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Abstract: In this study, the influence of small additives on the spectral and optical properties of Na+–
Ag+ ion-exchanged silicate glass is presented. Polyvalent ions, for example, cerium and antimony,
are shown to reduce silver ions to atomic state and promote the growth of photoluminescent silver
molecular clusters and plasmonic silver nanoparticles. Na+–Ag+ ion-exchanged and heat-treated
glasses doped with halogen ions, such as chlorine or bromine, exhibit formation of photo- and
thermochromic AgCl or AgBr nanocrystals. Growth of a silver nanoisland film on the glass surface
was observed in the case of undoped sample. The presented results highlight the vital role of
small additives to control properties of the silver nanostructures in Na+–Ag+ ion-exchanged glasses.
Possible applications of Na+–Ag+ ion-exchanged glass ceramics include but are not limited to
biochemical sensors based on surface-enhanced Raman scattering phenomena, temperature and
overheating sensors, white light-emitting diodes, and spectral converters.

Keywords: ion exchange; silver; photo-thermo-refractive glass; silver nanoparticles; silver molecular
clusters; silver bromide nanocrystals

1. Introduction

Over time, glasses have occupied a particular place among various optical materials
due to their wide range of transparency, easily tuned properties, and workability. Recently,
research has focused more on the development of new composite glassy materials, e.g.,
including materials doped with nanoparticles and/or nanocrystals. Today, functional
glasses that actively interact with light are required. An example of functional optical
material is photo-thermo-refractive (PTR) glass based on a sodium–zinc–aluminosilicate
matrix containing halogens (fluorine and bromine) and doped with silver, antimony, and
cerium oxides [1,2]. The refractive index of PTR glass is changed after exposure to UV light
and the subsequent thermal treatment in the vicinity of the glass transition temperature.
The latter step leads to the formation of silver nanoparticles (SNPs) playing the role of
nucleation centers for NaF nanocrystals in the glass host, causing variations in the refractive
index. Mechanisms of photo-thermo-induced crystallization in PTR glass were studied in
detail and reported in [3,4]. Currently, phase holograms recorded in PTR glass are used as
line-narrowing and stabilizing filters, spectral and spatial filters, compressors for femto-
and picoseconds laser beams, spectral beam combiners, high-power beam splitters, etc.
Although PTR glass was developed as a photosensitive medium for recording volume
Bragg gratings, recent studies showed that it is a polyfunctional material that can combine
the properties of holographic, laser, and photoetchable media [1,2,5–8]. In this work, we
demonstrate that the functionality of PTR glass matrix can be substantially extended via
the formation of silver nanostructures inside the glass or on its surface.

Silver can be introduced in a silicate glass matrix by adding silver-containing chemicals
into the glass batch, via ion implantation or via ion exchange (IE). Due to the low solubility
of silver in a silicate matrix, the first approach allows embedding up to 0.2 mol.% Ag2O.
Ion implantation requires special sophisticated equipment, and only very thin layers can
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be modified with the method, whereby the typical thickness of the silver-enriched region
is below 2 µm [9,10]. The IE technique, on the other hand, is characterized by simplicity,
flexibility, and applicability for mass production. For example, Na+–K+ IE is used for
glass strengthening on an industrial scale for producing cover glass for smartphones [11].
The method is based on the substitution of alkali (Na+, K+, Rb+, Cs+) or transition (Ag+,
Cu+, Tl+) metal ions from glass by another one from the salt melt, metal film, or another
source [12–14]. A comparison of ion implantation and ion exchange technologies for
modification of glass is shown in Table 1.

Table 1. Comparison of the ion implantation and ion exchange technologies.

Parameter Ion Exchange Ion Implantation

Simplicity/complication Very simple and flexible technology Requires sophisticated equipment

Applications of modified glass Optical waveguides; glass strengthening;
nanostructuring

Optical waveguides; glass hardening;
nanostructuring

Variety of metal nanostructures

Limited to copper and silver
nanostructures due to possibility of ions
to effectively exchange with alkali ions
from a glass substrate

Depends on ion source: Ag, Cu, Ni, Co,
Ti, Cr, and Zn nanoparticles were
obtained and studied in glasses

Requirements for glass substrate
High chemical durability to salt melt;
limited to
alkali-containing glasses

No requirements

Thickness of the glass modified region
The range is very wide and depends on
particular application, typically in the
range from few to tens of microns

Typically, below 2 µm

Temperature during modification
Should be at least above melting
temperature of salt melt; in most cases,
temperature is in the range 250–450 ◦C.

Low-temperature processing

Reproducibility Excellent Excellent
Allows overcoming solubility of dopant Yes Yes
High-scale production capability Already used for mass production Already used for mass production
Allows overcoming solubility of dopant
in glass matrix Yes Yes

It must be noted that most research papers devoted to the study of silver nanos-
tructures formed in ion-exchanged glasses focused on the influence of the ion exchange
(concentration of silver in salt melt, temperature, and duration) and subsequent heat treat-
ment (temperature and duration) parameters, while glass composition and influence of
the glass additives have not received much attention. As it is shown further, these un-
characterized factors play a key role in determining the properties of silver nanostructures
and, consequently, the functionality of the glass doped with them. This research deals
with the influence of typical additives of PTR glass on the spectral and optical properties
of Na+–Ag+ ion-exchanged layers. However, as PTR glass is based on the well-known
and widely used sodium–aluminosilicate matrix, our results can be extended to other
silicate glasses.

2. Materials and Methods

Glass blocks of samples based on the 14Na2O–3Al2O3–5ZnO–71.5SiO2–6.5F (mol.%)
composition were synthesized in a furnace at 1500 ◦C in air atmosphere using a platinum
crucible and mechanical stirrer. The glass transition temperature of the samples was deter-
mined using an STA 449F1 Jupiter (Netzsch, Germany) differential scanning calorimeter at
a heating rate of 10 K/min. For the optical study, planar polished samples with a thickness
of 0.9–1.0 mm were prepared. Na+–Ag+ IE was conducted by immersing glass samples in
a bath with a melt of silver and sodium nitrates (5 mol.% AgNO3/95 mol.% NaNO3) at
320 ◦C. Absorbance spectra were recorded with a double-beam spectrophotometer Lambda
650 (Perkin-Elmer). The emission spectra were measured inside an integrated sphere using
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a photonic multichannel analyzer (PMA-12, Hamamatsu, Japan) at room temperature.
XRD characterization was performed using a Rigaku Ultima IV X-ray diffractometer.

3. Results and Discussion
3.1. Spontaneous Growth of Silver Nanoparticles on the Surface of Ion-Exchanged
Photo-Thermo-Refractive Glass Heat-Treated in Air Atmosphere

Plasmonic metal nanoparticles have attracted significant interest in photonics due to
their unique optical properties. Potential applications of metal nanoparticles include but
are not limited to biosensing [15], surface-enhanced Raman spectroscopy (SERS) [16], solar
cells [17], targeted drug delivery [18], saturable absorbers [19], and photocatalysis [20].
SERS is one of the most widely studied applications of the metal nanoparticles. The
phenomenon was firstly observed from pyridine molecules adsorbed on roughened silver
electrodes by Fleischmann et al. in 1974 [21]. Despite SERS mechanisms still being under
discussion, it has become a powerful and ultrasensitive tool due to the possibility of
enhancing Raman scattering magnitude by 10–14 orders. This allows one to detect even a
single molecule [22,23].

Roughened metal surfaces can be obtained in different ways, including thermal,
electron beam, chemical, and plasma deposition methods. Recently, it was shown that a
SERS-active silver nanoisland film (SNIF) can be easily formed on the surface of Na+–Ag+

ion-exchanged glasses. Two different approaches were developed to grow SERS-active
SNIF on a glass surface (Figure 1). The first is based on the growth of SNPs in the ion-
exchanged glass layers with subsequent chemical etching to obtain SNPs directly on the
glass surface [24,25]. The concentration of NPs on glass surface can be controlled by silver
content in a salt melt during the IE process and by the thickness of the etched glass layer.
The second approach involves thermal treatment of Na+–Ag+ ion-exchanged glass in a
reducing atmosphere, for example, hydrogen atmosphere or water vapor [26,27]. Growth
of SNPs in the subsurface glass region can be suppressed by low temperature of the
treatment (at least 100 ◦C below the glass transition temperature). Moreover, the poling
technique can be applied to Na+–Ag+ ion-exchanged glasses to obtain single NPs on the
glass surface [28,29]. It should be noted that the considered approaches show similar
performance as SERS-active substrates.
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Figure 1. Schemes of two processes of formation of SNIF at the surface of Na+–Ag+ ion-exchanged glass.

Our preliminary research revealed the spontaneous growth of SNIF at the surface of
Na+–Ag+ ion-exchanged undoped matrix-based PTR glasses. To our best knowledge, this
is the first observation of growth of SNIF at the surface of ion-exchanged glass after heat
treatment in air. Figure 2 shows photos of BK-7 optical glass and PTR matrix-based glass
with no dopants (hereafter denoted as PTR-M; see Table 2) after the Na+–Ag+ IE and heat
treatment at a temperature of 50 ◦C above corresponding Tg values. BK-7 exhibited the
yellowish coloration typical for most silver ion-exchanged and heat-treated glasses, which
results from absorption of the SNPs formed in silver-enriched glass layers [30,31]. PTR-M
glass, on the contrary, possessed no coloration, due to the absence of electrons for reducing
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silver ions inside the glass [32]. Moreover, a gray semitransparent film was observed on
the PTR-M glass surface.
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Figure 2. Photo of the PTR-M glass sample (left) after Na+–Ag+ IE and heat treatment at 500 ◦C
for 3 h (the resulting surface film was partially removed) and of BK-7 glass ion-exchanged and
heat-treated at 600 ◦C for 3 h (right).

Table 2. Batch concentration of additives in the studied PTR glass samples.

Glass Sb2O5, mol.% Br, mol.%

PTR-M 0 0
PTR-Br 0 1.4

PTR-Sb2 0.002 0
PTR-Sb4 0.004 0

PTR-Sb10 0.01 0

For further detailed research, PTR-M glass with no dopants was studied. Silver ions
were introduced by immersing the PTR glass samples into the bath containing a mixture of
5AgNO3/95NaNO3 (mol.%) at 320 ◦C for 15 min. Ion-exchanged PTR glass samples were
then heat-treated in air at temperatures in the range 350–500 ◦C, with a treatment duration
of up to 7 h. An Na+–Ag+ ion-exchanged glass layer was mechanically removed from one
side of the samples prior the heat treatment. Glass samples were placed in a muffle furnace
with the silver-containing side facing upward.

Figure 3 shows absorbance spectra of the ion-exchanged PTR-M glass samples heat-
treated in different conditions. The absorption band peak at 445 nm, related to the growth
of SNIF on the ion-exchanged PTR-M glass surface, was observed already after the heat
treatment for 15 min at 350 ◦C (Figure 3a). The increase in absorption amplitude, red
shift of the absorption peak, and emergence of the second band around 355 nm occurred
with a longer heat treatment duration. An analogous dependence of the absorbance
spectra on the heat treatment time was obtained for the samples heat-treated at 400 and
450 ◦C (Figure 3b,c). Similar changes in the absorbance spectra of SNPs dispersed in water
solution were observed as a function of increasing size from 46 to 287 nm by Kinnan and
Chumanov [33]. The authors assigned the observed changes to quadrupolar, octupolar,
and hexadecapolar plasmon modes in SNPs with a size of 128–287 nm. As heat treatment
temperature governs the kinetics of redox reactions and diffusion process of SNPs growth,
it also influences the mean size and size distribution of SNPs. The heat treatment at 500 ◦C,
i.e., above the glass transition temperature (464 ◦C for PTR-M glass), resulted in almost
structureless absorbance spectra due to very broad and overlapped bands.

To confirm that neither silver molecular clusters (SMCs) nor SNPs were formed in
the ion-exchanged PTR-M glass during the heat treatment, the following experiment was
conducted: a sample of the Na+–Ag+ ion-exchanged PTR-M glass was repeatedly heat-
treated at 500 ◦C. The SNIF formed on the PTR glass surface was removed mechanically by
polishing the sample for 3–5 s, and absorption spectra were recorded after each cycle. The
absorbance spectra obtained during this experiment are shown in Figure 4a. Na+–Ag+ IE in
PTR glass is known to induce a long-wavelength shift of the UV absorption edge [34]. The
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reason for the shift is strong absorption of the introduced silver ions that are characterized
by the absorption envelope peak at 225 nm [35]. Thus, in contrast to the IE effect on
absorbance spectra, a short-wavelength shift of the UV absorption edge was observed
in the heat-treated samples. The spectra of the ion-exchanged and heat-treated PTR-M
sample after removing SNIF showed no absorbance in the range above 300 nm, where
the absorption bands of SMCs and SNPs in PTR glass are located [36]. This result also
proved that all the features observed in the spectra presented in Figure 3 are related to SNIF
formed on the PTR-M glass surface. Location of the UV absorption edge of the Na+–Ag+

ion-exchanged PTR-M glass is determined by the absorption of Ag+ ions [37]. Thus, it is
possible to roughly estimate the integral silver concentration in the heat-treated samples
compared to nontreated ones using the Beer–Lambert law. The differential absorbance
spectra obtained by subtracting the spectrum of the as-synthesized sample from the others
are shown on Figure 4b. The differential absorbance decreased more than eightfold at
255 nm, from ~2.6 to ~0.3 after 1 h of heat treatment at 500 ◦C. Further treatment led to a
slower decrease in differential absorbance, down to ~0.1. Thus, heat treatment at 500 ◦C
induced out-diffusion of silver ions to the glass surface with formation of SNIF, resulting
in a 95% reduction in the total number of silver ions in the PTR-M glass sample compared
to the nontreated ion-exchanged sample.
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XRD analysis of the PTR glass samples heat-treated at different temperatures for 3 h
revealed characteristic peaks for metallic silver (Figure 5), confirming that the observed
SNIF consisted of silver nanoparticles. SEM analysis of the of the ion-exchanged and heat-
treated PTR-M glass surface revealed the presence of isolated nanometer and micrometer
particles (Figure 6). SNIF formed at 350 ◦C consisted of nanoparticles of different shapes
(triangle, square, and rectangular), while, at higher temperatures, nanoparticles had only
spherical shape. The latter should be related to the melting of small SNPs during the
heat treatment at temperatures above 400 ◦C [38–40]. Moreover, SEM analysis showed
that the mean diameter of silver particles in the SNIF increased from 140 to 320 nm with
heat treatment temperature increasing from 350 to 500 ◦C. This result correlates with



Appl. Sci. 2021, 11, 3891 6 of 16

the changes in absorbance spectra presented in Figure 3. The phase retardation of the
electromagnetic field inside large particles led to the plasmon modes of higher multipole
orders (quadrupolar, octupolar, and hexadecapolar) observed in the spectra [41].
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Considering possible mechanisms of the spontaneous growth of SNIF on the ion-
exchanged PTR glass surface, the main question concerns the source of electrons for
reducing silver ions. The mechanism of silver ion reduction by water vapor in a wet argon
atmosphere responsible for growth of SNIF on the surface of Na+–Ag+ ion-exchanged
borosilicate glass was suggested by Kaganovskii et al. [42]. The authors proposed silver–
proton exchange with the formation of silver oxide that thermally decomposes further to
silver and oxygen.

≡ Si−O−Ag+ +
1
2

H2O↔≡ Si−O−H+ +
1
2

Ag2O. (1)

Ag2O→ 2Ag0 + O. (2)

Other routes of silver reduction by glass impurities or nonbridging oxygen can be
excluded considering that they would lead to coloration due to growth of SNPs inside the
glass [43]. Thus, we suggest that SNIF on the surface of Na+–Ag+ ion-exchanged PTR glass
surface growth is the result of interaction with the water molecules always present in air.
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However, further research is needed to clarify the exact mechanism responsible for the
growth of SNIF.
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Figure 6. SEM image of the ion-exchanged PTR-M glass sample heat-treated at 350 ◦C (a) and 450 ◦C
(b–d; various magnifications) for 3 h.

A drop (~5 mm in diameter) of 8 × 10−7 mol/L R6G aqueous solution was deposited
on the samples to investigate SERS-active properties of silver films on the surface of the
PTR-M glass. The Raman spectra were measured after drying the R6G drop with the
confocal Raman microscope (Renishaw); a red laser beam (633 nm) was focused at the
sample surface with a 50×/0.55 micro-objective. A significantly enhanced spectrum was
observed at surface with SNIF compared to pristine PTR-M glass (Figure 7a). As growth
of SNIF on the PTR glass is a diffusion process, it can be grown using the same substrate
in several cycles of thermal treatment and mechanical removal. This makes Na+–Ag+

ion-exchanged PTR glass functionalized with SNIF an attractive platform for developing
reusable SERS sensors. Absorbance spectra of the Na+–Ag+ ion-exchanged PTR-M glass
with SNIF grown during several cycles of the heat treatment at 500 ◦C for 15 min and
removing the film are shown on Figure 7b.

Thus, heat treatment at temperatures 350–500 ◦C of Na+–Ag+ ion-exchanged PTR-
M glass with no dopants resulted in growth of SERS-active SNIF on the glass surface.
Spectroscopic properties of SNPs on the glass surface can be controlled by changing the
heat treatment temperature and time. Na+–Ag+ ion-exchanged PTR glass can be used as a
substrate for developing reusable biochemical sensors based on the SERS phenomenon.

3.2. Photo- and Thermochromic Behavior of Na+–Ag+ Ion-Exchanged Br-Doped Glasses

In contrast to the PTR-M matrix glass with no dopants, Na+–Ag+ ion-exchanged
bromine-containing glass PTR-Br (see Table 2) revealed an additional long-wavelength
shift of the UV edge of strong absorption after the heat treatment at 500 ◦C (Figure 8a).
Silver bromide crystals are known to possess strong absorption in the UV and visible range,
with absorption coefficients as high as 1000 cm−1 at 400 nm, which may, thus, cause the
long-wavelength shift [44]. Formation of AgBr nanocrystals in the ion-exchanged and heat-
treated PTR-Br glass samples was confirmed by XRD analysis. XRD peaks related to silver
bromide were clearly observed for all ion-exchanged and heat-treated samples (Figure 8b).
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The mean diameter of AgBr nanocrystals calculated according to the well-known Scherrer
equation increased from 5 to 10 nm upon extending the IE process from 15 min to 21 h.
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Figure 7. Raman spectra of PTR-M glass sample and R6G measured at ion-exchanged and heat-
treated at 350 ◦C for 3 h (a). Absorbance spectra of PTR-M glass with SNIF after several cycles of the
heat treatment at 500 ◦C for 15 min and removing the film before the following heat treatment at the
same parameters (b).
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Figure 8. (a) Absorbance spectra of PTR-Br glass samples before and after the IE and heat treatment
at 500 ◦C for 3 h. (b) XRD patterns of PTR-Br glass samples ion-exchanged for different time and
heat-treated at 500 ◦C for 9 h.

Silver bromide is known to decompose to silver and bromine under UV or visible light.

AgBr hν⇒ Ag0 + Br0. (3)

The process is used in photographic films; after exposure and decomposition of AgBr,
silver atoms aggregate further into colloidal particles and form a latent image, while the
produced bromine volatilizes. In the case of a glass matrix, bromine atoms are unable
to leave the matrix, which enables multiple cycles of recording and relaxation of color
centers. This principle underlies photochromic glasses that reversibly changes transmission
depending on the illumination [45]. In 1968, Garfinkel showed that photochromic glasses
can be produced by Na+–Ag+ ion exchange of borosilicate glasses doped with copper
and bromine/chlorine [46]. Elliptical silver nanoparticles are known to be color centers
in conventional photochromic glasses [47]. The experimental absorbance spectra consist
of two broad bands corresponding to longitudinal and transverse plasmonic modes of
elliptical SNPs. In order to study the photosensitivity of ion-exchanged PTR-Br glass, some
samples were exposed to a mercury UV lamp (λmax = 365 nm). However, only the sample
ion-exchanged for 21 h showed a noticeable change in absorbance (Figure 9).
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Figure 9. (a) Absorbance spectra of the ion-exchanged and heat-treated at 500 ◦C for 9 h PTR-Br glass
samples before and after UV irradiation with a mercury lamp. (b) Photo of the samples before and (c)
after the UV irradiation.

To enhance the formation of color centers in PTR-Br glass samples with AgBr nanocrys-
tals, the samples were irradiated with a pulsed third-harmonic YAG:Nd laser (λ = 355 nm,
f = 10Hz, pulse energy 20 mJ, pulse duration 7 ns). Intense laser UV light resulted in the
growth of SNPs and, as a consequence, origin of a broad absorbance band in the visible
range (Figure 10). Coloration and bleaching kinetics for the studied PTR-Br samples are
shown in Figure 11. The amplitude of UV-induced absorbance increased with the Na+–Ag+

IE time as the concentration of the embedded silver ions determined concentration and
distribution of AgBr nanocrystals formed during the subsequent heat treatment. It should
be noted that saturation of coloration was observed already after 100 s of UV irradiation
for samples ion-exchanged for 0.25, 1, and 9 h, while the sample ion-exchanged for 21 h
did not show saturation even after 1000 s of UV irradiation.
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Figure 10. Absorbance spectra of the PTR-Br glass sample ion-exchanged for 9 h and heat-treated at
500 ◦C for 9 h after irradiation with UV pulses for different times.

After coloration by the UV pulsed laser, samples were kept at room temperature to
study bleaching kinetics. Only partial bleaching of the samples was observed, while a
number of color centers were stable at room temperature. For the samples ion-exchanged
for 0.25, 1, and 9 h, the absorbance increment reached 20–30% of the peak value after 72 h of
relaxation. At the same time, the sample ion-exchanged for 21 h possessed a 45% decrease
in absorbance.

The observed differences in coloration and bleaching kinetics of the ion-exchanged
samples with AgBr nanocrystals may be explained by the different thickness of the glass
layer doped with the nanocrystals and by size effect. According to Araujo, the mean size
of silver halide nanocrystals in photochromic glasses is 8–18 nm because smaller particles
exhibit low coloration efficiency [47]. Thus, the low saturation level in the samples ion-
exchanged for 15 min and 1 h can be explained by small AgBr nanocrystals with a mean
size of 5 and 6 nm, respectively, calculated according to the Scherrer equation. Partial
bleaching of the studied samples resulted from the absence of polyvalent ions, for example,
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copper, that participate in redox reactions occurring in conventional photochromic glasses
during coloration and bleaching [45,47]. It should be noted that full relaxation of color
centers induced by a UV mercury lamp and UV pulsed laser was observed after heating
PTR-Br glass samples above 150 ◦C for 10–15 min.
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Silver bromide is an indirect semiconductor with direct and indirect band gap energies
Eg,dir = 4.276 eV and Eg,ind = 2.713 eV for bulk crystals at cryogenic temperatures [48].
The energy bandgap of a semiconductor depends on temperature and decreases with its
increase. In situ measurements of absorbance spectra revealed that the UV absorption edge
of silver bromide nanocrystals formed in PTR-Br glass shifted to a greater wavelength
with heating the sample (Figure 12). The effect was manifested as colored PTR-Br glass
samples due to increasing absorption in the blue range (Figure 12, inset). After cooling
the sample to room temperature and removing SNIF formed during the heating, the
spectrum returned to the initial state. Figure 13a shows the dependence of the location
of the UV absorption edge on the temperature of the samples ion-exchanged for different
time. The experimental data can be fitted using a straight line for all samples. Moreover,
for a wide temperature range between 300 and 500 ◦C, absorbance at a fixed wavelength
linearly depends on the temperature for samples ion-exchanged for 1 and 9 h (Figure 13b).
Thus, the thermochromic properties of PTR-Br glass samples containing AgBr nanocrystals
can be used as temperature sensors or an eye-readable overheating indicator. It should
be noted that chlorine-doped PTR glass samples with AgCl nanocrystals formed with
the Na+–Ag+ IE were also studied. However, the photo- and thermochromic properties
of PTR glass samples with AgCl nanocrystals was poorer compared to their bromine-
doped counterparts.

3.3. Luminescent Properties of Silver Molecular Clusters Formed in Ce- and Sb-Doped Glasses

Silver molecular clusters (SMCs) are subnanometer silver aggregates that consist of
several atoms/ions. SMCs are characterized by photoluminescence and do not possess
plasmon resonance. Stabilized in different matrices, including liquids, polymers, glasses,
and zeolites, SMCs are used for developing white LEDs [49], sensors [50], spectral con-
verters [51,52], and data storage devices [53]. Glasses doped with SMCs attract particular
attention due to transparency in a wide spectral range, high thermal stability, and ex-
cellent chemical durability. A PTR glass matrix transparent in the UV range opens the
possibility to study the spectral properties of SMCs in details. To promote the growth
of SMCs in the Na+–Ag+ ion-exchanged PTR glass, silver ions should be reduced to an
atomic state. Cerium and antimony are polyvalent ions that can be in different charge states
(Ce3+/Ce4+ and Sb3+/Sb5+), which determines their spectroscopic manifestation in glass
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matrices [54,55]. These ions are typically used in PTR glasses to provide photosensitivity
of the glass [3,4]. Possible redox reactions involving silver and cerium/antimony ions are
as follows:

Ag+ + Ce3+ ↔ Ag0 + Ce4+, (4)

2Ag+ + Sb3+ ↔ 2Ag0 + Sb5+. (5)
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To determine the direction of a redox reaction, one needs to know the value of the
standard electrode potential. For example, the reaction in Equation (4) proceeds in standard
conditions from right to left. Adding silver into the PTR glass matrix was earlier shown to
result in a decrease in the Ce4+-related absorption band, proving that silver plays the role
of a reducing agent for cerium ions in the PTR glass melt [56]. However, the concentration
of Ag+ ions in the ion-exchanged PTR glass layer exceeds by orders the equilibrium value
that can be reached via glass synthesis, whereby the equilibria in Equations (4) and (5) shift
to the right-hand side despite the direction of the reaction in standard conditions. Neutral
silver atoms obtained as a result of the redox reactions can aggregate further in SMCs or
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NPs depending on their size. As shown below, the spectral luminescent properties of PTR
Na+-Ag+ ion-exchanged glass can be tuned in a wide range by varying the concentration
of glass dopants, as well as the IE and subsequent heat treatment parameters.

The concentration of polyvalent ions determines the rate of the redox reaction with
silver. Thus, a higher content of polyvalent ions allows a higher concentration of SMCs
and SNPs to be obtained in glass at fixed parameters of the IE and heat treatment processes
(Figure 14). It is worth noting that, for developing efficient phosphors or spectral converters
based on a glass doped with SMCs, the concentration of polyvalent ions should be very
low, so as to increase the possibility of SMCS growth consisting only of few atoms. In the
other case, the growth of large clusters and/or SNPs results in luminescence quenching
and a significant lowering of the photoluminescence quantum yield (PLQY). For example,
a PLQY value as high as 65%, which is among the highest reported values for glasses
doped with SMCs [36], was achieved in PTR-Sb2 glass containing only 0.002 mol.% of
Sb2O3. An increase in Sb2O3 content to 0.01 mol.% led to almost a twofold decrease in
photoluminescence quantum yield.
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Figure 14. Absorbance (a) and emission (b) spectra of undoped PTR-M and antimony-doped PTR
glass samples ion-exchanged for 15 min and heat-treated at 450 ◦C for 15 h. The excitation wavelength
was 350 nm.

Heat treatment at temperatures below the glass transition temperature was found to
result in bright photoluminescence due to the growth of SMCs. PLQY magnitude increases
with heat treatment temperature up to 450 ◦C. Heat treatment at 500 ◦C, i.e., above the Tg
value of the studied antimony-doped glass samples, led to the appearance of an absorption
band around 420 nm corresponding to the localized surface plasmon resonance of SNPs
(Figure 15a). The growth of SNPs inevitably caused luminescence quenching due to the
absorption of SMC emission and the decrease in concentration of emission centers due to
the transformation of SMCs into SNPs (Figure 15b).
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IE parameters, including silver content in the salt melt, temperature, and time, can also
be used to tune the optical properties of silver nanostructures in Na+–Ag+ ion-exchanged
glasses. The IE time and temperature influence the diffusion rate and, as a result, the
thickness of the silver-enriched glass layer. Thus, these parameters change the properties of
the obtained silver nanostructures in a similar way. It was found that varying IE time allows
tuning the location of SMC emission in a wide spectral range. This opens up prospects
for developing highly efficient, thermostable, solid-state LEDs based on PTR glasses with
SMCs. The effect of the IE time on the absorbance and emission of SMCs is demonstrated
in Figures 16 and 17. Emission color varied from cool white to warm and orange upon
increasing the IE time (Figure 16c). It should be noted that the PLQY of the samples
decreased from 60% to 15% with the extension of IE duration [37]. This effect is related
to the increase in absorbance of the remaining silver ions at the excitation wavelength
with an increase in the IE time (a longer IE process leads to a higher amount of silver
remaining in ionic form in the PTR glass due to the constant concentration of reducing
agent). However, we believe that PLQY values can be substantially increased by using
a salt melt with low silver content. The silver concentration in subsurface layers of the
Na+-Ag+ ion-exchanged glass is known to nonlinearly depend on the silver content in the
salt melt for most glasses. Typically, the surface concentration of silver grows exponentially
with AgNO3 content below 5 mol.% and saturates at greater values [57]. IE with a low
silver content may allow decreasing the absorption of silver ions that remain in the PTR
glass after the heat treatment.

The presented results show that the photoluminescence properties of SMCs in the
PTR glass matrix can be tuned in a wide range by controlling the concentration of reducing
agents, as well as the parameters of the Na+–Ag+ IE and subsequent heat treatment
processes. The wide emission spectrum of SMCs in the ion-exchanged PTR glass matrix
and the high PLQY magnitude pave the way for applications of such glasses in lighting as
phosphors for white LEDs and in photovoltaics as spectral converters.
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4. Conclusions and Perspectives

In this work, the great effect of small additives in sodium–zinc–alumina glass compo-
sition on the spectral and optical properties of silver nanostructures grown on the surface
or subsurface layers of Na+–Ag+ ion-exchanged glasses was demonstrated. Silver ions
introduced in the PTR glass matrix containing no polyvalent ions can interact with the
atmosphere water molecules during heat treatment to form SERS-active silver nanoisland
films on the glass surface. Trivalent cerium and antimony ions typically used as photo-
sensitive additives in PTR glasses were shown to act as reducing agents for silver ions
in Na+–Ag+ ion-exchanged glasses and to promote the formation of luminescent silver
molecular clusters. The concentration of polyvalent ions, as well as the ion exchange and
subsequent heat treatment parameters, can be used to tune and optimize the emission of
silver molecular clusters in a wide range.

Na+–Ag+ ion exchange of Br(Cl)-containing PTR glass followed by heat treatment
above the glass transition temperature led to the growth of silver bromide nanocrystals.
The obtained nano-glass ceramic possesses photochromic and thermochromic properties.
The presented experimental findings indicate that small additives contained in glass play a
key role in the chemical reactions with silver ions introduced by Na+–Ag+ ion exchange
and determine the properties of the obtained silver nanostructures and functionality of
nano-glass ceramics. We believe that the results of this work can be useful for developing
biochemical sensors based on the SERS phenomenon, white LEDs, spectral converters, and
temperature sensors.
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