16], and ultrasound
technique for detoxification of gossypol from cottonseed meal [17]. Among all methods,
the solvent-based removal of gossypol from cottonseed meal has been found commercially
viable due to the dissolution of the solute (gossypol) in the acidified solvents [18,19]. Some
widely used solvents are hexane, acetone, ethanol, methanol, isopropanol, butanol, chloro-
form, and pentane. Dechary et al. (1952) reported that the butanone-water pair containing
10% of water can reduce free gossypol to 0.054% [18]. Saxena et al. (2012) used ethanol
for the removal of gossypol from defatted cottonseed at a temperature below 323 K that
could reduce 62% gossypol [20]. Cherry and Gray (1981) investigated the use of methylene
chloride for the reduction of FG and TG from defatted cottonseed meal. Authors suggested
that low levels of water and acetic acid in propylene glycol aided methylene chloride to
reduce FG and TG up to 0.013% and 0.15%, respectively [11]. Singh et al. (2019) used a
mixed solvent comprised of butanol-ethanol-water (80:15:5 v/v) acidified with 0.5 M oxalic
acid. The experiment was performed at a solvent-to-seed ratio of 15, extraction time 180
min, and temperature 348 K. In their study, they could reduce 94% gossypol from defatted
cottonseed meal [8].

Among the various extraction methods, extraction with acetone was found a desirable
choice to reduce FG from cottonseed meal [21]. In a study, a mixture of acetone and n-
hexane was used to reduce gossypol from cottonseed flakes and found that 25% acetone has
reduced FG by 90% [22]. In another study, a mixture of acetone, ethanol, and water acidified
with phosphoric acid was applied to reduce TG from cottonseed meal. The mixture solvents
reduced TG significantly [23]. Gerasimidis et al. (2007) also observed that aqueous acetone
is effective for the reduction of FG to a very low level using a two-stage solvent extraction
process that provides 72% protein concentrate [2]. Pons and Eaves (1967) revealed that
acetone containing 25–30% water removes a maximum of 96% of FG, most of the free fatty
acids, about half the raffinose, negligible quantity of oil and protein from cottonseed flakes
at temperature 25–30 ◦C. Other parameters such as successive extraction, liquid-to-solid
ratio (LSR), temperature, time, pressure, and pH affect the gossypol reduction as well [24].
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Saxena et al. (2015) studied the effects of important parameters such as temperature,
solvent to solid ratio, time of extraction, and extraction efficiency. The author reported that
these input factors greatly affect the extraction of gossypol from the cottonseed meal [25].
Similarly, Zhang et al. (2006) performed the experimental investigation to determine
the optimal process parameters such as for the reduction in gossypol level in cottonseed
meal [14].

Although numerous attempts have been made for gossypol reduction, mainly FG
from cottonseed meal; however, very few studies have been reported for TG reduction
from cottonseed kernel to a safe level that is fit for human and animal feed. The TG
may be toxic to the monogastric animals if its hydrolysis takes place by getting favorable
conditions in the stomach, such as a low pH environment. In addition, studies on the
combined effects of effective parameters on gossypol reduction are not available. Moreover,
no study has been performed for the preparation of prediction models that can predict the
FG and TG percentage reduction in the cottonseed kernel powder (CSKP). In the present
investigation, experiments were conducted to reduce both FG and TG to the minimum
level. Response surface methodology (RSM) based approach was conducted to determine
the combined effects of various process parameters viz. acetone level, time, LSR, and
the number of extraction cycles on FG and TG reduction percentage. In continuation of
this, a quadratic regression model for predicting the FG and TG reduction percentage was
developed. Analysis of Variance (ANOVA) has been performed to determine the highly
significant parameter. Finally, the optimal parametric combination of input variables
that provide better FG and TG percentage reduction is determined by the RSM-based
desirability approach.

RSM is a collection of mathematical and statistical techniques that are useful for
modeling and analysis of various problems. In the RSM technique, responses are optimized
by changing different variables [26]. It shows a relationship between measured responses
and various input variables. RSM is helpful to optimize, design, develop, or improve any
procedure where responses are affected by various factors [27]. There are six steps of the
RSM method, (1) to declare the input variables and the required output responses, (2) To
adopt an experimental design plan, (3) to perform regression analysis with the quadratic
model of RSM, (4) to find the variables that significantly affect the output responses by
carried out statistical analysis of variance (ANOVA) for the independent input variables,
(5) to determine the situation of the quadratic model of RSM and decide whether the model
of RSM needs screening variables or not, (6) to optimize, conduct confirmation experiment
and verify the predicted performance characteristics. Many studies have been carried out
in processing industries to optimize process conditions such as extraction of oil, protein,
phenolic compounds, pigments, polysaccharides using RSM [28].

2. Materials and Methods
2.1. Materials

Cottonseed hybrid variety YUVA BG was obtained from Ginning Training Centre,
ICAR-Central Institute for Research on Cotton Technology, Nagpur, for the experiment. All
the chemicals used in the research were of analytical grade. The make of chemicals such as
acetone, hexane, isopropanol, glacial acetic acid, 3-amino-1-propanol, N,N dimethyl for-
mamide, aniline, hydrochloric acid used in the study was Fisher Scientific, India. Standard
solutions of gossypol were prepared using gossypol standard (Sigma Aldrich, Germany).

2.2. Methodology
2.2.1. Sample Preparation

The cottonseeds were first delinted and dehulled in the cottonseed processing plant
situated at Ginning Training Centre, ICAR-CIRCOT, Nagpur, India. The dehulled cotton-
seed was sun-dried, followed by cleaned using different sizes of screens to separate hulls,
dust particles, leaves, stones, etc. The cleaned cottonseed kernels were milled using an
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electric grinder and passed through the standard mesh (No. 20) to obtain kernel powder of
average particle size 0.8 mm. This CSKP was used for conducting experiments.

2.2.2. Analytical Methods

The initial value of free gossypol (Fg), total gossypol (Tg), and moisture content of the
CSKP were determined. The moisture content of the CSKP was measured by drying 5 g
of sample in a hot air oven (WISWO India) at 105 ◦C for 2 h as recommended in AOCS
official method Ba 2a-38 [29]. The samples were allowed to cool in a desiccator for 5 min,
and moisture content was determined by weight loss. According to the American Oil
Chemists Society (AOCS), official methods Ba 7-58 the free gossypol was determined in this
study [30], whereas total gossypol was determined according to AOCS official methods
Ba 8-78 [31,32]. The method involves the development of a colored complex of aniline
with gossypol extracted with neutralized complexing reagent 3-amino-1-propanol, glacial
acetic acid, and dimethyl formamide (2:10:88 v/v). All measurements were carried out in
triplicate, and average values were recorded.

2.2.3. Extraction Variables

In this study, four variables were selected to perform the experiments are acetone
percentage (A), time of extraction (t), liquid-to-solid ratio (Rlsr), and numbers of extraction
cycles (Nx). Acetone percentage means the percent of acetone used in water to prepare
a solution for the treatment of CSKP. Time of extraction (t) refers to the time required
for the maximum release of gossypol from the sample when the sample was kept under
shaking conditions. LSR denotes the ratio of solution (aqueous acetone) to a sample of
cottonseed kernel powder. Extraction refers to the process of shaking the sample, followed
by filtration using filter paper to separate the released gossypol from the sample. The
number of extraction cycles indicates the repetition of the process of shaking and filtration
for maximum possible removal of gossypol from the particular sample. The variables and
their different levels used have shown in Table 1.

Table 1. Independent variables and their levels.

Variables
Levels

I II III IV V

Acetone (A), % 60 70 80 90 100

Time of extraction (t), min 15 30 45 60 75

Liquid-solid ratio (Rlsr) 2.5:1 5:1 7.5:1 10:1 12.5:1

Number of extraction cycles (Nx) 1 2 3 4 5

In this study, acetone has been used for gossypol extraction from cottonseed kernel. Re-
searchers have used acetone for the extraction of oil from different oilseeds. Kuk et al. 2005
reported the addition of 25% of acetone in hexane during extraction of oil from cottonseed
meal. Pelitire et al. (2014) suggested the acetone GRAS (generally considered safe) is
used in food processing and capable of dissolving gossypol [23]. During the drying of the
sample, the residual solvents (acetone, if any) are evaporated completely [22]. Consider-
ing the above points, the method employed in the study could be a food-safe method of
gossypol reduction.

2.2.4. Gossypol Extraction Process

In the process of gossypol extraction, a 5 g sample of CSKP was taken into a 250 mL
flat-bottom conical flask, and aqueous acetone was added into the flask, where the
liquid-to-solid ratio (aqueous acetone: sample) was varied as 2.5:1, 5:1, 7.5:1, 10:1 and
12.5:1. To prepare aqueous acetone, various percentages of acetone were mixed with
water varied from 60–100%. The sample was then kept in the shaker under shaking
condition for extraction of gossypol at 150 rpm and 30 ◦C. The time of extraction (t)
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is one of the important parameters to obtain a higher rate of gossypol extraction from
cottonseed [3]. The time of extraction was varied as 15, 30, 45, 60, and 75 min to study
the effect of time on the rate of gossypol extraction. Then the sample was filtered using
a filter paper (Whatman no. 4). During this cycle, gossypol mixed with acetone and
separated out. The extraction cycle was repeated 1–5 times to analyze the percentage of
gossypol reduction after every cycle. In the end, the sample was dried and analyzed for
free and total gossypol estimation. The aforementioned variables and their levels have
shown in Table 1. The schematic layout of the extraction process and experimental setup
has depicted in Figures 1 and 2, respectively.
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2.2.5. Design of Experiment

In this study, to design the experiments from central composite rotatable design
(CCRD) using four independent variables viz. acetone (%), time of extraction (t), liquid-
solid ratio (Rlsr), and number of extraction cycles (Nx) was employed. The independent
variables and their levels are shown in Table 1. The CCRD consisted 30 experimental runs
on the basis of 2x + 2x + n, where x = numbers of variables and n = number of replicate
center points. In this study, six center points in each face of factorial space have been
considered. The experimental design matrix for 30 experimental runs is shown in Table 2.
The output responses were measured as free and total gossypol reduction in percentage.
The error of measured values for free and total gossypol reduction was determined using
statistical analysis because measured values are complete only if it is accompanied by
details of uncertainty in the measurements. The standard errors of each measured response
are shown in Table 3.
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Table 2. Central Composite rotatable design for free gossypol and total gossypol reduction.

Run Acetone (A)% Time of Extraction
(t) (min)

Liquid-Solid
Ratio(Rlsr)

No. of Extraction
Cycles (Nx)

Free Gossypol
Reduction, % (Fg)

Total Gossypol
Reduction, % (Tg)

1 70 30 10 2 86.7 62.0

2 80 45 7.5 5 98.2 79.3

3 70 30 10 4 99.2 67.6

4 80 45 7.5 3 92.8 74.0

5 70 60 10 4 99.3 62.0

6 70 60 5 4 86.5 53.3

7 90 60 5 2 82.7 67.9

8 90 30 10 4 97.4 90.0

9 90 60 10 2 85.3 75.0

10 100 45 7.5 3 59.0 57.6

11 80 45 7.5 3 93.6 75.0

12 70 30 5 2 82.3 51.7

13 90 30 5 2 81.2 69.0

14 70 30 5 4 85.0 55.0

15 70 60 5 2 84.8 50.4

16 80 45 2.5 3 88.0 65.0

17 90 30 10 2 80.1 76.0

18 80 45 7.5 3 93.7 74.2

19 80 75 7.5 3 96.3 66.0

20 90 60 10 4 96.4 87.0

21 90 60 5 4 85.7 71.0

22 80 45 7.5 1 86.0 67.5

23 90 30 5 4 85.6 72.0

24 80 45 7.5 3 91.0 74.5

25 80 45 12.5 3 99.5 85.4

26 60 45 7.5 3 66.0 24.0

27 80 45 7.5 3 92.8 75.0

28 80 15 7.5 3 93 73

29 70 60 10 2 89 55

30 80 45 7.5 3 92 72.2

Table 3. Error analysis.

Responses Error

Free Gossypol reduction percentage (Fg) ±0.12
Total Gossypol reduction percentage (Tg) ±0.5

RSM was used to develop the regression models between output responses and inde-
pendent variables. The functional relationship between output responses and independent
variables can be shown as:

Y = µ (X1 , X2, X3, X4 . . . Xk) + er (1)

In Equation (1), Y is a single dependent response variable, and X1, X2, X3, X4 are inde-
pendent variables, and µ is the response function. Residual er measures the experimental
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error [33]. The second-order regression equation has developed, as shown in Equation (2),
which gives a response model or regression model.

Y = βo +
3

∑
i=1

βiXi +
3

∑
i=1

βiiXi
2 +

3

∑
i=1

3

∑
j=1

βijXiXj (2)

where Y represents output responses viz. free gossypol and total gossypol percentage, βo is
constant, βi is the linear coefficient, βii is the quadratic coefficient, βij is the cross-product co-
efficient, and Xi is the input variable [34]. The regression equations (Equations (3) and (4))
for the prediction of FG and TG were developed based on the experimental data.

FG = −352.19 + 11.405 A − 0.1519 t − 0.8733 Rlsr − 7.3958 Nx − 0.00025 At − 0.029 A Rlsr + 0.05375 A Nx +
0.00166667 t Rlsr − 0.045 t Nx + 0.985 Rlsr Nx − 0.071708 A2 + 0.00385185 t2 + 0.10267 Rlsr2 + 0.22917 Nx 2

(3)

TG = −474.78229 + 13.10979 A + 0.082083 t − 2.7675 Rlsr − 9.01458 Nx + 0.00395833 At + 0.02975 A Rlsr +
0.083125 A Nx − 0.019167 t Rlsr − 0.00375 t Nx + 0.6575 Rlsr Nx − 0.080323 A2 − 0.00381019 t2 +

0.090833 Rlsr2 + 0.11771 Nx 2
(4)

3. Results and Discussion
3.1. Statistical Analysis of Developed Model

An effort has been made to examine the suitability of the developed model using
ANOVA. The second-order model for all output responses the ANOVA has shown in
Table 4. For free gossypol, “Pred R2” of 0.8977 is in reasonable agreement with the “Adj
R2” of 0.9625. For total gossypol, “Pred R2” of 0.95 is in reasonable agreement with the
“Adj R2” of 0.9816. “Adeq precision” measures the signal to noise ratio greater than 4
is desirable. The developed models and approaches were found reliable and effective
because the R2 value was found as 0.98 and 0.99 for the model of free gossypol and
total gossypol, respectively (Table 4). The predicted values were compared with the
corresponding experimental values are illustrated in Figures 3 and 4.

Table 4. ANOVA results for free gossypol and total gossypol reduction.

Responses Mean SD R2 Adj R2 Pred R2 Adeq Precision p-Value

Free Gossypol (Fg) 88.35 1.774 0.9806 0.9625 0.8977 32.693 <0.0001

Total Gossypol (Tg) 67.54 1.767 0.9905 0.9816 0.9500 51.558 <0.0001
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The second-order model for summarized ANOVA has shown in Table 5 for output
responses. The values of “Prob. > F” less than 0.0500 indicate that the models are significant,
which is desirable and it indicates that the terms in the model have a significant effect on
the output responses. In the present case, A, B, C, D, A2, B2 are significant model terms.
The values greater than 0.1 indicate the model terms are not significant. These insignificant
model terms (not counting those required to support hierarchy) can be removed and may
result in an improved model. For both the models, the comparison of the residual error to
the pure error obtained in a lack of fit test has been found insignificant. The lack of fit is
insignificant that is desirable.

Table 5. Model summary statistics for free gossypol and total gossypol reduction.

Source Free Gossypol (Fg) Total Gossypol (Tg)

Prob. > F Prob. > F
Model <0.0001 <0.0001

A-Acetone % 0.002 <0.0001
B-Time in Min 0.0462 0.0009

C-Liquid-to-Solid ratio <0.0001 <0.0001
D-No. of Extraction <0.0001 <0.0001

AB 0.9334 0.1987
AC 0.1214 0.1128
AD 0.2423 0.0793
BC 0.8893 0.1244
BD 0.1472 0.9003
CD <0.0001 0.0020
A2 <0.0001 <0.0001
B2 0.0213 0.0226
C2 0.0765 0.113
D2 0.5072 0.7319

Lack of Fit 0.0695 0.0754

3.2. Effect of Input Parameters on Free Gossypol Reduction (FGR)

The gossypol reduction in cottonseed meal is affected by several parameters such as
used solvents, temperature, time, solvent ratio, etc. [8]. In the present study, the effect of
various parameters viz. acetone %, time of extraction, LSR, and the number of extraction
cycles on FGR percentage were analyzed using response surface methodology. The 3D
surface plot for two varying parameters, namely time and acetone %, and their combined
effect on FGR have shown in Figure 5a. The graph depicts that at the lower level of time
(30 min) and 70% acetone, the FGR value was found about 86%, whereas, at a higher
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level of time (60 min) and acetone (90%), there was only a slight improvement observed
in FGR. In this 3D effect plot, the time has not shown much effect on FGR, whereas the
maximum FGR percentage was observed at the middle level of acetone. The results are in
agreement with a previous study of a similar kind carried out by [35]. Figure 5b presents
the combined effect of LSR and acetone % on FGR, keeping the other two parameters (time
and number of extraction cycles) constant. It showed that the FGR percentage increases
with an increase in LSR and acetone levels. The reason behind this may be that a large
amount of fresh solvent would be available for the extraction and scrubbing of the solute
by the solvent [8]. A maximum FGR percentage was observed at a higher level of LSR and
middle level of acetone.
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Figure 6a depicts the combined effect of the number of extraction cycles and acetone
(%) on FGR percentage. The results showed that there is a slight improvement in the FGR
percentage by increasing the no. of extraction cycless at a constant level of acetone. The
maximum reduction of free gossypol was found at the middle level of acetone percentage
and a higher level of no. of extraction cycles. Figure 6b shows the combined effect of LSR
and time of extraction on FGR percentage while the other two parameters (acetone % and
no. of extraction cycles) were kept constant. In this case, the time has a negligible effect on
FGR at a constant level of LSR, whereas the LSR has a significant influence on FGR at any
time. It was observed that at a lower level of LSR and time, FGR is also less, whereas the
maximum reduction in free gossypol was recorded at a higher level of LSR (10) and time
(60 min). The reason being the more acetone will be available for mixing the gossypol in it.
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The combined effect of the number of extraction cycles and time on FGR percentage
has been shown in Figure 7a. In this case, acetone % and LSR were kept constant at the
middle level. The results showed that the number of extraction cycles has a great effect on
FGR at any time. In contrast, maximum FGR percentage was observed at a higher level of
time (60 min) and more number of extraction cycles (4). Figure 7b illustrates the combined
effect of no. of extraction cycles and LSR keeping time of extraction and acetone % at
constant. The graph showed that a low FGR percentage obtained at a lower level of no. of
extraction cycles and LSR. However, the combined effects of both the parameters increase
the FGR percentage significantly. It can be deduced from the aforementioned Figure 7b
that by increasing the number of extraction cycles to higher no. (4) and LSR to a higher
level (10) resulted in a maximum reduction in free gossypol percentage.
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3.3. Effect of Input Parameters on Total Gossypol Reduction (TGR)

The combined effects of input parameters viz. acetone %, time of extraction, liquid-to-
solid ratio (LSR), and no. of extraction cycles on TGR were analyzed using the response
surface technique. Figure 8a shows the reduction in total gossypol percentage with time
of extraction and acetone percentage. The combined effect of both parameters showed
that TGR increased with an increase in acetone % and reduction in time. The ANOVA
table indicates that the interaction of time and acetone % is not statistically significant.
However, the maximum TGR percentage obtained at higher acetone percentage (90%) at
the minimum time (30 min), while the minimum TGR was recorded at a lower level of
acetone and a higher level of time (60 min). Figure 8b illustrated the combined effect of
liquid-to-solid ratio (LSR) and acetone % on TGR percentage. The effect of interaction
between LSR and acetone is also not statistically significant, and it is seen that the highest
TGR percentage occurred at 85% acetone and a higher level of LSR (10), while the lower
value of TGR obtained at the lower value of acetone % and lower value of LSR.
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Figure 9a shows the 3D response graph for the reduction in total gossypol percentage
due to the combined effect of two parameters, namely no. of extraction cycles and acetone
%. The results indicated that the increase in acetone percentage and no. of extraction cycles
resulted in an increased TGR percentage. The maximum gossypol reduction occurred at
85% acetone level and 4 no. of extraction cycles, whereas the lower value of TGR was
obtained at 70% acetone with 2 number of extraction cycles. Similarly, the combined effect
of two varying parameters viz. LSR and time of extraction on TGR percentage illustrated
in Figure 9b keeping other input parameters (acetone% and no. of extraction cycles) at
constant. It can be seen that TGR increases with an increase in LSR and reducing time of
extraction. The maximum TGR was obtained at higher LSR (10) and lower value of time
(30 min), whereas the lower value of TGR was obtained at the lower level of LSR and the
higher level of time.
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Figure 10a shows the 3D response graph for TGR percentage by studying the interac-
tion between two parameters, no. of extraction cycles, and time of extraction. The results
showed that by increasing the no. of extraction cycles and reducing the time, the TGR
percentage increases. The highest TGR percentage obtained at a higher level of no. of ex-
traction cycle and lower value of time. Figure 10b illustrates the effect of input parameters,
namely no. of extraction cycles and LSR, on TGR percentage. It can be seen in Figure 10b
that increasing the no. of extraction cycles and LSR resulted in increased TGR percentage.



Appl. Sci. 2021, 11, 3901 13 of 16

The higher value of TGR was obtained at a higher level of no. of extraction cycle and
liquid-solid ratio.
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3.4. Optimization of Input Variables and Validation of Results

In this study, the optimal combinations of input variables viz. acetone %, time,
LSR, and the number of extraction cycles have been determined by using the RSM-based
desirability approach. This approach has been implemented to maximize the reduction
of free gossypol and total gossypol. The desirability function (di) was formed by each
response variable, as shown in Table 6. Its value must lie between 0 and 1. The desirability
function is said to 0 when the response variable is completely unacceptable, whereas 1
represents that the response variable is acceptable. In this technique, the best desirability
solutions were preferred among different obtained solutions. In this case, the optimal
parameters were determined by using State-Ease Design Expert Software version 7.0. For
optimization of the best levels of parameters, the minimum and maximum limits are shown
in Table 6.

Table 6. Response optimization of the input parameters based on desirability.

Parameters Goals Minimum Limits Maximum Limits Desirability (di)

Acetone % In range 60 100 1
Time of extraction (min) In range 15 75 1

LSR In range 2.5 12.5 1
No. of extraction cycle In range 1 5 1

Free gossypol reduction (%) Maximize 59 99.5 0.995
Total gossypol reduction (%) Maximize 24 90 0.995

As shown in Table 7, the optimized values for FGR and TGR were found at 86.38%
acetone, time of extraction 30 min, LSR 10, and no. of extraction cycles 4. To validate
optimized results, the experiments were performed thrice, and the average of three actual
experiment responses was calculated.
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Table 7. Validation test results of optimized parameters.

Output
Responses Acetone (%) Time of

Extraction(min) LSR No. of Extraction
Cycles

Experimental
Result

Predicted
Result Error

Free gossypol
reduction (%) 86.38 30 10 4 99.3 99.79 0.49

Total gossypol
reduction (%) 86.38 30 10 4 89 89.34 0.34

The error between experimental results and prediction results were recorded and
found very close to each other, as shown in Table 7. The validation results show that the
developed model (RSM) for predicting free gossypol and total gossypol is accurate.

4. Conclusions

In this paper, the main objective was to build up an approach for the reduction of
free and total gossypol content in cottonseed flour to safe levels that reduces the toxicity
and improves its nutritional benefits for human consumption. In order to this, the effect
of different independent parameters viz. acetone levels, time of extraction, liquid-solid
ratio, and the number of extraction cycles on free gossypol and total gossypol reduction
were analyzed. The calculated values obtained from RSM-based models and the measured
values from the experimental investigations followed the same trend. This refers to a good
correlation between input values and output responses. Experimental results indicate that
the maximum reduction in free gossypol obtained was 99.3%, and total gossypol reduction
obtained was 89.2%. The optimized parameters for a better reduction in free gossypol
and total gossypol percentage were 86.3% acetone, time of extractions 30 min, liquid-solid
ration 10:1, and the number of extraction cycles 4. The value of r-square was found above
0.9, which indicates that the developed models are suitable and reliable for predicting
free and total gossypol reduction percentage. The study concluded that two parameters,
namely the number of extraction cycles and liquid, solid ratio influenced significant free
gossypol reduction and total gossypol reduction; however, time of extraction is found to be
least significant. In the developed process, despite the reduction of free and total gossypol
in CSKP, the gossypol is recovered, which has much industrial and medical significance.
The resulting low gossypol cottonseed flour can be used as a protein-rich food supplement
for human beings.
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