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Abstract: This paper introduces an online multi-level energy management strategy (EMS) based on
proposed rule-based and optimization-based approaches for fuel hybrid electric vehicles, including
fuel cell, battery, and ultracapacitor systems. Our approach combines equivalent consumption
minimization, state machine control, operational mode control, and fuzzy logic control methods.
The proposed multi-level EMS reduces fuel consumption, enhances fuel cell operating time in a
high-efficiency range, reduces battery power fluctuations, and improves maintaining the battery state
of charge (SOC). The proposed EMS is compared with the optimized-fuzzy logic control (Opt-FLC)
method. The results show a reduction in fuel consumption, battery power fluctuations, and the SOC
difference between the start and end of the driving cycle, compared to Opt-FLC. Hence, fuel economy
improvement and lifetime enhancement of hybrid energy storage system are the significant outcomes
of new proposed multi-level EMS.

Keywords: combined efficiency; energy management strategy; fuzzy logic control; operational mode
control; fuel consumption; power fluctuation

1. Introduction

Fuel consumption reduction and tailpipe emission are the main objectives of the
transition to the electrified transportation industry. Fuel cell vehicles (FCVs) have a high
superiority in the development of transportation electrification. Pure fuel cell vehicles
have main drawbacks, which encourage designers to design FCVs with the support of
battery, ultracapacitor (UC), photovoltaic, or hybrid configurations. This hybrid configu-
ration incurs additional complexity to the power-train control system, which means the
energy storage systems (ESSs) should be optimally controlled. Hence, the online energy
management strategy (EMS) in the fuel cell hybrid electric vehicles (FCHEVs) is a critical
point in the electrification of the transportation industry [1–3].

The slow dynamic response of fuel cells (FCs) and its incapability of regenerative
braking energy capture are the main drawbacks of FCVs, making them equipped with
ESSs in the electrified transportation industry. However, none of the ESSs has high power
and energy density at the same time. The batteries have a high energy density, and the
UCs have a high power density. As a result, the combination of battery and UC can
supply the vehicle’s required power in multi-second peaks. In regenerative braking modes,
the battery’s low power density does not allow it to contribute completely to receiving the
energy generated by the brake, but the UCs can capture this energy. Considering the above
discussion, the combination of ESSs improves the performance of the FCHEVs [4–8].

The proton exchange membrane fuel cell (PEMFC) is the most promising FC type
for application in the electrified transportation industry. The PEMFC has high efficiency,
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low operating temperature, high power density, nearly zero-emission, and a relatively
fast startup [9,10]. Among the possible state-of-the-art hybridized architectures of the
ESSs, the FC/battery/UC structure is the most attractive configuration [11]. This HESS
structure has the lowest hydrogen consumption cost and electricity price compared to
the FC/battery and FC/UC structures [12], and a reliable energy management strategy is
needed to maximize the mentioned advantages.

The energy management strategies encompass rule-based (deterministic, fuzzy logic
control) and optimization-based (real-time, global) approaches. The global optimization-
based method requires prior knowledge of an entire driving cycle to minimize the cu-
mulative fuel consumption. The real-time optimization-based approaches eliminate the
requirement to obtain prior knowledge by reducing global optimization problems into a
succession of local optimization problems. But the global optimal point can differ from
a locally optimal point. For instance, the equivalent consumption minimization strategy
(ECMS) outperforms the other real-time methods, but the optimal point in global methods
might differ 10% in comparison with ECMS [13,14].

The online rule-based strategies have lower implementation costs, lower occupied
memory space, and higher determination speed, but engineering experiences affect these
strategies’ performance. Fuzzy logic control (FLC), wavelet-FLC, adaptive-FL, fuzzy logic
on-off power control, state machine control (SMC), operational mode control (OMC), power
follower, on-off power control, and modified power follower are based on the rule-based
EMS [15].

The fuzzy logic performance is evaluated through the following studies. In [16],
a triple fuzzy logic controller based on data fusion has been presented to the online energy
management of FCHEV. The genetic algorithm has been used to optimize the membership
function parameters of FLC for three driving cycles. Moreover, the probabilistic support
vector machine method has been applied to detect various driving conditions. However,
driving conditions have only been categorized into three groups. Moreover, the authors
have selected the battery and UC states empirically.

For investigation multi-level methods, the following features are compared. The au-
thors in [17] have presented a fuzzy-back stepping control strategy for battery/UC based on
real-time evaluation of six on-off operational modes to reduce battery power fluctuations.
The simulation platform via Cruise and MATLAB software has been presented to validate
the results [18]. The authors in [19] have presented a fuzzy logic control method combined
with genetic algorithm for FCHEV in a simulation platform of ADVISOR. The genetic
algorithm has been used to optimize the membership function parameters of FC output
power to reduce equivalent hydrogen consumption and improve battery lifetime [19].

In the field of multi-level EMS methods, the authors in [20] have proposed an EMS
based on SMCS and ECMS for FC/UC hybrid tramway to increase the operating time of
FC in a high-efficiency range and decrease the FC power fluctuations. The combination
of SMCS with droop control has been presented in [21] to coordinate multiple ESSs based
on their natural characteristics, aiming to enhance high-efficiency performance range and
satisfy fast changes in the demand power.

Generally, in the reviewed energy management strategies [16–21], the HESS energy
efficiency, battery or UC state division, and movement conditions of the vehicle have not
been analyzed mathematically. Moreover, the fluctuations of FC and battery power can
be reduced efficiently, and driving conditions can be detected without comparing driving
cycles. To address the mentioned problems, the following contributions are proposed in
this paper:

• The vehicle movement states are formulated based on the vehicle’s speed, acceleration,
and power.

• Battery and UC state divisions are presented based on the mathematical formulation
of the proposed combined energy efficiency concept.

• FLC and OMC methods are used to reduce FC and battery power fluctuations. More-
over, the operational modes of FC are selected based on efficiency and ECM concept.
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• Finally, an online multi-mode energy management strategy based on SMC, FLC, ECM,
and OMC methods is presented for power management of the FC/battery/UC vehicle.

The rest of the paper is organized as follows. In Section 2, the framework of hybrid
energy storage systems is presented. The proposed EMS, which includes SMC, ECM, FLC,
and OMC power contribution, is proposed in Section 3. The MATLAB simulation results of
the proposed EMS are given in Section 4. Finally, the conclusions are discussed in Section 5.

2. Hybrid Energy Storage System

The HESS of FCHEVS which includes FC, battery, and UC is studied in this paper.
It is necessary to analyze each source’s model accurately to ensure the proposed EMS’s
optimal performance.

2.1. PEMFC System

The mathematical model of PEMFC is essential to the power management of HESSs.
The efficiency equation of PEMFC based on its dynamic model is shown by (1) [22].

η f c =
VFCi f c − Paux

MH2∆H
(1)

where MH2 and ∆H indicate the Molar mass and the hydrogen enthalpy change, respec-
tively. Finally, the hydrogen consumption in PEMFC system is formulated by (2) in which
ηdc and ρH2 represent the DC-DC converter efficiency and hydrogen chemical energy
density, respectively.

mH2 =
∫ t

0
[
VFC(t)iFC(t)

ηdc(t)ρH2
]dt (2)

2.2. Lead-Acid Battery

The dynamic performance of the battery depends on open circuit voltage (Uoc), inter-
nal resistance (RBat), and state of charge (SOC). The battery state of charge is calculated
by (3) [23]:

SOC(t) = SOC0 −
∫ t

0

IBat(t)
EBat

dt (3)

where EBat is the battery maximum capacity, and SOC0 is the initial state of charge. The bat-
tery charge and discharge efficiency are different from each other, and can be formulated
based on (4) for lead-acid battery:

ηdis =
1+

√
1− 4Rdis PBat

U2
oc

2

ηchg = 2

1+
√

1+
4Rchg PBat

U2
oc

(4)

where Rchg and Rdis indicate the battery resistance on charge and discharge mode, respec-
tively [24].

2.3. Ultracapacitor

UC plays an important role in supplying peak demand power during acceleration
and absorbing the regenerative braking energy. High power density, continuous operation,
and high charge/discharge efficiency make the UC superior over FC and battery. Like the
battery, the UC’s behavior is also described using a dynamic model in which the voltage
discharge ratio (VDR) of the UC and efficiency are considered. The VDR, UC consumable
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energy (Wuc), and UC maximum power (Puc,Max) are the essential parameters to detect the
UC working condition. These parameters are formulated using (5)–(7) [25].

VDR =
Vt

VM
× 100 (5)

Wuc = WM(
VDR
100

)2 (6)

Puc,Max =
V2

t
4× Rs ×massuc

(7)

where Vt is UC output volatge; VM indicates the maximum voltage of the UC; WM presents
maximum energy of the UC; Rs is series resistance of UC; and massuc is the mass of UC.
Moreover, the UC efficiency in charge or discharge mode has different values. Therefore,
the charge and discharge efficiency of UC are formulated based on (8) [25].

ηucd = Vt .it
VC .iC

= (VC−it .Rs)it
VC(it+iL)

ηucc =
VC .iC
Vt .it

= VC(it−iL)
(VC+it .Rs)it

(8)

where VC and iC represent the internal voltage and current of the UC cells; iL and it indicate
the linkage current and terminal current of the UC, respectively.

3. Proposed Energy Management Strategy

FCHEVs are considered an appropriate alternative for internal combustion engine
vehicles, and researchers continue their studies to improve hybrid energy storage perfor-
mance. In this article, the state machine control ideas, fuzzy logic control, the equivalent
consumption minimization strategy, and the operational mode control strategy are used to
optimal management of the HESS in FCHEVs, as shown in Figure 1.

In the first level of the proposed EMS, the FCHEV movement states, battery SOC,
and UC VDR have been identified. The vehicle state movements (VSM) are divided into 5
states; the battery SOC range is divided into 4 states, and the UC VDR range is divided
into 4 states. In the second step, the fuzzy logic control strategy was designed based on
the operation function of vehicle state movement, demand power, battery SOC, and UC
VDR to calculate the FC and battery output power. In the next step, the hydrogen con-
sumption ratio (HCR) curve is obtained using the simulation results to perform equivalent
consumption minimization theory. Then HCR and its dispersion indices are used to select
high-efficiency operation points all over the FC operating range. Finally, FC and battery’s
operational modes have been applied to the proposed EMS to implement the operational
mode control strategy.

3.1. Proposed State Machine Control

The SMCS is a deterministic rule-based method that can be used for vehicle movement
condition detection, battery SOC division, and UC VDR classification. This paper defines
the SMC-based proposed mathematical relations for different states. However, the alone
use of this strategy cannot guarantee the operation of HESSs at optimal points. Generally,
the previous studies have used three conditions of acceleration/ braking/stop as different
vehicle movement states [26]. However, in the presented operation states of the vehicle, five
states are defined based on the demand power (PDemand(t)), speed (v(t)), and acceleration
(a(t)), as shown in Figure 2. These five vehicle movement states are idling, acceleration,
fixed speeding cruise, braking, and regenerative braking. The vehicle movement states is
formulated by (9) [27]:

VSM(t) = sign(a(t)) + sign(v(t)) + sign(PDemand(t)) (9)
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Figure 1. Multi-level EMS flowchart.

Furthermore, the optimal operation of the battery and UC depend on the charge/
discharge efficiency. In this study, battery combined efficiency (BCE) and UC combined
efficiency (UCE) are formulated to divide the different states of SOC and VDR. The bat-
tery combined efficiency of lead-acid battery (ηBCE) is formulated in Table 1 and shown
in Figure 3.
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Figure 2. Vehicle state movement function values.

Table 1. The combined efficiency.

Element Combined Efficiency Combined Efficiency Expectation

Lead-acid battery ηBCE = (
ηdis+ηchg

2 ) µBCE = ∑n
i=1 ηiPBCE(ηi)

MAXWELL ultracapacitor ηUCE = ( ηucd+ηucc
2 ) µUCE = ∑n

i=1 ηuiPUCE(ηui)

B
C

E
  

(%
)

85
0
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95

00.25
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0.25

SOC

0.5

Power (pu)

0.50.75 0.751 1

Figure 3. Typical Lead-acid battery combined efficiency.

In this study, BCE is used to determine the different states of the battery SOC. The
BCE expectation (µBCE) is defined as Table 1. However, more indices are required for
dispersion analysis of BCE. The standard deviation is a proper index to determine the
efficiency’s dispersion from the median point. This index is calculated using by (10),
in which uniform probability distribution function (PBCE(ηi)) is in the range of [0.1, 0.9].

σBCE =
√

E{(BCE− µBCE)2} =
√

n

∑
i=1

(ηi − µBCE)2PBCE(ηi) (10)

The battery combined efficiency, mean, and standard deviation for different SOCs of
a lead-acid battery at rated power are shown in Figure 4. It can be seen that maximum
BCE is 92.35% occurring when SOC is 0.5; minimum BCE is 88.31% occurring when SOC is
0.1; average BCE is 90.89%; and the standard deviation of BCE is 1.42%, which are used to
divide states of the battery.
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Figure 4. State division of Lead-acid battery based on BCE.

The high power density of UC discriminates it from other conventional ESSs and
makes fast reactions in a short time possible. The charge/discharge efficiency of the UC
depends on the voltage, current, and VDR. The UC combined efficiency can be used
for analyzing the division of UC states. The mathematical calculations of UC combined
efficiency are given in Table 1, and its curve is shown in Figure 5.

VDR (%)

80
1

85

90

U
C

E
 (

%
)

0.75

95

100

100

Power (pu)

0.5 80600.25 40200 0

Figure 5. Typical MAXWELL ultracapacitor combined efficiency.

The expectation of the UC combined efficiency (µUCE) is defined as in Table 1, where
uniform PDF (PUCE (ηui)) is in the range of [40, 100]. The UC combined efficiency at the
rated power is divided into three operational regions as shown in Figure 6. It can be seen
that as VDR is increased, UCE increases. The median of the combined efficiency is 95.2%,
and its average is 92.96% at the maximum power of UC, which are used to separate the
operational states of UC.

3.2. Fuzzy Logic Control

The deterministic rule-based methods are not adaptive. But fuzzy logic control can
deal with multi-variable systems with uncertainties. The advantages of the proposed
fuzzy logic in this paper are listed as follows: the FLC is used to reduce fluctuations of
FC and battery output power; presented FLC reduces operational modes of the proposed
EMS, and FLC Keeps battery SOC and UC VDR in the determined regions. The proposed
FLC has defined with two outputs {PFC, PBat} and four inputs {demand power, SOC, VDR,
VSM}. The presented concepts for states are used to define SOC, VDR, and VSM trapezoidal
membership functions. The complete data set of proposed fuzzy logic control can be found
in [28]. The fuzzy subset of demand power is divided into {Low, Negative, Max, Medium,
Zero}; the fuzzy subset of SOC is divided into {BHER, BLCR, BLER, BMER}; and the fuzzy
subset of VDR is divided into {UHC, UHER, UMER}. Instead of classifying driving cycles,
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the movement conditions of the vehicle are described using five linguistic trapezoidal
terms, including {Acc, Brk, Id, Reg, Tra}.

10 20 30 40 50 60 70 80 90 100
VDR (%)

75

80

85

90

95

100

U
C

E
  

(%
)

Ultracapacitor Combined Efficiency Average Median

No Use UMER UHER UHC

Figure 6. State division of UC based on UCE.

In this paper, the Mamdani inference procedure is used to design fuzzy supervisor.
Furthermore, FC output power subsets are described using {OFF, FCHER, FCP3, FCMER,
FCP5, FCLER}; and the battery output power subset is defined using {Ch, Zero, LD, MD,
HD}. In this paper, the FLC rules are formulated as “If inputs are Ai, Then outputs are Bi”,
and number of fuzzy rules are equal to 3× 4× 5× 5 = 300. This FLC generates the initial
reference value for the FC and battery output power, and the ECMS will be distributed the
HESS power in the next step of proposed multi-level EMS.

3.3. ECM Strategy Conception

Currently, the FC output power change is an important problem that affects the
PEMFC lifetime [29]. In this study, the operational modes of FC output power are deter-
mined based on HCR and equivalent hydrogen consumption. In this regard, the hydro-
gen consumption ratio is proposed to calculate the FC consumption per joule of energy.
The HCR is formulated by (11). Then, the expectation and standard variation of HCR
are calculated using (12) and (13) in which uniform PDF (PH (HCRi)) is in the range of
[0.17, 1]pu.

HCR =
mH2

PFC
=

∫ t
0 [

VFC(t)iFC(t)
ηdc(t)ρH2

]dt∫ t
0 VFC(t)iFC(t)dt

(11)

µHCR =
∫ PFC

0.17
HCRiPH(HCRi)d(PFC) (12)

σHCR =

√∫ PFC

0.17
(HCRi − µHCR)2PH(HCRi)d(PFC) (13)

The PEMFC HCR curve under various output powers is simulated and shown in
Figure 7. Then six operational modes of the PEMFC are selected based on HCR and
its mean, minimum, and standards deviation to prevent FC degradation and lifetime
reduction, as shown in Figure 8.
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The state deviations of battery and UC (according to Figures 4 and 6) show that the
UC combined efficiency is higher than the battery combined efficiency. Therefore, the BCE
has a critical role in the equivalent hydrogen consumption ratio (EHCR). In this regard,
the battery equivalent hydrogen consumption ratio (EHCRBat) formulation is proposed
based on (14), in which ηdc is the efficiency of the bidirectional DC− DC converter which
is connected to the battery.

EHCRBat =
∆SOC× EBat × 3600∫ t

0 VFC(t)iFC(t)dt× η f c × ηdc × ηchg × ρH2
(14)

The battery equivalent hydrogen consumption ratio is evaluated to obtain the results
of charging battery at the lowest equivalent hydrogen consumption per joule of energy.
In the next step, EHCR will be considered to select the optimal operational modes of HESS.

3.4. Operational Mode Control

After ECMS idea formulation, the different operational modes of PEMFC and battery
output power classifications into 0.5 kW intervals are used to reduce FC and battery power
fluctuations. The proposed OMC is based on changes of the battery SOC, UC VDR, vehicle
demanded power, and VSM, which tries to be used as follow:
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• The main priority of EMS is the PEMFC operation at a minimum hydrogen consump-
tion ratio.

• The battery charging mode has been done for modes in which the PEMFC operates at
the minimum HCR, and the equivalent hydrogen consumption at the present mode is
lower than the HCR at the next mode (EHCR(i)

Bat < HCR(i+1)).
• The battery discharging mode has been done in cases that the demanded power is

higher than PEMFC output power, or the UC VDR is very low.
• During idling state, the FC with regarding SOC and VDR states can operate at 0.4 pu,

and charge the battery and UC.
• If the demand power is higher than FC power, then the proposed OMC distributes

demand power between HESS using results of the FLC method.
• When the vehicle is in the regenerative braking state, the FC is OFF. The battery is

charged based on FLC output, and the UC captures regenerative braking energy
as possible.

Therefore, the output modes of the proposed OMC are adjusted according to Table 2,
in which u is the step function, and, PFC,opt, PBat,opt, and PUC,opt is the optimal output
power of the proposed EMS for FC, battery, and UC, respectively.

Table 2. Operational mode control rules.

VSM Output Mode Function

PFC,opt= 0
VSM = −1 PBat,opt= PBat1 × u(0.5− SOC)

PUC,opt= PDemand − PFC,opt − PBat,opt

PFC,opt= 0.4× u(0.8− SOC)× u(98−VDR)
VSM = 0 PBat,opt = PBat1 × u(0.5− SOC)

PUC,opt = PDemand − PFC,opt − PBat,opt

PFC,opt = PFC1 × u(PFC1 − PDemand)× u(0.5− SOC)× u(56−VDR)
+PFC1 × u(PDemand − PFC1)

VSM = 1 PBat,opt = PBat1 × u(PFC1 − PDemand)× u(56−VDR)
+PBat1 × u(PDemand − PFC1)

PUC,opt = PDemand − PFC,opt − PBat,opt

PFC,opt = PFC1 × u(PDemand − PFC1)× u(95−VDR)
+PFC1 × u(PFC1 − PDemand)× u(56−VDR)

VSM = 2 PBat,opt = PBat1 × u(PFC1 − PDemand)× u(56−VDR)
+PBat1 × u(PDemand − PFC1)

PUC,opt = PDemand − PFC,opt − PBat,opt

PFC,opt = min(PFC1(pu), 0.4)× u(PFC1 − PDemand)× u(VDR− 95)
+max(PFC1(pu), 0.4)× u(PFC1 − PDemand)× u(95−VDR)

VSM = 3 +max(PFC1(pu), 0.4)× u(PDemand − PFC1)
PBat,opt = PBat1

PUC,opt = PDemand − PFC,opt − PBat,opt

4. Simulation Verification

To verify the performance of proposed EMS compared to other strategies, the sim-
ulation framework is developed as shown in Figure 9, which includes FCHEV dynamic
model, PEMFC model, battery model, UC model, and proposed EMS simulation platform.
The characteristics of the FCHEV are listed in Table 3, and the simulation framework
of online EMS includes FLC, levelization method based on ECMS, and proposed OMC
strategy. According to Figure 9, the proposed EMS simulation platform consists of three
consecutive stages. In the first step, FLC determines the output power of the fuel cell and
the battery (PFC0, PBat0). The output power of the fuel cell and battery is levelized in the
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second stage (PFC1, PBat1). Finally, the operational mode control strategy in the third step
calculates the desired output solutions (PFC,opt, PBat,opt, PUC,opt).

Battery Model

Ref. [24]

UC Model

Ref. [27]

PEMFC Model

Ref. [8]

FCHEV 

Dyanmic Model

Ref. [7]

Driving Cycle

PDemand

VSM

PBat,opt

PFC,opt

PUC,opt

Fuzzy Logic 

Control

SOC

H2 Use

VDR

PBat0

Levelization

Operational

Mode

Control

Strategy

PDemand

VSM

SOC

VDR

PDemand

VSM

SOC

VDR

PUC,opt

PBat,opt

PFC,opt

PBat0

PBat1

PFC1

PFC0

PFC0

PFC1

PBat1

Figure 9. Simulation framework of the proposed EMS.

Table 3. FCHEV component specifications.

FCHEV [19]
Mass 1500 kg Front area 2 m2

Drive-train efficiency 85% Drag coefficient 0.335

Fuel cell system [19]
Type PEM Max power 50 kW
Mass 223 kg Peak efficiency 60%

Battery [24]
Type Lead-acid Max capacity 36 Ah

Rated voltage 12 V Module number 13

MAXWELL Ultracapacitor cell
Type K2 Rated capacitance 3000 F

Rated voltage 2.7 V Module number 110

To implement the proposed EMS in real-time conditions, the computational time of EMS
running is an important subject. The running time of the fuzzy logic controller to provide
a decision in the proposed EMS could be lengthy. Different driving scenarios and several
input variables affect the output results of the FLC system. In order to solve this problem,
the variable inputs are estimated for different scenarios and the fuzzy logic control system
is executed offline for different scenarios at the first step, then the leveled output results for
different scenarios are stored as a look-up table in the MATLAB/Simulink environment.

The input variables of VSM, SOC, and VDR in FLC include various discrete modes
of vehicle status such as movement, battery, and ultracapacitor charge. The main and
anonymous variable of FLC in online execution mode is PDemand. According to the range
of other input variables, the output scenarios of FLC in offline execution can be reduced.
Accordingly, FLC output response evaluation is first investigated based on VSM discrete
states, battery SOC, and UC VDR regions. In fact, for 60 different scenarios, the output
response changes are simulated relative to the demanded power of the FCHEV. These out-
put responses for 60 different scenarios can be classified. On the other hand, the proposed
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strategy according to Figure 1 levelizes the output power of FLC (PFC0, PBat0) and in fact
the levelized output power (PFC1, PBat1) has a confined number of modes that can be saved
as a look-up table. Thus, the running time of the FLC system has not caused any delay in
the online performance of the proposed energy management strategy.

The EMS of FCHEV plays an important role in fuel consumption minimization and
power fluctuations reduction. In this section, several driving cycles are applied to validate
the proposed online multi-level EMS. In the first scenario, NEDC driving cycle is applied as
an irregular terrain on FCHEV, and the performance of the EMS is verified in the simulation
platform of MATLAB. Then results of the proposed online multi-level EMS under different
driving cycles are used to compare its performance.

4.1. EMS Results for NEDC Driving Cycle

To verification, the simulation results of the proposed online multi-level EMS in the
NEDC driving cycle for an FCHEV are presented in Figures 10–15. The NEDC driving
cycle’s demanded power is shown in Figure 10. The PEMFC output power is presented
in Figure 11, where the maximum value of PEMFC output power is 0.8 pu. According to
Figure 11, the PEMFC operates in the output power of 0.4 pu in most cases, which has the
maximum efficiency. The lead-acid battery’s output power is shown in Figure 12, where its
maximum value is 4 kW.

Figure 10. Demanded power of FCHEV in NEDC driving cycle.

Figure 11. PEMFC power in NEDC driving cycle.

As can be seen, the lead-acid battery lifetime can be improved because of operating
without fluctuations in most cases. The battery SOC is shown in Figure 13 to analyze
charge/discharge performance and the difference between initial and final SOC values,
which is 0.016%. Figure 14 shows the UC output power in which the maximum required
power is 22.15 kW. According to Figures 10–15, the UC effectively can decrease the power
fluctuations of PEMFC and battery. Also, it can be noticed that in the proposed EMS, UC
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is charged at the optimal point of the PEMFC. In addition, Figure 15 shows UC VDR in
which the final value of VDR is 12.81% higher than the initial value of VDR. Results show
that the proposed online multi-level EMS can be applied to improve the total efficiency of
HESS, reduce PEMFC and lead-acid battery power fluctuations, and decrease the difference
between initial and final SOC.

Figure 12. Battery power in NEDC driving cycle.

Figure 13. Battery SOC in NEDC driving cycle.

Figure 14. UC power under NEDC driving cycle.
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Figure 15. UC VDR under NEDC driving cycle.

4.2. EMS Results Comparison

To verification of proposed online multi-level energy management strategy, the ob-
tained results are compared with Opt-FLC EMS presented in [19]. The results are demon-
strated in Table 4 for these strategies over 6 different driving cycles. According to Table 4,
the results validate that proposed online multi-level EMS decreases the PEMFC fuel con-
sumption, lead-acid battery power fluctuations, and ∆SOC. The fuel consumption in
the proposed EMS is less than the Opt-FLC strategy; for instance, the proposed EMS
consumes 4.37 MPG (miles per gallon) in the NEDC driving cycle, while the Opt-FLC
strategy consumes 3.95 MPG. To study the proposed EMS’s efficiency, the ∆SOCs under
different driving cycles are presented in Table 4. It is clear that the initial and final SOC has
a minimum difference in the proposed EMS. Also, battery power fluctuations are listed in
Table 4. According to Table 4, the PEMFC and battery power fluctuations have reduced in
the proposed online multi-level EMS compared with the Opt-FLC strategy.

Table 4. EMS methods comparison.

Driving Cycle Compared Parameters Opt-FLC EMS [19] Proposed EMS

MPG 3.95 4.37
(1) NEDC ∆SOC +1.69% +0.016%

Battery fluctuations 1.840 kW 0.709 kW

MPG 4.00 6.36
(2) UDDS ∆SOC -0.13% +0.010%

Bat Fluc 3.377 kW 0.498 kW

MPG 4.66 7.63
(3) HWFET ∆SOC +0.02% +0.015%

Battery fluctuations 2.396 kW 0.498 kW

MPG 2.249 5.44
(4) EUDC ∆SOC +1.34% +0.002%

Battery fluctuations 3.085 kW 0.220 kW

MPG 3.76 5.81
(5) LA92 ∆SOC +0.04% 0

Battery fluctuations 3.621 kW 0.825 kW

MPG 3.08 3.23
(6) JP 10 Mode ∆SOC 0 0

Battery fluctuations 3.067 kW 0.282 kW

5. Conclusions

According to the previous studies presented in this work, energy management strate-
gies were not analyzed based on the mathematical formulations to divide SOC and VDR
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regions. Many of the reviewed studies have used only three driving cycles to classify
vehicle movement identification. Moreover, these power fluctuations reduction of FC and
battery can be improved in comparison to the reviewed studies.

The proposed strategy in this paper recognizes the vehicle’s dynamic movement
conditions based on the VSM function’s formulation. The combined efficiency of battery
and UC is presented to divide SOC and VDR states based on mathematical relations. In an
FC system, keeping the FC’s operating point on the best output power is one of the most
attractive ideas. In this study, the FC output power modes are calculated based on the
HCR function to select six operating points to improve fuel consumption. Also, the battery
output power modes are presented to reduce battery power fluctuations. These modes not
only improve efficiency but also reduce fluctuations of the FC output power. Moreover,
the battery SOC and the UC VDR are considered to determine the FC’s operating point.
Also, this paper identifies the vehicle’s dynamic movement conditions accurately and uses
them to determine the operational modes.

The proposed EMS performance is validated through six different driving cycles.
The simulation results of the online multi-level EMS indicate that the UC is charged at the
optimal operation point of the PEMFC so that it can increase the total efficiency of the HESS.
Not only instantaneous fluctuations of the PEMFC output power are eliminated, but also
it is not required to be operated at maximum power (minimum efficiency). The battery
output power has fewer fluctuations compared to the Opt-FLC method. Therefore, its
lifetime is prolonged. Finally, the simulation results confirmed that the multi-level EMS
could reduce fuel consumption, decrease battery power fluctuations, and optimally control
the HESS.

Although this article has well proven the performance of the proposed online EMS,
a lifetime assessment of the HESS and state of health of the battery can be supposed to
extend the scope of this paper. A future work of this article is to consider a model for
optimizing the operational modes of HESS with machine learning methods to improve
the fuel economy. Furthermore, comparing the results of the proposed VSM with results
obtained from other driving condition identification methods can be an interesting subject
for future studies.
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