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Abstract: This paper investigates the performance interference of blockchain services that run on
cloud data centers. As the data centers offer shared computing resources to multiple services, the
blockchain services can experience performance interference due to the co-located services. We
explore the impact of the interference on Fabric performance and develop a new technique to offer
performance isolation for Hyperledger Fabric, the most popular blockchain platform. First, we
analyze the characteristics of the different components in Hyperledger Fabric and show that Fabric
components have different impacts on the performance of Fabric. Then, we present QiOi, component-
level performance isolation technique for Hyperledger Fabric. The key idea of QiOi is to dynamically
control the CPU scheduling of Fabric components to cope with the performance interference. We im-
plement QiOi as a user-level daemon and evaluate how QiOi mitigates the performance interference
of Fabric. The evaluation results demonstrate that QiOi mitigates performance degradation of Fabric
by 22% and improves Fabric latency by 2.5 times without sacrificing the performance of co-located
services. In addition, we show that QiOi can support different ordering services and chaincodes with
negligible overhead to Fabric performance.

Keywords: blockchain; performance interference; performance isolation, cloud computing; private
blockchain; Hyperledger Fabric

1. Introduction

Blockchain technologies offer many advantages such as immutability, transparency,
serializability, and cryptographic verifiability without a single point of trust [1] as they are
based on the decentralized architecture without intermediary entities for cryptocurrency [2].
In order to exploit such advantages, many industrial efforts have been made to develop
blockchain platforms for different service areas including trading and settlement [3], asset
and finance management [4,5], and firmware verification [6]. Hyperledger Fabric [7] is
one of the most popular blockchain platforms, which is managed by Linux Foundation.
It is based on private blockchain, which allows only authenticated users to participate in
blockchain networks. This is different from a public blockchain where any user can join the
network. In addition, Fabric introduces execute-order-validate architecture that overcomes
the limitations of the previous execute-order architecture [8]. This improves the scalability of
throughput in blockchain networks even with a large number of peers, which enables Fabric
to be adopted in many use cases such as Global Trade Digitization [9], SecureKey [10], and
Everledger [11].

Based on the execute-order—validate architecture, Fabric executes multiple components
(e.g., clients, peers, and ordering service nodes) to carry out different operations that process
user requests. The Fabric components typically run as containers on a host server [12]. The
containers [13] share computing resources (e.g., CPU, memory, and network) on a single
operating system, called the host operating system. Accordingly, in cloud data centers,
the Fabric components can run with other services concurrently and share the underlying
computing resources. Thus, the performance of Fabric can be affected by co-located services
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that cause performance interference. For example, if Fabric components and co-located
tasks contend for CPU resources concurrently, the components may not receive sufficient
CPU and experience performance interference. This leads to the performance degradation
of Fabric, which decreases the quality of service and the service revenue [14,15]. Therefore,
it is necessary to provide performance isolation for Fabric components that run on cloud
data centers.

Previous studies on Fabric mostly focus on achieving the maximum performance
rather than providing performance isolation. They assume that the Fabric components
receive sufficient computing resources without any other co-located services. They suggest
a guideline regarding how to configure various parameters offered by the Fabric such as
block sizes, batch time, and endorsement policies for achieving the maximum performance.
Furthermore, they argue that some parameters such as the type of the database and consensus
protocols affect the overall performance. For example, Javaid et al. [16] found that the
performance of Fabric increases with large block size, while Androulaki et al. [1] showed
that GoLevelDB [17] outperforms CouchDB [18]. In addition, Yusuf and Surjandari [19]
demonstrated that Raft [20] is superior to Kafka [21]. Even though previous studies show
that Fabric can achieve high performance by configuring the parameters, they do not consider
performance interference caused by co-located services in evaluating Fabric performance.

To provide performance isolation in cloud data centers, many studies have been
conducted in recent years [22-25]. They develop scheduling policies to allocate computing
resources depending on the characteristics of the tasks. However, the studies are difficult
to apply on Fabric because each Fabric component has different characteristics. Note that
the term component in the Fabric equally corresponds to process, which is a unit of CPU
scheduling. For example, the most popular data analytic framework, Spark [26], consists
of multiple workers that perform a uniform operation only with different sets of data in
a distributed manner. As the workers conduct similar operations that are mainly CPU-
intensive, their processing characteristics such as the CPU time slices are homogeneous.
Therefore, the existing techniques can provide performance isolation for Spark workers
by applying the same scheduling policy to the workers simultaneously. On the other
hand, Fabric consists of heterogeneous components performing different operations, which
makes it difficult to apply the same scheduling policy to the components. For example,
peers execute transaction proposals and validate transactions while orderers determine the
sequence of transactions. Our profiling results reveal that peers and orderers have different
processing characteristics: peers have 2.3 times higher time slice than the orderers. If the
existing studies are applied to Fabric without considering the heterogeneous characteristics
of the Fabric components, interference between the components could get worse or at least
not improve.

This paper presents QiOi, component-level performance isolation technique for Hy-
perledger Fabric. Note that component-level means controlling heterogeneous Fabric
components that have different impacts on the performance of Fabric. First, we analyze
the characteristics of Fabric components using system-level metrics such as scheduling
delay and time slice when the components run as containers on the host server. Then, we
demonstrate that Fabric can experience performance degradation when Fabric components
run with co-located tasks. By analyzing the performance interference at the component-
level, we point out that each component has different impacts on performance degradation.
Based on the results, we propose QiOi to control CPU scheduling policy at component-level
to offer performance isolation.

To provide component-level performance isolation, QiOi first receives a certain per-
formance threshold from the Fabric service manager depending on a service. Furthermore,
QiQi periodically monitors the performance of Fabric. When it becomes below the threshold,
QIiOi detects performance interference and dynamically controls CPU scheduling policy
of specific components based on the QiOi algorithm. We implement QiOi as a user-level
daemon to run on Linux kernel with a Hyperledger Fabric-based blockchain network.
Note that QiOi does not require any modification in Linux kernel nor Hyperledger Fabric.
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We evaluate QiOi with different ordering services, a variety of workloads of Fabric, and

practical co-located tasks. Our evaluation results show that QiOi mitigates performance

degradation of Fabric by 22% and improves latency of Fabric by 2.5 times without sacrificing

the performance of co-located tasks when Fabric components run with co-located tasks.
The main contributions of this paper are as follows:

*  We analyze the Fabric components using system-level metrics and show the different
impacts of the components on performance interference.

¢ We design QiOi that offers component-level performance isolation for Fabric by
periodically monitoring Fabric performance and adjusting CPU scheduling policy for
Fabric components.

¢ Weimplement QiOi as a user-level daemon and present the evaluation results showing
that QiOi mitigates performance degradation of Fabric by 22% and improves latency
of Fabric by 2.5 times.

The rest of the paper is organized as follows. Section 2 explains details of Hyperledger
Fabric and Linux CPU scheduler. In Section 3, we analyze the characteristics of Fabric
component and demonstrate performance degradation of Fabric running with co-located
tasks. Section 4 presents the design and implementation of QiOi, and Section 5 describes
evaluation results. Then, Section 6 discusses the future works to further improve this paper,
and Section 7 explains related work. Finally, we conclude in Section 8.

2. Background

In this section, we first describe the components of Hyperledger Fabric. Fabric com-
ponents frequently run as containers on a host server. As containers run as user-level
processes, the Linux CPU scheduler, completely fair scheduler (CFS) [27], determines the
CPU allocation among containers. We therefore explain how CFS schedules processes
including Fabric components.

2.1. Hyperledger Fabric

The operation of Fabric is divided into three phases — execute, order, and validate, with
each phase conducted by different components such as clients (execute), peers (execute and
validate), and ordering service nodes (order) as illustrated in Figure 1. The functionalities
of each component are as follows.

Ordering Service

Figure 1. The Fabric component and transaction flow.

e Clients are the end-users of blockchain networks that submit transaction proposals to
peers ((D in Figure 1). The transaction proposals are executed and endorsed by the
peers. When clients collect enough endorsements on a transaction proposal from peers
(@), they assemble a transaction and broadcast this to ordering service nodes (3).

*  Peers execute transaction proposals and validate transactions. There are two types
of peers—endorsing peers and committing peers. The endorsing peers receive the
transaction proposal from clients, execute the operation on the specified chaincode,
and run the endorsement system chaincode (ESCC) to verify the transaction proposal.
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A chaincode is a program code that implements and executes the Fabric service logic.
The chaincode is the key to Fabric service and runs as a Docker container, isolated from
the peers. ESCC is one of the special chaincodes for managing the Fabric system and
maintaining parameters. Then, if the verification results satisfy the endorsement policy,
the endorsing peers return the transaction proposal to the client with a digital signature
using the private key of the endorsing peers (). The committing peers validate new
blocks with the endorsing peers by executing the validation system chaincode (VSCC)
before the actual commit of the new blocks to the distributed database, called a ledger.
When validation is completed, a new block that contains the proposed transaction is
stored in the ledger. Every peer maintains the ledger locally. Then, one of the peers
informs the clients that the transaction has been registered successfully ().

®  Ordering service nodes (i.e., orderers) are the nodes that compose the ordering service.
The ordering service determines the sequence of transactions into blocks using a
consensus protocol. Fabric offers three consensus protocols—Solo, Raft, and Kafka.
Solo is intended for testing only and consists of a single orderer. Raft and Kafka
utilize a “leader and follower” model. In Raft, a leader of the orderers is elected and
determines the sequence of transactions. Then, it distributes the replications of ordered
transactions to the followers. The distribution of the replicated transactions enables
the Raft-based ordering service to provide crash fault tolerance. Raft selects one of
the followers as a leader and runs it in cases where the previous leader crashes. The
Kafka-based ordering service consists of orderers, Kafka brokers, and ZooKeeper.
The Kafka brokers are categorized into a leader and followers. ZooKeeper manages
the Kafka brokers by selecting a leader out of the brokers and monitoring that the
Kafka brokers are working properly. The Kafka leader determines the sequence of
transactions. Kafka brokers that are not selected as a leader become followers. The
leader of the Kafka brokers transfers ordered transactions to orderers.
The orderers (i.e., both Raft and Kafka) generate new blocks using the received trans-
actions when one of the three conditions is satisfied: (1) the number of transactions
in the block reaches the threshold, (2) the block size attains the maximum value in
bytes, or (3) certain time has passed since the first transaction of the new block was
received. When the block generation is finished, the orderers deliver the blocks to all
peers (both endorsing and committing) for validation (@).

2.2. Linux CPU Scheduler

In this subsection, we first explain the scheduling mechanism of CFS and then the
parameters of CPU scheduling as background for performance isolation.

To allocate CPU resources between processes fairly, CFS first calculates the period
depending on the number of processes in the run queue. Then, CFS determines a time slice
for each process depending on its load weight. When a specific process is scheduled, it runs
the time slice of the process. The process may fully use the time slice or it may not use all
of the time slice by preemption. As the process is preempted, CFS measures the execution
time of the process. When the process is dequeued from the run queue, the virtual runtime
(vruntime) is updated based on the measured execution time. Depending on its vruntime,
the process is sorted and stored in the red-black tree, which is a self-balancing binary search
tree [28]. A process with the least vruntime will be the leftmost node in the tree. When CFS
schedules the next process to run, it picks the leftmost node. Details of the main parameters,
load weight and vruntime, are as follows.

First, the load weight is given to all processes, and CFS provides the CPU time (time slice)
for processes in proportion to their load weight [29]. time slice is calculated as in Equation (1).
Note that the default load weight is 1024 in Linux kernel. The period is 24 ms by default if the
number of processes in the run queue is less than eight. Otherwise, the period is calculated
by multiplying the number of processes in the run queue by 3 ms. The value of 3 ms is set
to avoid preempting processes too frequently in Linux kernel. se — load.weight indicates
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the load weight of a process, and cfs_rq — load.weight indicates the sum of load weights of all
processes in the run queue.

se — load.weight

cfs_rq — load.weight @

time slice = period x

Second, the vruntime is inversely proportional to the amount of CPU time that a process
has already used. The process with the lowest vruntime has the highest scheduling priority.
Equation (2) shows how CFS calculates vruntime, where delta_exec is CPU time actually used.
If a process has a high load weight, it receives small vruntime compared to other processes
consuming similar amounts of CPU time. This enables the process with the high load weight
to be scheduled frequently.

default load.weight
se — load.weight

@)

vruntime = delta_exec X

In order to control the load weight, CFS offers an adjustable parameter called CPU share.
Since Linux cgroups feature calls load weight as CPU share, we use the term CPU share for
the rest of this paper [30].

3. Motivation

Now, we analyze the characteristics of Fabric components and demonstrate that Fabric
performance can be affected by the co-located tasks on a host server. Then, we explore the
cause of performance degradation at the component level and show that the components
have different impacts on the performance degradation of Fabric.

3.1. Characteristics of Fabric Components

First, we measure system-level metrics such as scheduling delay to understand the
different characteristics of Fabric components. Since Fabric consists of multiple compo-
nents that perform different operations, it is essential to characterize them component by
component. Furthermore, such characterization is necessary to develop a performance
isolation techniques for Fabric.

For experiments, we utilized a server equipped with two Intel Xeon processors (E5-
2650 v4@2.2 GHz, 12 cores) running Ubuntu 16.04 LTS (Linux v4.15.0) with 128 GB of RAM
and 447 GB HDD as a local disk. In addition, we used Fabric v1.4.1 with the Raft-based
ordering service and Hyperledger Caliper v0.2.0. Hyperledger Caliper (Caliper) [31] is a
widely-used performance benchmark framework for blockchain networks. We utilized
Caliper to construct the blockchain network based on Fabric and to measure Fabric per-
formance in terms of throughput and latency by executing various chaincodes provided
by Caliper. In our experiments, Fabric components ran as containers on Docker v19.03.13.
Figure 2 shows the setup of Fabric components used in our experiments, which consisted
of four peers, three orderers using GoLevelDB. We configured Caliper to run 10 clients
that generated and transmit 10,000 transaction proposals in total. As chaincode, we ran
the smallbank [32] which is one of the most widely used benchmarks and performs ac-
count opening, deposit, and money transfer [16]. Note that Table 1 shows the detailed
configuration of Fabric.
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Figure 2. Experimental setup of Fabric components.

Table 1. Fabric configuration.

Parameters Values
Ordering service Raft
StateDB GoLevelDB
Endorsement policy OR(Orgl, Org2)
Block size/timeout 100 MB/2 s
Total transactions 10000
Transaction send rate 1000

We utilized a system-level profiling tool, perf sched, and measure scheduling metrics,
such as average time slices, scheduling delay, and the number of context switches. The
average time slice is the average CPU time occupied by a process while Fabric is running,
and the scheduling delay refers to the length of time the process waits for it to be scheduled.
The number of context switches indicates the number of stopping a process to starting
another one.

Table 2 presents the results of the average time slices, scheduling delay, and the
number of context switches per second for Fabric components. We find that all scheduling
metrics are in the order of peers, orderers, and chaincodes. This means that peers consume
the largest CPU time among the components and are more scheduled than orderers and
chaincodes. We find that this is because peers perform verification of the client’s transaction
proposals and validate new blocks. On the other hand, orderers and chaincodes consume
relatively less CPU time. In addition, the average time slice and scheduling delay of
all components do not exceed 0.53 ms, making them quite short periods of time. This
indicates that Fabric components finish their operations in a short period of time while
being scheduled rather frequently. Note that Fabric performance may vary depending on
the Fabric version. However, this paper focuses on demonstrating that Fabric experiences
performance interference because of the co-located tasks. Because peers and orderers
perform similar operations regardless of the version after v1.4.1, we believe that we will
have similar results with the latest Fabric version. Note that the latest versions after v2.0
mostly focus on supporting functionalities for chaincode and channel [33].

Table 2. System-level profiling of Fabric components.

Component Avg. Time Slice (ms) Scheduling Delay (ms) (;rol;igtusnvtietiﬁ/fs
Peer 0.22 0.53 13051
Orderer 0.10 0.41 7947

Chaincode 0.05 0.10 6241
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3.2. Motivating Example

This subsection demonstrates that the performance of Fabric can be affected by
co-located tasks. In the same experimental setting in Section 3.1, we run the sysbench
CPU benchmark [34] on containers (i.e., sysbench containers). The sysbench CPU bench-
mark is one of the most commonly used benchmarks in the related works and performs
computation-intensive operation similar to the map phase in Spark [22,35]. We therefore
believe believe that sysbench represents a realistic interference case in multi-tenant envi-
ronments. In addition, we measured the performance and CPU utilization of Fabric and
sysbench containers, respectively. Furthermore, we increased the number of sysbench con-
tainers from 0 to 16 and compared the results. Note that when Fabric components run with
16 sysbench containers concurrently, the maximum CPU utilization of the entire system is
2286% including Caliper and other system daemons. This means that Fabric components
and sysbench containers have sufficient computing resources on the experiment server
with 24 CPU cores.

Figure 3a shows Fabric performance in terms of throughput (left y-axis as bars) and
latency (right y-axis as a solid line) depending on the number of sysbench containers
(x-axis). We found that the Fabric throughput decreased, while latency increased as the
number of sysbench containers increased. Note that the value of zero indicates that there
are only Fabric components without co-located tasks on the host server, which results
in the maximum baseline Fabric performance. When Fabric components run with eight
sysbench containers concurrently, throughput decreases by 32% and latency increases by
5.7 times compared to the maximum performance. When there are 16 sysbench containers,
the Fabric throughput decreases by 53% and latency increases by a factor of 11.5.

Throughput —-e—Latency Fabric utilization mmSysbench utilization -e—Sysbench throughput
800 20 100 40
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(a) Fabric performance comparison in terms of increasing (b) Average CPU utilization and sysbench throughput

number of sysbench containers. depending on increasing number of sysbench containers.

Figure 3. Impact of co-located tasks on Fabric.

Figure 3b depicts the average CPU utilization of the Fabric and sysbench containers
(left y-axis as bars) and the average throughput of sysbench containers (right y-axis as a
solid line) depending on the number of sysbench containers (x-axis). As the number of
sysbench containers increased, the CPU utilization of sysbench containers increased while
that of Fabric components decreased. For example, when eight sysbench containers ran
concurrently with Fabric components, the sysbench containers utilized 33% of CPU, while
Fabric components consumed 18% of CPU, which is a 40% reduction compared to the
case without sysbench containers. Note that throughput of sysbench containers does not
decrease even though the sysbench containers run with Fabric components.

In summary, we show that the CPU utilization of Fabric components decreases when
we increase the number of sysbench containers. This results in performance degradation
of Fabric up to 53% compared to the maximum performance. Therefore, it is necessary
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to develop the performance isolation technique for Fabric to prevent the performance
interference by co-located tasks.

3.3. Performance Interference Analysis

Next, we explore the cause of performance degradation in Figure 3 at the component-
level and show that the components have different impacts on performance degradation.
We measure the system-level metrics in Table 2 for each component and compare the results
when Fabric components run without the sysbench containers (i.e., Alone) and with eight
sysbench containers (i.e., Together).

First, Figure 4a depicts that the average time slice of peers, orderers, and chaincodes
in Together increases by 22%, 35%, and 3%, respectively, compared to those of Alone. This
indicates that the Fabric components in Together run on CPUs longer than in Alone. In
addition, Figure 4b shows that the average scheduling delay for each component increases
by 3.2 times, 4.4 times, and 1.9 times, respectively. This is because the Fabric components
need to wait until the sysbench containers consume their time slice, which is quite a long
time, i.e., 58 ms as illustrated in Table 3. As a result, the Fabric components experience
severe scheduling delay, which leads to performance degradation of Fabric. The number
of context switches in Together in Figure 4c decreases by 22%, 39%, and 48%, respectively,
compared to that of Alone. This means that the total runtime of the Fabric components
decreases, which results in the decrease in Fabric CPU utilization.

Alone  m Together Alone m Together

2.0 20000

15000

10000

5000

Avg. scheduling delay (ms)

15

1.0

0.5 |

0.0 | I

Peer Orderer Chaincode

(a) Average time slice.

Peer Orderer Chaincode

(b) Average scheduling delay.

The number of context switch/s

Peer Orderer Chaincode

(c) Context switch.

Figure 4. System-level profiling of Fabric components in terms of scheduling metrics.

Table 3. System-level profiling of sysbench containers.

. . . The Number of

Avg. Time Slice (ms) Scheduling Delay (ms) Context Switch/s
Alone 328 0.30 24
Together 58 0.53 138

Second, Table 3 shows the system metrics of the eight sysbench containers when the
containers run without the Fabric components (i.e., Alone) and with the Fabric components
(i.e., Together). Although the time slice of sysbench containers in Together decreases by
5.7 times, the number of context switches increases by 5.65 times. Therefore, the average
CPU utilization of sysbench containers slightly decreases from 34% to 33%, and throughput
of sysbench containers does not decrease.

From these results, we identify that the scheduling delay is a key bottleneck in perfor-
mance interference. Therefore, a design goal of QiOi is to control the scheduling delay via
CPU allocation of Fabric components. We focus on the orderers and the peers because their
impacts have been known on determining Fabric performance [16,36-38].

4. Design and Implementation

This section presents QiOi, component-level performance isolation technique for Fab-
ric. First, we explain that CPU share can be controlled to mitigate performance degradation
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of Fabric based on the analysis results in Section 3.3. Then, we introduce the design of QiOi
and describe the overall architecture, implementation, and algorithm in detail.

4.1. Our Approach

In Section 3.3, we observe that the cause of performance degradation in Fabric is the
increased scheduling delay of orderers and peers when the Fabric components run with sys-
bench containers. To mitigate performance degradation of Fabric, we propose to adjust one
of the CPU scheduling parameters, CPU share, to minimize the scheduling delay of orderers
and peers. In other words, we control load weight and vruntime by utilizing CPU share.

For example, when there are two processes (e.g., A and B) in the run queue and different
values of CPU share are given to each process (e.g., A = 1024, B = 2048), process B receives
twice as much CPU time as process A. In addition, if the processes with a high CPU share
occupy a short period of time on CPU that is similar to that of orderers and peers in Fabric,
they will be given higher scheduling priorities by receiving small vruntime. As a result, they
get scheduled to CPU more frequently than other processes with a low CPU share.

Therefore, if we provide a high CPU share for orderers and peers, they will receive
more CPU time and get scheduled to CPU more frequently, which can decrease their
scheduling delay. In short, we propose dynamically controlling the value of CPU share for
orderers and peers to reduce the scheduling delay of Fabric.

4.2. QiOi Architecture

QiOi is designed as follows: (1) monitor the performance of Fabric to detect per-
formance interference, (2) dynamically control the CPU share of orderers and peers to
minimize scheduling delay. The architecture of QiOi consists of performance monitor
and QiOi controller as in Figure 5. QiOi is implemented as a user-level daemon on the
host Linux with Hyperledger Fabric-based blockchain network. It adjusts CPU share of the
Fabric components while monitoring Fabric performance.

Hyperledger Fabric
(0,01 Performance Client

Controller Monitor

[
IoSeuey
90TAIOS JLIqe ]

) Peer Orderer
Service

User I T
Host Linux  —_—

Figure 5. QiOi architecture.

We assume that the isolation threshold is given via Fabric service manager in Figure 5
because determining the isolation threshold is an orthogonal problem to the performance
interference. The isolation threshold is a baseline for detecting performance interference
and indicates the maximum throughput of Fabric, which varies depending on Fabric
network configuration. Then, the Fabric service manager delivers the isolation threshold to
the QiOi controller. The performance monitor periodically collects the actual throughput
of Fabric and delivers it to the QiOi controller. The QiOi controller detects performance
interference by comparing the isolation threshold with the monitored throughput. Then,
QiOi adjusts CPU share of orderers and peers using cgroups. A detailed explanation of the
architecture and implementation is as follows:

¢ Performance monitor periodically collects the Fabric throughput by analyzing Fabric
network information in the container log of the peers. The container log is stored in
the file [container id]-json.log under the directory /var/lib/docker/ containers/[container id].
The Fabric network information contains transaction proposal, chaincode verification,
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and block commit with the timestamp. The performance monitor parses the Fabric
network information every second and calculates throughput using the block commit
information. Note that the monitoring period in QiOi is also adjustable.
Throughput is the rate at which transactions are committed by the Fabric network in
a time period. This rate is expressed as transactions per second (i.e., tps) [12]. During
a period of time from #; to t;, throughput is calculated as in Equation (3). N(t) is the
total number of committed transactions at t.

throughput — the number o f ’commit‘ted transactions _ N(t;) — N(t;) 3)
time period ti—t

*  QiOi controller adjusts CPU share of orderers and peers when performance interfer-
ence occurs. The QiOi controller regards a situation when the actual throughput is less
than the isolation threshold received from the Fabric service manager as performance
interference. Then the QiOi controller adjusts the CPU share of orderers and peers
with the algorithm explained in Section 4.3. The adjusted CPU share is applied to CFS.

4.3. QiOi Algorithm

As shown in Algorithm 1, the QiOi algorithm is based on proportional control. In
other words, the CPU share (S) is proportionally calculated depending on the difference
between the isolation threshold and actual throughput (CPUy;¢¢). Note that Sgefg,¢ is
default CPU share. If the actual throughput is lower than the isolation threshold, the CPU
share of orderers and peers is increased to improve throughput to the isolation threshold.
Otherwise, the value of the previous CPU share is sustained. For example, if the isolation
threshold and the actual throughput are 500 tps and 400 tps, respectively, the QiOi controller
detects performance interference because the actual throughput is below the isolation
threshold. The QiOi controller calculates the value of the next CPU share (Syext) to be
1024 + 1024 x k x %. Note that the QiOi algorithm works on both orderers and peers.

Algorithm 1: QiOi algorithm.

T Isolation threshold

A: Actual throughput

S: CPU share of orderers and peers

dif f = |T — A

ifdiff > 0 then

di

CPUgiff = Sdefaurr X k x #
Snext = Sdefault + CPUdiff;

else

‘ Snext = Sprev/'
return S;eyt

The value of k is an adjustable parameter that affects the rate of the CPU share adjust-
ment. As the k value increases, the CPU share changes rapidly. For a small k value, the
scheduling delay of the orderers and peers may not minimize effectively. For a large k
value, the CPU share of orderers and peers can easily become significantly larger than that
of other Fabric components, which may increase the scheduling delay of other compo-
nents. Therefore, it is necessary to find a proper k value providing performance isolation
more effectively.

To investigate the impact of the value of k, we conduct experiments with the same
setting used in Section 3. The number of sysbench containers is eight and smallbank
chaincode takes about 15 seconds to execute transaction proposals. Figure 6a shows Fabric
throughput (y-axis) over time (x-axis) when the value of k is changed. When the value of k
is 4, Fabric throughput increases by 14% (from 533 tps to 607 tps) compared to throughput
without QiOi. Figure 6b depicts the CPU share of orderers and peers (y-axis) over time
(x-axis) when the value of k is changed. By the QiOi algorithm, the CPU share of orderers
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and peers becomes high compared with other processes that have default CPU share (1024),
so CFS allocates a larger amount of time slice to them and schedules more frequently. Based
on these results, we empirically determined the value of k and set it to 4. Figure 7 compares
the average scheduling delay of Fabric components among without sysbench containers
and QiOi (Alone), without QiOi (Together), and with QiOi (Together w/ QiOi). As a result,
their scheduling delay in Together w/ QiOi is decreases by 31% (peers) and 58% (orderers),
respectively, compared to those of Together, which means that performance interference is
mitigated. On the other hand, the CPU share of chaincodes keeps the default value, which
is lower than that of orderers and peers. Therefore, the scheduling frequency and the
amount of time slice decrease. For this reason, the scheduling delay of chaincodes increases
from 0.19 ms (Together) to 0.24 ms (Together w/ QiOi). Note that Table 4 depicts throughput
of sysbench containers depending on the value of k. Baseline indicates the throughput of
sysbench containers before applying QiOi. The throughput of sysbench containers drops
by 1.2% on average, and QiOi does not sacrifice throughput of sysbench containers.

k=6 k=8 -=k=10 k=2 -@-k=4 k=6 -%k=8 -=-k=10

12000
9000
)
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S
S
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R
)
3000
Y 0
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(a) Fabric throughput over time.

(b) CPU share of orderers and peers over time.

Figure 6. Impact of QiOi algorithm depending on the value of k.

Alone mTogether m Together w/ QiOi
2

ml |

Peer Orderer Chaincode

Avg. scheduling delay (ms)

Figure 7. Comparison of scheduling delay for Fabric components.

Table 4. Sysbench throughput depending on the value of k.

The Value of k Baseline 2 4 6 8 10
Sysbench throughput (events/s) 34.2 33.9 33.7 33.9 33.6 33.9

5. Evaluation

In this section, we comprehensively evaluate QiOi through four sets of experiments.
Note that we utilized the same experiment setting as in Section 3. First, we show that QiOi
can offer performance isolation when Fabric network is composed of different ordering
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services (Section 5.1) and chaincodes (Section 5.2). Then, we demonstrate the impact of
QiOi when Fabric runs with practical co-located tasks such as Spark on a host server
(Section 5.3). Finally, we investigate the overhead of QiOi in terms of CPU utilization
(Section 5.4).

5.1. Support for Different Ordering Services

First, we evaluate QiOi when the Fabric network runs different types of ordering
services. Fabric offers three ordering services, i.e., Solo, Raft, and Kafka, and users can
select one of the ordering services depending on their purposes. Therefore, it is important to
support the different ordering services in providing performance isolation. For experiments,
we run Raft and Kafka, respectively, for the ordering services, as they are considered
representative ordering services in Fabric. We run the smallbank chaincode of Caliper
and measure the performance and CPU utilization of Fabric and sysbench containers,
respectively, when the Fabric components run with the sysbench containers. Note that the
number of sysbench containers is 16, and the Kafka-based ordering service consists of three
orderers, four Kafka brokers, and three ZooKeepers.

Figure 8 illustrates the impact of QiOi on the Raft-based Fabric network. In the x-
axis, w/o QiOi indicates before applying QiOi, and w/ QiOi indicates after applying QiOi.
Figure 8a shows that Fabric throughput (left y-axis as bars) increases by 22% while latency
(right y-axis as a solid line) decreases by 2.5 times when we apply QiOi. This indicates that
QiOi can mitigate performance degradation of Fabric running with sysbench containers. In
addition, Figure 8b depicts that the average CPU utilization of Fabric (left y-axis as bars)
increases by 24% with QiOi. This is because QiOi controls the CPU share of orderers and
peers when Fabric performance decreases because of the sysbench containers. Although
QiOi improves Fabric performance by increasing the CPU utilization of Fabric components,
the average throughput of sysbench containers (right y-axis as a solid line) only decreases
by 2%, which means it is negligible. Note that the average CPU utilization of sysbench
containers (left y-axis as bars) increases by 11%.
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(a) Fabric throughput and latency.

(b) CPU utilization and sysbench throughput.

Figure 8. Impact of QiOi on Raft ordering service-based Fabric network.

Figure 9 shows that QiOi is also effective for a Kafka-based Fabric network. Similar to
the result of a Raft-based Fabric network, Fabric throughput increases by 15%, and latency
decreases by 37% when we apply QiOi as presented in Figure 9a. In addition, Figure 9b
illustrates that performance degradation of sysbench containers is negligible in Kafka as
well (decreasing by 2%) and CPU utilization of Fabric and sysbench containers increases
by 9% and 6%, respectively. Although Raft and Kafka have some differences in architecture
and mechanism, we show that QiOi can offer performance isolation for both of ordering
services. This is because QiOi adjusts the CPU share of orderers and peers independent of
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the type of ordering services. Note that from the experiments in Section 5.2, we focus on
the Raft-based ordering service because it is highly recommended by Hyperledger and
known for easier management than Kafka [39].
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(a) Fabric throughput and latency.

(b) CPU utilization and sysbench throughput.

Figure 9. Impact of QiOi on Kafka ordering service-based Fabric network.

5.2. Support for Different Chaincodes

Now, because Fabric performance and resource usage are different depending on the
chaincodes of Fabric, we investigate the effectiveness of QiOi when Fabric runs different
chaincodes. For experiments, we run simple and marbles chaincodes [32]. Simple chain-
code executes simple queries such as checking and storing values. Marbles chaincode
consists of a series of transactions transferring marbles between multiple marble owners
and stores data as various data structures such as JSON format. We measured the per-
formance and CPU utilization of Fabric and sysbench containers, respectively, when the
Fabric components ran with 16 sysbench containers.

Figure 10 illustrates the impact of QiOi when simple chaincode is executed in Fabric.
Figure 10a shows Fabric throughput (left y-axis as bars) and latency (right y-axis as a solid
line) compared between w/o QiOi and w/ QiOi. When QiOi runs with Fabric, Fabric through-
put increases by 18% and latency decreases by 1.8 times. In addition, Figure 10b shows
that the CPU utilization of Fabric (left y-axis as bars) increases by 12% and throughput of
sysbench containers (right y-axis as a solid line) only decreases by 2%. This is because QiOi
minimizes scheduling delay by increasing the CPU share of orderers and peers. As a result,
QiOi lets the CPU utilization of Fabric increase and then improves Fabric performance.
Note that CPU utilization of sysbench containers (left y-axis as bars) decreases by 9%.
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(a) Fabric throughput and latency.

(b) CPU utilization and sysbench throughput.

Figure 10. Impact of QiOi on Fabric using simple chaincode.
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Figure 11 shows the result of marbles chaincode. Fabric throughput increases by 17%,
and latency decreases by 2 times. Figure 11b illustrates that performance degradation of
sysbench containers is negligible in marbles chaincode as well (decreasing by 1%) and CPU
utilization of Fabric and sysbench containers increases by 13% and 14%, respectively.
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(a) Fabric throughput and latency.
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Figure 11. Impact of QiOi on Fabric using marbles chaincode.

The results show that there are some differences in the performance improvement
rate between Fabric chaincode (i.e., smallbank, simple, and marbles). In terms of Fabric
throughput, the improvement rate is high in the order of smallbank (see Section 5.1), simple,
and marbles (increasing by 22%, 18%, and 17%, respectively). In terms of Fabric latency,
the improvement rate is high in the order of smallbank, marbles, and simple (decreasing
by 2.5 times, 2 times, and 1.8 times, respectively). Each chaincode has different program
code and is simulated on the peers. Fabric performance depends on the complexity
of the chaincode, the time required for simulation, and the micro-architecture metrics
required [40]. Regardless of chaincodes, QiOi focuses on minimizing the scheduling delay
of components. For this reason, there is a difference in the performance improvement rate
for each chaincode. Smallbank has the highest improvement rate in both throughput and
latency. Simple and marbles have a similar improvement rate.

In summary, this experiment shows that the QiOi can mitigate performance degrada-
tion and improve latency in various chaincodes of Fabric.

5.3. Support for Practical Co-Located Tasks

This subsection evaluates whether QiOi can provide performance isolation when
Fabric components run with a practical task other than sysbench. We chose Spark [26] as it
is a widely-used cloud service, which processes data analytic operations in a distributed
manner to enable fast big data processing. There are map and reduce phases in Spark:
the map phase involves processing the input data and creating several small chunks of
data, while the reduce phase involves processing the data that come from the map phase
and producing a new set of outputs. Spark uses a master—worker architecture. A master
is the worker cluster manager that accepts jobs to run and schedules resources among
workers. Each worker executes the jobs. For experiments, we utilize eight workers running
as containers with two threads (i.e., Spark containers) and Terasort job with a 47 GB input
file for Spark. Terasort job sorts some number of data as quickly as possible.

Figure 12 illustrates the impact of QiOi when Fabric runs with eight Spark containers
on a host server. Figure 12a shows Fabric throughput (left y-axis as bars) and latency (right
y-axis as a solid line) compared between w/o QiOi and w/ QiOi. When QiOi runs with Fabric,
Fabric throughput increases by 16%, and latency decreases by 2.4 times. On the other hand,
the throughput change of Spark containers (right y-axis as a solid line) is negligible, which
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is only 3% of a decrease as in Figure 12b. Because Spark containers perform the compute-
intensive map phase [35,41,42], the Fabric components can experience scheduling delay
similar to the case with sysbench containers. Note that CPU utilization of Fabric increases
by 17%, and that of Spark containers decreases by 5%.
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Figure 12. Impact of QiOi on Fabric running with Spark containers together.

To sum up, QiOi dynamically controls the CPU share of the orderers and peers, it can
improve Fabric performance running with Spark containers simultaneously.

5.4. Overhead Measurement

Finally, we evaluate the overhead of QiOi. Note that the algorithm of QiOi has O(1)
time complexity. We measure CPU utilization and Fabric performance when the Fabric
components run with QiOi (w/ QiOi) and without QiOi (Alone) when there are no co-located
tasks. Note that we run the smallbank chaincode.

Table 5 shows that the average CPU utilization of Fabric components decreases by
1.4% (peers) and 1.9% (orderers), respectively, with QiOi. This shows that QiOi does not
incur additional overhead in terms of CPU utilization. In addition, Fabric throughput and
latency decrease by 0.2% and 27%, respectively. This indicates that QiOi does not decrease
Fabric performance.

Table 5. Comparison of Fabric performance and average CPU utilization.

Throughput Latency Peer Orderer
(tps) (s) CPU Utilization (%) CPU Utilization (%)
Alone 787 1.27 223 5.4
w/ QiOi 785 0.93 22.0 53

6. Discussion

Providing performance isolation in distributed environments: We evaluated QiOi
in a host server because this paper focuses on providing performance isolation for Fabric
components running in a host server. However, we believe that QiOi is also extensible
to distributed environments where each Fabric component runs in different host servers.
For example, QiOi can be implemented as a plugin for Kubernetes [43], the most popular
container orchestration platform. When Kubernetes creates the Fabric components as
containers, QiOi can send requests to assign CPU share values to corresponding Fabric com-
ponents. Since Kubernetes supports cgroups features that can reserve or limit computing
resources for containers, QiOi can exploit the functionality of Kubernetes to assign the CPU
share values to the Fabric components.
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Providing performance isolation for multiple tenants: When QiOi runs with Fabric
in a cloud data center, it should offer multi-tenancy support. Fabric utilizes channels to
offer multi-tenancy in a Fabric network. Channel [8] is a private subnet in a Fabric network,
which conducts confidential transactions between two or more specific network members.
Hence, each tenant is allocated in different channels while the ordering service is shared by
all channels in the Fabric network. Peers can belong to multiple channels and have ledgers
for each channel. Furthermore, only components in a channel can participate in processing
transactions of the corresponding channel and can access the ledger of the channel. We
believe that QiOi can support multiple channels by extending the architecture. First,
for performance monitoring, QiOi can monitor the actual performance of each channel
by analyzing the transaction logs of peers in different channels. In addition, QiOi can
control the CPU shares of the peers belong to different channels by managing per-tenant
performance policy. The per-tenant performance policy means that QiOi can only control
the CPU shares of the tenants that achieve lower performance than the isolation threshold.

7. Related Work
7.1. Performance Evaluation and Characterization

Since Hyperledger Fabric was introduced in 2015 [7,8], many studies have charac-
terized the performance of Fabric. Most studies aim to evaluate throughput and latency
with different parameters. For example, Nasir et al. [44] analyzed the performance of two
versions of Hyperledger Fabric (v0.6 and v1.0). They showed that Fabric v1.0 outperforms
Fabric v0.6. Furthermore, Fabric v1.0 provides stable performance independent of the num-
ber of peers. In [1,45,46], the authors demonstrated the impact of different parameters such
as batch sizes, transaction types, different endorsement policies, and the number of peers
on Fabric performance. They showed that small batch sizes reduce performance, while
reducing the number of endorsements in the endorsement policy improves performance.
Furthermore, performance decreases as the number of peers increases. In addition, the ex-
perimental results in [1] indicate that the complex endorsement policy leads to performance
degradation and the increase of the CPU and network utilization.

Javaid et al. [16] found that different types of databases affect Fabric performance. For
example, when the block size increases in GoLevelDB and CouchDB, latency of the validate
phase in CouchDB is approximately four times higher than that in GoLevelDB. Kuzlu
et al. [47] analyzed the performance of blockchain networks depending on the parameters
such as transaction type, number of transactions, transaction sending rate, and concurrent
execution of several chaincodes. When the number of concurrently executing transactions
increases, throughput also increases. However, when throughput reaches its maximum
value, latency increases without further throughput increase.

In [19,48], the authors compared different consensus protocols such as Solo, Kafka,
and Raft. Yusuf and Surjandari [19] demonstrated that Raft is superior to Kafka. Wang
and Chu [48] investigated the performance characterization of each phase, including
execute, order, and validate phase. The authors found that the validate phase can become
a bottleneck due to the low validation speed of chaincodes.

In short, previous studies have carried out experiments to achieve a maximum per-
formance in environments where sufficient computing resources were provided, using
individual VMs with a large number of virtual CPUs (e.g., 16 or 32). However, they did
not analyze the characteristics of each component in terms of CPU scheduling and did
not consider performance interference when Fabric components run with other services
concurrently. Thus, QiOi is complementary to these studies. By considering the differ-
ent characteristics of Fabric components, QiOi prevents performance interference with
other services.

7.2. Performance Improvement

Several studies have proposed to improve the performance of Fabric by optimiz-
ing Fabric architecture or enhancing the processing routines (as shown in Table 6). Pre-
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vious research [1,16] pointed out the following performance bottlenecks: (1) repeated
de-serialization of chaincode information including identity and certificate, (2) sequential
validation of transactions during VSCC, and (3) delay of multi-version concurrency control
(MVCC), which ensures no read—write conflicts between the transactions. In order to
resolve these bottlenecks, they propose to cache chaincode information, to execute VSCC in
parallel, and to use bulk read—write during MVCC validation. Their evaluation results [16]
showed that the proposed techniques improve the Fabric performance by 2 times and
1.3 times in CouchDB and GoLevelDB, respectively.

Table 6. Comparison of related work in terms of Fabric analysis.

Typical Characterization Optimization for Performance Interference
of Fabric Performance Improvement in Fabric

Nasir et al. [44] v X X
Balig et al. [45] v X X
Thakkar et al. [1] v v X
Kuzlu et al. [47] v X X
Javaid et al. [16] v v X
Kwon and Yu [36] v v X
Gorenflo et al. [37] v v X
Shalaby et al. [46] v X X
Yusuf and Surjandari [19] v X X
Nakaike et al. [49] v v X
Wang and Chu [48] v X X

In addition, some studies have suggested enhancing the strategies for endorsement or
database access. For example, Kwon and Yu [36] improved read transaction processing
by separating read and write transactions in the endorsement of peers. They also created
a new consensus protocol without using an external project. As a result, they improved
the overall latency and throughput by 20%. Gorenflo et al. [37] proposed replacing the
database that stores the latest key-value pair in the ledger with an in-memory hash table to
enhance the speed of database access. They improved Fabric throughput up to 20,000 tps
in Fabric v1.4. Nakaike et al. [49] also pointed out database access overhead in chaincodes
and suggested disabling the compression of GoLevelDB and reducing the size of StateDB
and the number of reads and writes in a transaction.

To sum up, previous studies focused on analyzing performance bottlenecks and
optimized Fabric architecture to improve Fabric performance. QiOi differs from these
studies in that QiOi addresses the performance interference in Hyperledger Fabric when
the Fabric components run on cloud data centers.

7.3. Performance Isolation and Resource Management

Performance isolation is critical for service quality in cloud environments. Thus,
there have been many research efforts to develop techniques for resource allocation
and scheduling that assign server resources, such as CPU time, disk bandwidth, and
network bandwidth.

Li et al. [25] proposed PINE, a technique for performance isolation in container envi-
ronments. PINE can adaptively allocate the storage resources for each service according to
their performance behaviors (e.g., latency-sensitive or throughput-first services) through
dynamic resource management and 1/O concurrency configuration. Kim et al. [23] sug-
gested CPU cap management to ensure different QoS enforcement levels in a platform
with shared resources. They adjusted the number of working threads per QoS class and
dispatched the outstanding task along with the associated events to the most appropriate
working thread. Xu et al. [24] designed a network bandwidth management system working
between Kubernetes and network plugins called NBWGuard. NBWGuard supports three
QoS classes consistent with the Kubernetes approach. Khalid et al. [22] discussed the reason
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for performance degradation of containers when co-located containers running network-
related applications consume CPU resources aggressively. In order to prevent performance
degradation, the authors suggested fairly allocating CPU by accounting CPU consumption
for network packet processing and applying the CPU consumption in CPU scheduling.

To summarize, previous studies are not easily applicable to Fabric that consists of
heterogeneous components. Therefore, this paper proposes QiOi to provide component-
level performance isolation for the heterogeneous characteristics of components.

8. Conclusions

In cloud data centers, the Fabric services may run concurrently with co-located services.
In such an environment, Fabric services may experience performance interference. We
demonstrate that performance interference of Fabric indeed occurs and it is due to the
scheduling delay caused by co-located services. To mitigate performance interference, we
present QiOi, component-level performance isolation technique for Hyperledger Fabric.
The technique is based on dynamically controlling the CPU share of Fabric components.
Our evaluation results show that QiOi mitigates performance degradation of Fabric by
22% and improves Fabric latency by 2.5 times without sacrificing the performance of
co-located services.
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