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Abstract: The assessment of the equilibrium and the safety of masonry vaults is of high relevance
for the conservation and restoration of historical heritage. In the literature many approaches have
been proposed for this tasks, starting from the 17th century. In this work we focus on the Membrane
Equilibrium Analysis, developed under the Heyman’s theory of Limit Analysis. Within this theory,
the equilibrium of a vault is assessed if it is possible to find at least one membrane surface, between
the volume of the vaults, being in equilibrium under the given loads through a purely compressive
stress field. The equilibrium of membranes is described by a second order partial differential equation,
which is definitely elliptic only when a negative semidefinite stress is assigned, and the shape is
the unknown of the problem. The proposed algorithm aims at finding membrane shapes, entirely
comprised between the geometry of the vault, in equilibrium with admissible stress fields, through
the minimization of an error function with respect to shape parameters of the stress potential, and
then, with respect to the boundary values of the membrane shape. The application to two test cases
shows the viability of this tool for the assessment of the equilibrium of existing masonry vaults.

Keywords: masonry vaults; safe theorem; membrane equilibrium analysis; optimization algorithms;
elliptic PDE

1. Introduction

The assessment of the equilibrium of masonry structure is a topic of high relevance,
given the diffuse presence of masonry buildings in Italy and Europe, often with high
historical value.

Over the centuries, different methodologies have been developed for the assessment
of the equilibrium of masonry constructions and to quantify their degree of safety, starting
from practical rules [1], until the definition of graphical methods applied to two dimen-
sional structures (such as portals, bridges, and flying buttresses [2,3]) and to axis-symmetric
vaults under monoaxial stress regimes, such as masonry domes [4]. Graphical methods
have been extended to consider also biaxial stress states, again under the hypothesis of
axial symmetry of the structure [5].

For masonry material, the starting hypotheses have been clearly formulated by Hey-
man in [6,7], and assume that the material is infinitely resistant in compression and that
sliding between rigid blocks does not occur inside the material. Under these assumptions,
the theorems of Limit Analysis hold, and an equilibrium solution is defined as admissible
if it is balanced with the given loads and is everywhere of pure compression. In particular,
based on the Safe Theorem, the impossibility of collapse of a masonry structure, under the
given loads, is ensured if at least one admissible equilibrium solution can be found.

A wide number of methods have been developed for the assessment of masonry
vaults within the Heyman’s theory, both considering the kinematic and the Static Theorem.
Concerning the Kinematic theorem of Limit Analysis, the proposed methods are based on
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energy criteria minimization. Indeed, the minimum of the total potential energy can be
used to look at both stable and non-stable mechanisms [8,9]. Moreover, it can be also used to
couple internal stress states with the corresponding mechanisms as in [10]. Other methods,
such as the Thrust Network Analysis (TNA), are based on the application of the Static
Theorem. TNA, introduced in [11] and developed in [12-16], consists in the discretization
of a masonry vault through a finite number of compressed bars, in equilibrium with the
load of the vault, and located in-between the intrados and the extrados [17].

Among different continuum approach methods, here we focus on the Membrane
Equilibrium Analysis (MEA), first proposed in [18], and further developed in [19]. For
the assessment of the equilibrium of a vault, MEA requires to find at least one membrane
surface comprised in-between the geometrical boundary of the vault, balancing the external
loads through a negative semi-definite membrane stress field.

In MEA, the equilibrium is reduced to a scalar second order partial differential equa-
tion with non-constant coefficients. If the shape of the membrane is assigned, the coef-
ficients are the components of the curvature of the membrane, and the unknown of the
problem is the stress potential of the membrane stress projected onto a reference plane
(Pucher stress). On the contrary, if the stress potential is assigned, the coefficients of the
equation are the components of the Hessian of the stress potential and the unknown is the
scalar function defining the elevation of the surface with respect to the reference plane.
In both cases, the equilibrium equation may change its behaviour (hyperbolic-parabolic-
elliptic) depending on the assigned shape or on the assigned stress potential. This has
a strong implication on the numerical solution of the equilibrium equation, that can be
solved as a boundary value problem when the equation is elliptic, or as an evolutionary
problem when the equilibrium equation is hyperbolic at least in a part of the domain.

MEA has been adopted mainly for the assessment of the equilibrium of masonry
constructions [20-24], but it is a general tool for computing the stress field on curved
membrane surfaces. For example, it has been used for the evaluation of the stress field of
soft tissues, such as the human cornea [25].

An approach similar to MEA, based on the search of the Airy stress function, has been
proposed in [26], where NURBS are used for the discretization, exploiting their high-order
continuity.

In [27] a numerical iterative procedure for the assessment of the equilibrium of ma-
sonry vaults, based on LSM (a FEM-like approximation of the governing equation, see [28]),
has been introduced. Starting from a tentative membrane shape, included in the volume
of the vault, the method looks for an equilibrated concave stress potential, ensuring the
negative semi-definiteness of the corresponding stress. This procedure, however, is not
easily applied to non-concave shapes, such as cross vaults given the non-ellipticity of the
corresponding equilibrium equation. Recently, in [29] a numerical procedure based on
standard FEM, for the design of purely compressed shells, has been put forward. With
this method, the starting point is a class of concave stress potentials, and the equilibrium
equation is purely elliptic.

In the present paper, focusing on the assessment of the equilibrium of existing masonry
vaults, we start from a family of concave stress potentials in order to ensure the admissibility
of the stress field. This implies the ellipticity of the equilibrium equation: Therefore, we
look for an optimal membrane shape comprised between the geometrical boundary of
the vault, as required by the Safe Theorem of Limit Analysis. We approach this problem
through an optimization algorithm, minimizing an error function first with respect to the
parameters of the stress potential, and then with respect to the boundary conditions of the
the membrane shape.

Optimization is a recurring tool in different engineering applications. In the present
work, we find an optimal ideal membrane shape, which best satisfies the requirements of
the Safe Theorem of Limit Analysis, which result in some mathematical constraints. We
point out that this is not the case of a shape optimization, since the shape of the analyzed
vaults is fixed, and we just optimize an ideal membrane. In other engineering application,
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however, the shape of structures is optimized under the constraints of material saving, or
compliance minimization. This is the case of the Structural Topology Optimization [30],
used for optimally distribute the material to minimize the compliance o structures under
given loads [31-33]. Optimization is also used in geotechnical applications [34], optimiza-
tion of geodesic domes [35], of soil-steel structures [36], and lightweight structure [37]

2. Mathematical Preliminaries

In this section some mathematical details concerning the formulation of the equilib-
rium equation of a membrane are recalled, the notation is introduced, and the unilateral
constraints on the material are introduced.

2.1. Geometry and Equilibrium

Referring to Figure 1 for notation, the geometry of a generic membrane surface S
contained inside a typical shell structure can be described in Monge form in terms of the
position vector x of the points of S as follows:

X = x1e1 + xpep + fes €))

where {el, ey, e3} is the orthonormal triad coherent with a given Cartesian frame
{O; x1,x2, x3}, the couple of coordinates (x1, x2), which are the parameters of the curvi-
linear description (1), belongs to a region Q) of the plane {O; x1, x,} called planform of
S,and f = f(x1,x2) is the rise of the membrane with respect to the x; — x, plane. We
assume f € C%(Q)—that is to say that the considered surface S is continuous but not
necessarily smooth.

b €3

Figure 1. Geometry of a generic membrane, with its planform, the memebrane stress T and the
Pucher (projected) stress S.

An efficient way to describe the membrane equilibrium of a membrane under a surface
load q per unit area, is the formulation proposed by Pucher in [38]. Pucher analysis is based
on the introduction of the projected stress S, in terms of which two of the three equilibrium
equations for the membrane can be made independent of the membrane shape.

The membrane stresses are tangent in each point to the membrane surface S. Therefore
it is convenient to introduce a curvilinear basis on the membrane, which are computed as

o0x

= w/ o= 1/2 (2)

ay

In addition, it is useful to introduce the contravariant basis a*. &« = 1,2 defined such
thata, -ag = (55 , being 55 the Kronecker delta.
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Therefore we can decompose the membrane generalized stress tensor as
T =T, ® ag, 3)

where T* are the contravariant components of the generalized stress. The projected
(Pucher) stress components S,p (see Figure 1) are easily defined in terms of T*B as
Sup=1 T*f, ] being the ratio between the surface area and the projected area. In terms
of Pucher stress components, the vector equilibrium equation, projected into the non-
orthonormal vector basis e, e, n = a3, n being the unit normal to S, becomes:

S1110+S122+p1 =0, Sni+Sn2+p2=0, Susfiup—pyfry+p3=0. )

where {pj, p2, p3} are the Cartesian components in the given reference of p = | q, that is
the load per unit projected area. By using the projected stress, the first two equilibrium
equations do not depend on the membrane shape and are the same as for the plane stress
problem. In the case of pure vertical loading, say p = pes, the first two equations can
be solved introducing an Airy stress potential F(x1, xo)—that here we only assume to be
continuous—defined such that

Si=Fxn, So=Fi, Si2=S2=—-Fa. 5)

The third equation of (4) expresses the balance of the vertical component of the force
p3 = p - e3 with the scalar product between the Pucher stress tensor and the Hessian of the
function f, that defines the curvature of the surface. On introducing (5) into (4), we obtiain,
as transversal equilibrium equation

Fa1f2+F2 fa1—2F 0 fi2+p3 =0 (6)

Equation (6) is a second order partial differential equation, that can be either el-
liptic, parabolic or hyperbolic, depending on its (usually non-constant) coefficients. If
the problem is hyperbolic or parabolic, the characteristic lines are real and the problem
must be formulated as an evolutionary problems by assigning two scalar conditions on a
non-characteristic line.

If Equation (6) is elliptic, the problem can be formulated as a boundary value problem
and the boundary conditions for this equation can be either of the Dirichlet type, i.e.,

Flan=p @)
or Neumann type, i.e.,

oF g

87'80 =1 ®)

where p and g are known function on the boundary 0(), and n is the outward unit vector
normal to the boundary.

The advantage of boundary value problems is that the solution of the corresponding
discretized partial differential equation can be obtained by a simple matrix inversion.

2.2. Unilateral Constrains and Singular Stresses

The restrictions that the generalized stress T is negative semi-definite and does not
work for the corresponding strain E, that is positive semi-definite, define Rigid No-Tension
(RNT) materials in the sense of Heyman. In formulae:

TeSym~, E€Sym*, T-E=0. )

The first application of Pucher’s transformation for NT masonry vaults can be found
in [18], where it is shown that, due to the NT constraint, both the surface generalized stress
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and the matrix of the projected stresses must be negative semi-definite. In terms of the
stress function F, this condition can be written as

Fi1+F2» <0, F1u1Fxn—F3>0. (10)

The condition of semi-definiteness of the stress correspond to concavity of the stress po-
tential.

3. Outline of the Method

The Membrane Equilibrium Analysis (MEA) applied to masonry vaults, requires to
find a membrane surface located in between the intrados and the extrados of the vault and,
according to Heyman’s assumptions, sustaining the loads through compressive stresses.
The membrane is a determined structure, and this last constraint is generally not satisfied
on a given membrane shape for given loads. In such a case, the membrane shape has to
be changed iteratively from an initial guess shape, until one that satisfies the unilateral
restrictions on the stress is found.

3.1. Unknowns and Data in the Governing Equilibrium Equation

On adopting a numerical discretization method based on a variational approximation
of the governing Equation (6), such as the Finite Element Method, or the Lumped Stress
Method defined below, the differential equation must be elliptic. Therefore, if the unknown
is the stress and the given form of the membrane is not everywhere convex or concave,
these methods of approximation fail and cannot be applied. A possible way out, already
proposed in [29], consists in switching the roles of unknowns and data, by assuming a
parametric family of concave stress potentials as given, and considering the shape as
the unknown. Then, the equation is elliptic for any choice of the parameters defining a
specific member of the given family of stress potentials, and the corresponding shape can
be obtained by prescribing convenient boundary data for the shape. Besides, for any such
concave stress potential, there exists a small repertoire of purely compressed equilibrium
shapes, that one can also explore, depending on the possibly different boundary data, that
can be imposed on the shape. In the present paper, the equilibrium solution is tackled by
constructing an LSM approximation of the fundamental second order differential equation
of equilibrium (6). This computer routine, which returns a shape associated to any given
stress function, can be manipulated by changing, following a minimization algorithm, the
parameters controlling the stress potential and the boundary data for the shape.

3.2. Numerical Discretization and Algorithm

The transverse equilibrium Equation (6) is solved numerically by discretizing the
domain into a finite number of triangular elements, and adopting a Lumped Stress
Method [28] approximation of the Hessian of both the stress potential F and of the mem-
brane shape f. With the LSM approximation, the two functions are described by simplicial
surfaces, defined by the nodal values ﬁi and ﬁ-, withi = 1,2,...,N, N being the total
number of nodes of the given triangulation.

The vectors collecting the nodal values of the shape function f and of the stress
potential F are denoted fand F. f is divided into two vectors f; and fg, of length N; and
N3, distinguishing between internal and boundary nodes, respectively.

The search of a statically admissible stress regime for the vault is carried out through
an algorithm divided in several steps. Given the geometry of the vault, defined by its
intrados and extrados, we start on assigning an appropriate functional form for the stress
potential, depending on a limited number n of parameters, such that

F = F(x1,x0;a1,a0,...,05). (11)
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A first step is the parametric solution of the discretized version of Equation (6), with
suitable boundary conditions, in terms of the membrane shape defined by f; therefore,
f=f(x1,x0;a1,80,...,04,).

The second step consists in the optimization of the parameters a1, ay, ..., a,, performed
by minimizing an error function I defined as the integral of the quadratic approximation
of the characteristic function of the vault domain.

Given a point x € (), the characteristic function indicates whether the corresponding
values of the rise of the membrane is comprised between the volume of the vault, or not.
In particular

. 0 iffintr(x) < f(X) < fextr(x)
Clf(x) = { +oo iff(x) < fiurr(x) or f(x) > fextr(x)' (12)
Its quadratic approximation reads
0 fintr(x) < f(X) < fextr(x)
CUF()) = § (FO) = fiur ()" F(X) < finr (X) : (13)

(f(x) _fextr(x))2 f(X) > fextr(x)

For a generic point x of the domain, given fi,;(x) and fextr(x), the approximated
characteristic function is represented in Figure 2

1

Clf(x)]

| |
| |
| |
| |
| |
| |
0.5F : : 1
| |
| |
| |
| |
| |

fimr(X) fextr(x) f(X)
Figure 2. Approximation of the characteristic function for a generic point x.

We denote (), the subregion of the entire planform () obtained by removing from
the domain a boundary strip of size ¢, defined as a fraction of the diameter L of Q) (in the
applications we set c = L/5). The rationale behind this procedure is linked to the nature
of the governing equation: due to ellipticity, the solution is only weakly dependent on
the boundary data, that is, altering the boundary values has a detectable effect only in a
narrow band close to the boundary. So, we can split the optimization into an interior and
an exterior part, postponing the optimization of the boundary data.

The error function [ is then defined as follows:

1=Amu—hm%0+énu—mw%0 (14)

), and ), being the parts of the domain ()., for which the membrane surface is below the
intrados, or above the extrados, respectively.

In the third step, the values of a1, 4y, ...,a,, found in the previous step, are fixed
and the boundary values of the discretized membrane shape are considered as variables.
Then, the discretized version of Equation (6) is solved parametrically with respect to these
boundary values. In the vector notation introduced above, the transverse equilibrium
equation reads

(Kxx,Hj]?j) (Kyy,Hhﬁh) + (Kyy,ijj)Kxx,Hhﬁh) - 2(ny,ijj) (ny,Hhﬁh) +pu=0 (15)
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where the summation convention on repeated indices is assumed on the lower-case indices
(j,h =1,2,...,N), whilst the upper-case index H(H = 1,2,..., Nj) is not summed, and
Kyx, Kyy, and Ky, are coefficient matrices computed via the LSM scheme, representing the
discrete counterparts of the second derivatives 92/ ax%, 92/ ax%, and 92 /9x19x;.
Equation (15) can be rewritten in a compact form by factoring out the unknown term
f, as X
Kiifi+pi =0, (16)
where
Kij = (Kyy, tnFn) K i + (K Fn) Ky, 1j — 2Ky, 11 Fn ) Koy, - 17)

Expression (16) can be also rewritten distinguishing between boundary conditions
and domain equations, in the form

Ky f; +Kipfp +p; =0, fp=fp, (18)

where Kj; and K;p are submatrices of K corresponding to rows and columns associated to
internal and boundary nodes. Finally, fg is the vector of the boundary parameters. From
Equation (18), f; can be evaluated as

fr =K' (pr — Kipfp). (19)
On introducing (19) into a discrete version I of the objective function I, we get
Ny ) Ny )
L= Z (fl - fintr,i) + Z (fl - fextr,i) . (20)
i=1

i=1

We then optimize I(f;) with respect to fp.
Notice that it is possible to compute explicitly the gradient of I(f;(fp)) through the
chain rule, in the form

ol dI o
2 _ fin 1)
dfp; 9f1nfp,
that is
oL | =2fin(KuKip)j fi < fiiner O fi > fiextr )
dfp,j 0 otherwise

The membrane shape obtained at the end of this minimization process can be com-
pared to the actual geometry of the vault. If the final value of the objective function I, is
zero, the membrane is completely comprised between the intrados and the extrados of the
considered vault, and therefore the solution is statically admissible and proves the stability
of the vault under the given loads, according to the Safe Theorem of Limit Analysis. In such
a case, the degree of safeness of the structure can be assessed by reducing the slenderness
of the vault and computing a geometrical safety factor, as proposed by Heyman [6].

4. Application
4.1. Cloister Vault
Consider the case of a cloister vault under its self-weight, whose geometry is described

by the volume enclosed in-between two surfaces, the intrados and the extrados, defined
canonically inside the domain Q) = {(x1,x2) € [-L, L] x [-L, L]} as follows:

2
—h(?) (X],Xz) S (01UQ3)

intr (x1,%2) = (23)

2
_n <xLz> (x1,x2) € (W UQy)
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2
X
_h<L_-|1-t> +t (x1,x2) € (O UD3)

fextr(x1/ x2) = (24)

2
X
—h(th> +t (xl,JCz) € (QzUQ4)

where ()1, (), ()3, and ()4 are the subregions of () depicted in Figure 3.

L

Figure 3. Partition of () into four portions.

A perspective representation of the midsurface of this vault is represented in Figure 4.

Figure 4. Three-dimensional view of the midsurface of the vault described by Equations (23) and (24).

The values adopted in Equations (23) and (24) are L = 25 m, h = 2.13 m, and
t = 0.23 m. The values have been taken by the geometry of the vault analyzed in [21],
and located in the interior of Palazzo Caracciolo di Avellino in Naples. From [21] we also
assume p = 8 kN/m? as distributed load per unit projected area.

By following the methodology described in Section 3, the transverse equilibrium
Equation (6) can be solved for the geometry f(x1,x;), by assuming a special parametric
form for the stress potential.

For the case at hand, inspired by the analysis described in [21], we identify a central
zone ()* of the domain (), in which the projected stress is a plane pressure. (0* is delimited
by a curve I defined as

re(8) = roV/2(1 — a(cos(26))") (25)

where g is a parameter, a is set to 0.05 and P to 40. In Figure 5 we show the contour 7.
obtained for two representative values of ro, namely rg = 0.5 and ry = 1.
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Figure 5. Representation of the curve I for rg = 0.5 and ry = 1.
Inside ()*, the Pucher stress is assumed as isotropic, that is
S=-po(er®e; +er@e) . (26)
The corresponding stress potential is therefore easily computed as
1
F= —EPO(X% +x3) (27)

where pg is a parameter defining the intensity of the stress potential (i.e., of the stress)
that will be subsequently optimized. In the external zone (), the stress is assumed to be
quasi-uniaxial in the radial direction. This means that, on defining t as the direction of
the radii emanating from the geometrical center of the domain and directed toward the
external boundary, the stress in (. can be written as

S=-—0(8)it®t+enptat (28)

where 0(s) is related to py and denotes the stress intensity along the radius, and 0y is a
small stress which has the function to give a small extra-curvature to the potential in the
direction t orthogonal to £, in order to preserve the ellipticity of Equation (6) when solved
for the shape f(x1, x2).

The stress potential associated to the stress distribution (28) in the external zone is
obtained by imposing a linear growth in the radial direction, enforcing the continuity of
the potential F and of its slope across the curve I':

A 0o 5
PethVFint|I"rs+F|F*€ES ’ (29)

where s is a parameter indicating the distance from I" along the radius.

In Figures 6, we show the the stress potential for two representative values of ry.
Adopting these two shapes as the stress potential, and taking as boundary condition for
the membrane geometry f(x1,x;) the value of the rise of the middle surface between
the intrados and the extrados of the vault, Equation (6) can be solved using LSM, as
described in Section 3.2. By constructing a structured triangulation based on a regular
node distribution over the planform (), the membrane shapes corresponding to the stress
potentials of Figure 6, are represented in Figure 7.
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Figure 7 gives an idea on how the choice of the parameter r( (and thus, the extension
of the central zone characterized by a biaxial stress state) influences the final shape of the
membrane geometry. In the second case (9 = 1), the membrane geometry resembles the
shape of a cloister vault more than in the case of rg = 0.5. It is also evident that the height
of the two shapes (in the direction of the x3-axis) are not comparable with the height of the
cloister vault defined from Equations (23) and (24), which is 2.13 m.

FINmY

(b)
Figure 6. Representation of the stress potential assuming (a) ro = 0.5 and pg = 1; (b) rp = 1 and
po = 1.

(b)

Figure 7. Membrane surfaces in equilibrium with the stress potentialof Figure 6: (a) ryp = 0.5 and

po=1,(b)rg=1and py = 1.

The minimization of the error function (20) with respect to the parameters py and
ro is performed as follows: first, r( is given a finite number of values in the range [0, L],
ie,rgr = 1.1+k0.01, k = 0,...,20. Then, for each value of r(, we search the pg that
minimizes I, = Ii(7o, po)- In Figure 8 we show the considered values of the r( s on the
horizontal axis, and on the vertical axes we show the corresponding optimal value of I.

The lowest value of Iy is reached when r;, = 1.14, which correspond to pg ; = 3.45 x 103.
Therefore the parameters of the stress potential are fixed to rg = 1.14 and pg = 3.45 x 10°.
The best-fitting membrane geometry is then represented in Figure 9.

In Figure 10 we also show two sections of the membrane and of the intrados and
extrados, the first one taken at x, = 0, and the second one taken along the diagonal of the
domain, that is for x, = —xy.
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1.1

1.15 1.2 1.25 1.3
r, [m]
Figure 8.

Plot of I as function of 7.

-1

x, [m]

-2

-1
-2
X, [m] -2

X, m]

Figure 9. Best fitting membrane shape after the first optimization phase, for the problem of the
cloister vault.

——--membrane ———-membrane
05¢ intrados 051 intrados
—————— extrados | | extrados

X, [m]

o
X, [m]

1 >
X, [m]
(a)

(b)

Figure 10. Sections of the vault and of the membrane surface represented in Figure 9 along x, = 0

(a) and along the diagonal x; = —x; (b), after optimization with respect to the shape of the stress
potential.
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We notice from Figure 10b that some points of the membrane fall outside the volume
of the vault; this is confirmed also by Figure 11, where we show the color map of the
function g(x1, x2) defined as

f_fintr f <fintr
g<x1/x2) =40 fintr < f < fextr (30)
f = fextr f > fextr

for which positive values indicate points in which the membrane shape is above the
extrados of the vault, negative values indicate when the membrane is below the intrados,
and vanishing values indicate nodes that are comprised within the volume of the vault.

| P |
11 {-0.02
—_ {.0.04
E ol
><N
-0.06
1t
-0.08
2+ \ -0.1
2 -1 0 1 2
X4 [m]

Figure 11. Colormap of g with respect to x; and x,. Yellow points represent regions of the domain
for which the membrane is above the extrados. Blue points on the diagonal of the domain represent
regions of the domain for which the membrane shape is below the intrados.

We then perform the last step of the optimization, with respect to the boundary values
of the membrane shape, obtaining a new membrane geometry whose sections for x, = 0
and x, = —xp are shown in Figure 12. In this case, we notice that the points that were
falling outside the volume of the vault before this optimization step, are now comprised
between the intrados and the extrados.

———-membrane ———-membrane
intrados |1 0.5r
extrados

intrados
extrados

X, [m]

X, [m] X, [m]
(a) (b)

Figure 12. Sections of the vault and of the membrane surface along x; = 0 (a) and along the diagonal
Xy = —x1 (b), after optimization with respect to the membrane boundary values.
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The whole algorithm has been repeated assuming the same loads, but reduced thick-
ness, in order to assess the geometrical safety factor. The higher thickness reduction for
which the proposed algorithm still produces admissible solutions, in the sense of Limit
Analysis, is 38% of the original thickness, corresponding to a geometrical safety factor
of 1.61.

4.2. Cross Vault of the Anterior Portico of the Church of St. Pietro in Vineis in Anagni

In this section we consider the case of the anterior portico of the church of San Pietro
in Vineis in Anagni. The portico consists of three similar cross vaults: the geometrical
description of each vault, referring for notation to Figures 13 and 14, is given by:

hiy [ b? hi —h;q [ a?
bl_,;(j_ x%) +4 ! 2 il (Zl_ x%) (xl, XZ) c (01 U 03)
fintr(x1,%2) = : : (31)
hia (0 5\ hi—hiafa} U0
2\ + 2 2N (x1,x2) € (2 UQy)
1 1
he1 [ b? he —heq (a2
4%(18— x%) +4= ) = (Zg—x%> (x1,x2) € (O UQ3)
e e
fextr(x1,Xx2) = (32)
extr he,Z b? 5 he — he,z a% 2
bl g2t | 7| () e (Ul
e e

a

Figure 13. Parition of the domain Q.

Figure 14. Perspective of the cross vault with main geometrical parameters.

The values given to the geometrical parameters introduced in Equations (31) and (32),
are reported in Table 1.
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Table 1. Intrados and extrados data referring to notation in Figure 14.

a; [m] bj [m] hi [m] hiy [m] hiz [m]
4.68 4.59 2.16 1.84 2.05
ae [m] be [m] he [m] b, [m] he,p [m]
4.88 4.79 2.36 2.04 2.25

For this kind of vault a concave membrane surface comprised between the intrados
and the extrados does not exist; as a consequence, using Equation (6) with a known shape
and unknown stress potential would lead to a non-elliptic problem, that cannot be solved
using a FEM-like procedure. The inverse problem, consisting in the search of the shape
corresponding to a given concave stress potential, is elliptic instead, and the FEM-like
procedure proposed in [21] can be applied.

It is a well-known result (see [27]) that the stress potential corresponding to a standard
cross vault has the shape of a cloister vault. The case at hand, however, is not a standard
cross vault since there is a curvature not only orthogonally to each median of the plan-
form, but also in the median direction. We expect, therefore, a biaxial stress field, with
components both along the direction of the medians, and in its orthogonal direction.

We propose therefore the following stress potential F(x1, x7)

) 0 , b
— g xl—z +ﬁ XZ*Z (Xl,XZ)E(01UQ3)
) (33)
4

a0[<x%lf>+ﬂ<x%a>] (xl,X2)€(02UQ4)

For sake of example, in Figure 15 we present three different stress potentials obtained
for=0,8=03,and p = 0.7and &g = 1.

F(x1,x) =

FINm]

Figure 15. Stress potential for (a) B = 0, (b) p = 0.3, and (c) § = 0.7.
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We assume the same definition of the error introduced in Equation (20) and evaluate
it for different values of B, and then minimizing I with respect to ag. The values of B
considered in this case are

B =03+k0.02, k=0,.,10 (34)

The corresponding plot of the error I versus f is reported in Figure 16 in a logarithmic
scale along the error axis.

10-2 I I .
0.3 0.35 0.4 0.45 0.5

B
Figure 16. Plot of I} as function of B.

The minimum occurs at B = 0.4, and corresponds to an error of 3.94 x 10~2. The
corresponding stress potential is shown in Figure 17.

x10*
2

N m [m]

0

-2 -
X, [ml] 2 x, [m]

Figure 17. Optimized stress potential.

The corresponding shape of the membrane, obtained through the numerical solution
of Equation (6), and imposing as boundary values for f(x1, x5) the values of the midsurface
(between the intrados and the extrados), is shown in Figure 18.

To evaluate the position of the membrane surface after this first optimization phase,
we show in Figure 19 the colormap of g(x1, x2), defined like in Equation (30), applied to
this case study. The presence in Figure 19 of points for which the error function is non zero
indicates that the membrane found after the first optimization step is not fully comprised
between the intrados and the extrados. Therefore we need a further optimization step to
achieve this goal.
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0

%, Iml * 2 x, [m]

0.03
0.025
0.02
0.015
0.01

0.005

-0.005

x [m]

Figure 19. Colormap of g(x1, x,) for the case of the cross vault, after the first optimization phase.
Yellow points represent regions of the domain for which the membrane is above the extrados. Blue
points on the diagonal of the domain represent regions of the domain for which the membrane shape
is below the intrados.

The second step of the minimization process is then performed with respect to the
boundary values of the membrane shape. The value of the error function I = I(fg),
obtained as a result of the second optimization phase, is zero everywhere, meaning that
the membrane fits in-between the bounding surfaces of the vault.

For sake of example, we show in Figure 20 a graph of a section of the intrados, the
extrados and the membrane shape along the diagonal line x, = — %xl, that, after the first
minimization phase, exhibits points lying outside the vault geometry. As expected, there
are no points of the membrane section falling outside the geometry of the vault.

The influence of changing the boundary values fz is made evident by the color map
of the difference h(x1, x2) defined as

h(x1,x2) = fopt(x1,%2) — f(x1,X2) (35)

and shown in Figure 21, where f is the membrane geometry at the end of the first min-
imization step, and fop; is the geometry after the final minimization with respect to the
boundary conditions.
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3 E 3
———-membrane
25 intrados
extrados
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050 : : . P

x, [m]

Figure 20. Section of the membrane and of the limit surfaces of the cross vault along the diagonal
Xy = _bi / a;x.

0.08
0.06
0.04

0.02

-0.02
-0.04

-0.06

Figure 21. Effects of the change of boundary conditions on the shape of the membrane.

From Figure 21 we see that the main effects of the modification of the boundary
conditions is that the rise change of the membrane, represented by Equation (35), after
the second optimization phase, are visible mainly in the boundary part of the domain, as
expected from the discussion about elliptic partial differential equations. Moreover, we
see that 11(x1, x) is negative in the lowest-right and upper-left corners, meaning that the
membrane rise is diminished after this optimization, fixing the error shown in Figure 19.

In order to quantify the Geometrical Safety Factor for this vault, the algorithm has
been repeated progressively reducing the thickness. The maximum possible reduction,
given the assumed shape for the stress potential, is 36%, corresponding to a GSF= 1.56.

4.3. Discussion

Concerning the algorithm adopted in both examples, we point out that it is an auto-
matic procedure that is easily adaptable to the specific case. The only different step between
the proposed algorithms, beyond the geometries of the vault, is the parametric description
of the stress potential, which is specific to each case study, and consists, from an operative
point of view, in replacing a computer routine to another one.

Concerning the Geometrical Safety Factor, computed at the end of each application,
we remark thaat it is an intrinsic characteristic of each structure, and does not depend,
in general, on the adopted membrane shape or its associated equilibrated stress. With
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computational models, such as MEA, it is only possible to try to find the best value, that, in
turn, is associated to specific choices on the stress potential (i.e., its shape, or its parametric
description), or on the discretization, or on the specific algorithm.

In our examples, we made two precise choices for the shape of the stress potential,
based on experience and on literature examples. A richer description of the stress potential
could have improved the obtained value of the Geometrical Safety Factor, at the price of
a more complicate and slow optimization algorithm, especially for the first optimization
pahse, which is characterized, for each evaluation of the objective function, by a matrix
inversion, whose computational cost, in turn, depends in the adopted discretization. There-
fore, the proposed values for the GSF have to be considered as conservative values, and
could be improved by using more refined optimization algorithms, not yet developed in
the framework of the Membrane Equilibrium Analysis.

5. Conclusions

In this work we present a method for the assessment of the equilibrium of masonry
vaults based on the search for a suitable membrane shape in equilibrium with a given
compressive stress field. The membrane shape is required to be entirely comprised between
the intrados and the extrados of a vault, according to the Safe Theorem of Limit Analysis.

The proposed method aims at finding a concave stress potential in equilibrium with the
applied loads on a membrane geometry entirely included in the volume of the membrane.
To match this objective, the algorithm starts from a parametric description of the stress
potential and follows two subsequent optimization steps: in the first one, the parameters
of the stress potential are optimized, through the solution of the transverse equilibrium
equation of a membrane, assuming fixed boundary conditions for the membrane shape; in
the second step, the boundary values of the membrane shape are selected, by minimizing
an error function defined as a quadratic approximation of the characteristic function over
the planform of the membrane.

The main advantage of this approach is the possibility of solving, in each optimization
phase, an elliptic problem, since the stress potential is assumed to be known and concave.
This strategy permits the solution of problems for which a concave shape, comprised in the
volume of the vault, does not exist, such as in the case of cross vaults. For such vaults, in
fact, the search of a stress field starting from a possible membrane shape (in-between the
intrados and the extrados of the vault) is described by a non-elliptic second order partial
differential equation, that cannot be solved by the simple inversion of the matrix arising
from its discretization.

The algorithm is applied to two benchmarks: a cloister vault, with the dimensions of a
vault in Palazzo Caracciolo di Avellino, in Naples, and the cross vault of the anterior portico
of San Pietro in Vineis, in Anagni (Italy). For both problems, given a suitable parametric
description for the stress potential, a membrane shape is found, fulfilling the requirements
of Limit Analysis with acceptable geometrical safety factors, demonstrating the validity of
the proposed methodology in assessing the stability of vaults.

Future perspectives for this work will include the development of an algorithm for
which the stress potential and the membrane shape are optimized simultaneously, under
the constraints of the equilibrium and of the Safe Theorem of Limit Analysis.
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