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Abstract: Today, excessive psychological stress has become a universal threat to humans. That stress
can heavily affect work and study when a person repeatedly is exposed to high stress. If that exposure
is long enough, it can even cause cardiovascular disease and cancer. Therefore, both monitoring
and managing of stress is imperative to reduce the bad outcomes from excessive psychological
stress. Conventional monitoring methods firstly extract the characteristics of the RR interval of an
electrocardiogram (ECG) from a time domain and a frequency domain, then use machine learning
models, like SVM, random forest, and decision tree, to distinguish the level of that stress. The
biggest limitation of using these methods is that at least one minute of ECG data and other signals
are indispensable to ensure the high accuracy of the results. This will greatly affect the real-time
application of the models. To satisfy real-time detection of stress with high accuracy, we proposed
a framework based on deep learning technology. The proposed monitoring framework is based
on convolutional neural networks (CNN) and bidirectional long short-term memory (BiLSTM). To
evaluate the performance of this network, we conducted the experiments applying conventional
methods. The data for the 34 subjects were collected on the server platform created by the group
at the Institute of Psychology of the Chinese Academy of Sciences and our group. The accuracy
of the proposed framework was up to 0.865 on three levels of stress using a 10 s ECG signal, a
0.228 improvement compared with conventional methods. Therefore, our proposed framework is
more suitable for real-time applications

Keywords: psychological stress; deep learning; CNN; BiLSTM; real-time

1. Introduction

Economic development has led to fierce competition among people. People are now
more prone to be affected by high psychological stress. Excessive psychological stress
reduces work efficiency, affects relationships and transportation safety [1]. Long-term
stress can even induce depression, addiction, and cardiovascular and cerebrovascular
diseases [2,3]. Excessive emotional stress has become a major problem affecting human
physical and mental health. MAE (ecological momentary assessment) [4] and JITAI (just-in-
time adaptive interventions) [5] are two effective methods that can be used to deal with
the negative consequences of excessive psychological stress. However, the two methods
both require real-time monitoring of psychological stress, and the lack of a method that can
monitor emotional stress in real time has become the main problem.

It is fortunate that there is an important relationship between psychological stress
and the autonomic nervous system, i.e., SNS (sympathetic nervous system) and PNS
(parasympathetic nervous system). The exposure to stress will enhance SNS’s function,

Appl. Sci. 2021, 11, 3838. https:/ /doi.org/10.3390/app11093838

https:/ /www.mdpi.com/journal/applsci


https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-7581-8152
https://doi.org/10.3390/app11093838
https://doi.org/10.3390/app11093838
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11093838
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11093838?type=check_update&version=3

Appl. Sci. 2021, 11, 3838

20f18

including shortening the RR interval, increasing the low-frequency energy of HRV (heart
rate variability), increasing the respiration rate, decreasing HRV’s high-frequency energy,
and more [6]. After stress, the PNS will be activated to generate the opposite effect.
Therefore, the features of the RR interval and other physiological parameters could be used
to detect stress. As an electrocardiogram (ECG) signal contains RR interval information
and is easy to obtain, a lot of research has been undertaken on judging psychological stress
via the ECG signal. Traditionally, five-minute ECG data have been used to detect stress [7].
Although the accuracy of these studies is reliable, the 5 min time phase is too long for
real-time monitoring. To promote real-time application, some researchers have successfully
detected stress on one-minute ECG and respiration [8] with high accuracy. However, the
acquisition of breathing signals requires wearing a bandage, which will greatly reduces
the comfort. Furthermore, the interval of one minute is not short enough to satisfy the
requirements of real-time monitoring.

Deep learning technology, proposed in recent years, has greatly promoted the develop-
ment of artificial intelligence, especially for the CNN (convolutional neural network) and
RNN (recurrent neural network). There have been some studies that have used deep learn-
ing techniques to monitor psychological stress. Winata used the LSTM (long short-term
memory) model with an attention mechanism to classify stress for spoken language, and
the accuracy achieved was 0.741 [9]. Li Jin built models using DNN (deep neural network)
and a conditional random field to classify stress regarding information on adolescent social
behavior [10]. Lin used a deep sparse neural network to monitor the stress level from
cross-media microblog data [11]. Bosun Hwang [12] categorized stress using 10 s ECG data
with CNN and LSTM, but there are only two categories. Se-Hui Song [13] categorized stress
into four classes, using SBP (systolic blood pressure), DBP (diastolic blood pressure), sleep
time, heart rate, and age with DBN (deep belief network) and the accuracy only reached
0.66, and the data sleep time, SBP, DBP used did not satisfy a real-time application well.
Although these studies have proven their models to be effective, they did not consider the
need for real-time application.

To address this issue, considering the effectiveness of deep learning technology and
the easy accessibility of ECG signals, we proposed a network according to ECG using
deep learning technology. For this proposed network, we also built a psychological stress
monitoring platform on which data collection and analysis function were integrated. Using
it, the ECG data of 34 people were collected and used for training and testing the models.
To show the proposed network’s performance, we also conducted the conventional feature
extracting method applying nine machine learning methods (SVM, decision tree, random
forest and so on). In the current study, we divided mental stress into three levels, i.e., low,
medium and high. To the best of our knowledge, it is the first time that deep learning
technology has been applied to detect three levels of psychological stress by only using a 10
s ECG signal from a data set that is collected based on the Montreal model. The proposed
framework with deep learning is more suitable for real-time applications.

2. Materials and Methods
2.1. Experiments and Data Acquisition

To acquire ECG signal acquisition, storage, management, and real-time analysis, we
built an emotional stress-monitoring platform that contained server and front-ends. After
receiving the ECG data through the 4G net, the server could analyze and then send the
results back to the front-end in a timely manner. We designed the server based on Flask and
used MongoDB [14] for the database, Nginx [15] for a reverse proxy, and Gunicorn [16] for
concurrent processing. The software supervisor was also used to monitor the programs of
the main program and the database so the system could automatically restart for continuous
running when stopped for any bugs. The structure of the server is shown in Figure 1.
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Figure 1. The server based on Flask for data collecting and processing with Nginx, Gunicorn MongoDB and Supervisor

technology.

The front end consists of sticky devices and mobile apps. The sticky devices we used
were created by our lab using the chip ADS1292 for ECG signal collection and CC2640 for
data transmission as shown in Figure 2. Compared to other devices, the two-electrode
structure makes the device more comfortable to wear due to small volume and a light
weight. When using the sticky device was placed horizontally on the center of the chest in
the fourth rib or fifth rib area. The ECG sampled at 250 Hz would be transmitted to the
mobile app via Bluetooth 4.0, and finally. The server would receive the data through the
4G net.

Figure 2. Front and back surface of the sticky device.

Common methods for stress inducement include color word experiments, ice water
simulation, public speaking mathematical calculations, and watching horror videos. In
view of the experimental feasibility and controllability of the induced degree, we chose the
Montreal stress model with calculations as the main method [17]. The Montreal Imaging
Stress Model was originally designed by psychologists to assess psychological stress,
and it contains three processes—rest, moderate stress, and high stress inducing. The
experimental procedures were developed by the group from the Institute of Psychology,
Chinese Academy of Sciences. It contained three periods which last as long as 15 min, the
first five minutes are a rest phase, and then a light stress phase, and heavy stress phase
alternately arranged. The detailed process is shown in Figure 3. The VAS (visual analogue
scale) report [18] of psychological stress was gathered from the subjects every 30 seconds
as the ground truth for labeling the data.
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Figure 3. The process of emotional stress induced experiment.

None of the computing tasks were scheduled during the rest period. At that time, we
played melodious music and humorous moving pictures to the subjects to make them as
relaxed as possible. This design could simulate the none-stress situations that the subjects
encountered in daily life.

During the moderate stress phase, we improved the Montreal stress model by incor-
porating more evoking factors. Among these, we made the background color gray to give
the participants a psychological hint of negativity. The subjects were asked to participate
in simple double-digit addition and subtraction. The formula contained four variables,
each variable ranged from a negative 20 to 20, the operators (—, +, —) are fixed. To cause
moderate stress in the participant, below the formula was a result prompt, a correct rate
and a 5 s time bar that implies sufficient time. If the time ran out and the subject still has
not answered, the system would judge the answer wrong and let the timing bar recount.
This design simulated the moderate-stress situations encountered by the subjects when
working or studying. Therefore, it is easy to finish the tasks with moderate difficulty and
the time required is sufficient. The actual effect is shown as shown in Figure 4.

Moderate Stress

7

Correct rate

0%

Time left

Figure 4. The period of moderate stress, simple operation, sufficient answer time, answer hint, and
gray background to induce moderate stress.

During the stage of high stress stage, to induce the subject’s psychological stress as
much as possible, we added bounty missions, where the participants would get a reward
of 1 yuan for each correct answer and, a 1 yuan punishment for each wrong answer. The
system also displays the amount of money in large red font in the middle of the interface
attracting enough attention to form a sense of oppression in the subjects. The answer
buttons were also zoomed out and randomly arranged. When the answer has been figured
out, the subject also has to find the correct button in the remaining time, and during that
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finding time, the stress would increase significantly. The actual display effect is shown in
Figure 5.

High stress
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Correct rate
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Figure 5. The period of high stress, simple operation, bounty task, zoom out button.

Different subjects have different computing capabilities. In order to avoid problems
of fixed difficulty lacking enough of a challenge for the subjects with strong ability, there
was a lack of participation for those subjects with weak computing ability. The system
integrated the adaptive function of problem difficulty, adaptive function of the button
layout, and the adaptive function of the time left. When the answer accuracy was less than
40% which implied the subject’s computing ability is weak, the system would generate the
correct answer between 0 and 9, made the button’s sequence fixed and set the answer time
to 7 s. When the answer accuracy was between 40% and 60%, which implied the subject’s
ability is normal, the system would generate the correct answer between 0 and 12, made
the button’s sequence random, and set the answer time to 5 s. If the answer accuracy was
larger than 60%, which implied the subject’s ability is strong, the system would generate
the correct answer between 0 and 15, made the button’s sequence random and set the
answer time to 3 s.

In addition, the program could judge the participant’s state from another dimension.
When 3 consecutive questions were answered correctly, the answer time would become 2/3
of the current time, conversely, when 3 consecutive questions were answered wrong, the
answer time would become 4/3 of the current time. This design could simulate the high-
stress situations encountered in the subjects” work or study. Namely, it was hard to reach
the passing line that even if the subject worked as well as possible which was equivalent to
60% accuracy in this experiment. The adaptive algorithm is shown in Figure 6 below.
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Figure 6. The adaptive function. RR is the number of consecutive correct answers, WW is the number
of consecutive wrong answers.

A total of 34 people without cardiovascular and cerebrovascular diseases were re-
cruited by poster from University of Chinese Academy of Sciences to participate in the
experiment. Among them were 20 males and 14 females. The subjects’ ages ranged from
20 to 35, the average being 23.4. It was confirmed that they had not participated in similar
experiments before and had no history of smoking or drinking in the prior two days. We
informed the subjects of the experimental process and gave a demonstration before they
submitted their written informed consent. The electrocardiogram (ECG) was recorded
using the sticky device with the sampling rate set at 250 Hz, then a 10-point moving average
filter was used to filter out burrs, and every 10 seconds the data were uploaded to the server.
The actual test scene and the collected ECG wave form are shown in Figure 7. The research
ensured that the rights and interests of the subjects were fully protected, and the research
content would not cause harm or risk to the subjects. It was reviewed and approved by the
Institutional Review Board of Beijing Tiantan Hospital, Capital Medical University.

—

0.4-

-0.1-

27.68 27.84 28 28.16 28.32 2848

(A) (B)

Figure 7. (A) is the actual measurement, (B) is the recorded electrocardiogram (ECG) signal as displayed on the website.

The horizontal axis represents the time in seconds, the vertical axis represents the amplitude in millivolts.
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2.2. Conventional Methods

To compare the conventional methods to the deep learning model proposed in this
article, conventional methods were conducted, the characters of conventional algorithms
were manually extracted from the time domain and frequency domain of the RR interval
or HRV. HRV was defined as the change in the difference of successive RR intervals. To
get the RR interval, the R-peaks’ position was detected from the ECG signal using the Pan
Tompkins algorithm [19]. To reduce the impact of individual differences, this article used
the z-score algorithm as Formula (1) below to normalize the RR interval, so that its average
would become 0 and the variance becomes 1.

z=((x—n)/s @

The time domain features influenced by momentary ANS (autonomic nervous system)
activities were extracted. Such statistical features included mean-RR (the mean value of RR
interval), SD (standard deviation of HRV), MED (the median value of HRV), QD (quartile
deviation of RR-interval), percent 20th (the 20th percentile’s value of RR-interval), percent 80th
(the 80th percentile’s value of RR-interval) and average heart rate. As the research [20] has
shown that the high-frequency energy of HRV is related to the activity parasympathetic nerve
and the low-frequency energy is related to the activity of the sympathetic nerve, then HRV was
computed from the RR intervals time-series and the features of HRV were extracted, including
HF (high-frequency energy value of HRV signal), LF (low-frequency energy value of HRV
signal) and LF_HF (the ratio of HF power and LF power) as shown in Figure 8. Finally, the 10
features would be trained and tested using nine machine learning classifiers (XG-boost [21],
logistic regression [22], RBF Radial Basis Function-SVM Support Vector Machine [23], random
forest, decision tree, Linear SVM, K-nearest neighbors, Ada Boost, Naive byes) as Table 1
shows. The performance would be further illustrated in the results section.

Pre processing processing
| Bce | | Mean-rr |
' | sD |
| Bandpass filter | | s |
- G |

| Notch filter |

l | Heart rate |

[ PTalgotighm | [ RRinterval | Z-score | Percent80th

I Percent20th

| ‘I'R-peaks | LF power
| HF power |
| LF/HF power |

Figure 8. Signal preprocessing and extraction of statistical features from time domain and fre-
quency domain.

Table 1. The features and the methods used in classification.

Features

Machine Learning Methods
Probabilistic Model Non-Probabilistic Model

RR-interval’s statistic features

Decision Tree, Logistic regression, Naive K-Nearest Neighbors, Ada Boost,
Bayes byes, Random forest, XG-boost Linear-SVM, RBF-SVM
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2.3. The Proposed Network

Most conventional machine learning methods used prior knowledge to manually
extract features. Due to the limitations of prior knowledge, conventional feature extraction
methods would inevitably ignore some non-linear relationship between ECG and stress.
The purpose of this article was to avoid the limitations of prior knowledge by using deep
learning technology.

With deep learning, we could extract features from the original ECG signal automati-
cally and establish mapping from the original ECG for the psychological pressure to meet
the real-time application (using less than 1 min ECG to speculate stress with high accuracy).

CNN is one of the most popular neural networks, and it has greatly promoted the
development of image processing. Unlike RNN, its features are local connecting and weight
sharing, using local connection and weight sharing CNN could automatically extract the
structural features of the image in space, which makes it good at recognizing the data’s
displacement, scaling and rotation [24]. On the other hand, the model’s complexity is
greatly reduced, so it is easy to optimize compared with a fully connected network. A
typical CNN net usually contains a convolution layer, a pooling layer, and a fully connected
layer as shown in Figure 9. The convolutional layer performs simplified convolution
operations between the input data that is intercepted by the window function and the
convolution kernel. Therefore, the convolution layer can extract the features from the input
data that relate to the convolution kernel.

Pooling Layer Output Layer

Figure 9. The typical convolutional neural network (CNN) with one conv layer which has one channel and three filters, one

pooling layer and one fully connected layer.

As different convolution kernels can extract different features, increasing the number
of feature kernels within a certain range can increase the computing time. The pooling
layer after convolution mainly plays the role of down sampling, which can highlight the
effective ingredient of the features and reduce the amount of calculations. Taking into
account the CNN’s ability at extracting local features, we designed the process to use CNN
instead of manually extracting features via conventional methods and also by increasing
the number of convolution kernels to increase the number of features. The choice of CNN
was based on the fact that it does not require feature engineering.

Traditional neural networks assumed that all the data entered before and after are
independent. Therefore, it was not possible to take advantage of the progressive relation-
ship within the time series signals, such as language. RNN [25] is one of the most popular
networks, as it advances through time by a fixed step size and continuously generates
historical status, in the process of advancement, the historical information of the previous
moment is also taken as a part of the input, so it can use the back-and-forth connection
of time-series signals. It showed excellent performance in the field of natural language
processing. LSTM (as shown in Figure 10) is a kind of RNN which uses the forget gate and
memory gate to address the disadvantages of short-term memory.
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Figure 10. The structure of long short-term memory (LSTM) unit, f is the forget gate, m is the memory gate. . reprensents
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Throughout the entire time series of ECG, the state of the current moment was also
affected by the future moment. The characteristics of the next moment could also be used
to predict the current moment’s status. BILSTM (shown in Figure 11) is a widely used
variant of LSTM [26]. It consists of two LSTM units that can extract the features from both
positive and negative sequences separately and then jointly determine the output. There
are generally three ways to combine the outputs of two LSTM units, including addition,
multiply and series connection (as shown in Figure 12). BiLSTM were used to further
extract features from the whole time, considering that ECG belongs to time series signal
that is suitable for BILSTM. The three methods have been tried and the results are given in
the result section.

(]

B

Figure 11. The unit of bidirectional long short-term memory (BiLSTM), an extracts features from positive sequence, an

extracts features from negative sequence.

The proposed network we designed is shown in Figure 13. First, one-dimensional
convolution was used to extract the local temporal features. In CNN, LRN (local response
normalization) was used to refine the classification boundary of the model and highlight the
contrast of features. The mechanism of LRN [23] mimics the lateral inhibition phenomenon
of neuroscience in that the activated neurons will suppress nearby neurons, which could
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generate competition in the network where the effective features are strengthened and the
ineffective features are diminished during training.

min(N—1,(i+2)/2)

bgc,y = agc,y/(k +ua Z (”;c,y) ) )
j=max(0,(i—n)/2)

Addition joint

Output generated by forward LSTM Joint A+B, | A,tB, | A;T+B;
A A, As | ... A, Multiply joint

Output generated by back LSTM A*B, A,*B, ‘ As;*B;

B, | B, | Bs

Concat

Figure 12. The three kinds of output of BILSTM generated by three kinds of joint from LSTM’s output.

% } Classification output layer

Activation

Drop out Fully connected layer

Fully connected

BI-LSTM

LSTM |
BI-LSTM ayer

CONV

Mkl

The raw ecg signal

POOLING
Normalization } CONV layer

b

Figure 13. The proposed network using BiLSTM and CNN
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In the activation layer, RELU (rectified linear unit) was used for non-linear transfor-
mation of the model. As the generalization ability and the computational complexity were
determined by the parameters of BILSTM and CNN, this article through repeated attempts
to determine the optimal parameters. After the BiLSTM layers, a fully connected layer was
used to generate maps between the extracted features and the three levels of psychological
stress. At the end, the softmax layer calculated the probability of the individual to whom
the current sample belongs. For training, cross information entropy was selected as the loss
function. To maximize the generalization ability of the model, the L1 regular term [27] of
the fully connected layer’s weights was also added to the total loss, and that could increase
the scarcity of the model.

Before the training, the initial learning rate was set to 0.6, the batch size was 30 and the
epochs, 3000. This setting implied that the model randomly selects 30 samples for training
each time, 3000 times in total. During the training, the network updated parameter values
through adaptive stochastic gradient descent algorithm. With the Adadelta algorithm, the
learning rate could be adaptively adjusted for better training results. The dropout layer
method was used to randomly select a part of the nodes to participate in training each
time, so that the model could get more diverse training. The proposed methods would be
described in detail in the ‘Results’ section.

We evaluated our deep neural network on 3098 10 s ECG signals divided randomly
into training set (80% of the data set) and testing set (20%). Each deep learning model
was evaluated by five-fold cross-validation and the results were averaged. The experi-
ments were performed on a computer with an Intel Core i7 processor, 16 GB RAM and
Tensorflow 1.14.0

3. Results

To achieve real-time stress level detection, we designed a deep neural network and
more conventional methods which rely on hand-crafted features and compared their
performance.

To conduct conventional methods, we preprocessed the ECG signal and extracted
10 features from the time and frequency domains as shown in Figure 8. Then 9 machine
learning methods were used to detect the stress level. The results of these models are
evaluated based on different window sizes of 1 min and 10 s, respectively. The result based
on 1 min is shown in Table 2 where these nine algorithms finally obtained an average
accuracy of 0.647, an average recall of 0.557, and an average specificity of 0.810. When
using the window of 10 s, the performance of these models decreased. As shown in Table 3,
the average accuracy rate dropped to 0.563, the average recall rate dropped to 0.457 and
the average specificity dropped to 0.731. The reason is that extracting features of frequency
for a shorter window is less effective.

Table 2. The accuracy and recall of conventional method on 1 min ECG.

Algorithms Accuracy Recall Specificity
XGboost 0.620 0.517 0.769
Logistic 0.667 0.564 0.792
LinearSVM 0.676 0.604 0.784
Randomforest 0.649 0.559 0.837
Decision Tree 0.636 0.523 0.816
Bayes 0.666 0.681 0.829
Gauss SVM 0.676 0.459 0.799
KNN 0.636 0.581 0.834
Adaboost 0.600 0.527 0.830

Average 0.647 0.557 0.810
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Table 3. The accuracy and recall of conventional method on 10 s ECG.

Algorithms Accuracy Recall Specificity
XGboost 0.637 0.492 0.765
Logistic 0.614 0.462 0.760
LinearSVM 0.624 0.468 0.748
Randomforest 0.502 0.424 0.708
Decision Tree 0.482 0.407 0.694
Bayes 0.459 0.497 0.741
Gauss SVM 0.632 0.492 0.747
KNN 0.575 0.483 0.755
Adaboost 0.547 0.393 0.667
Average 0.563 0.457 0.731

Since the goal of this article is to build a model for real-time application, the perfor-
mances of the proposed framework and the conventional methods for the 10 s window
will be compared and analyzed. Among the conventional models, XGboost obtained the
highest accuracy of 0.637, the highest recall of 0.492, and the highest specificity of 0.765. The
confusion matrices of XGboost is shown in Figure 14. It could be seen from the confusion
matrix that XGboost achieved a recall for moderate stress at 0.916, but produced a poor
recognition rate on low stress. It also misclassified most high stress states into moderate
stress. It was especially difficult to correctly detect both stress and high stress for the con-
ventional models in this particular experiment. The ROC curve of XGBoost (as Figure 15
shows) also indicated that its ability of recognizing high pressure is lower than that of the
medium pressure and the low pressure.

Lowm
750 Ox
Mediumz
23a 295
Higho
Ta 112
(o] Lown Medium® Higho

Figure 14. The confusion matrix of XGboost.

To determine the optimal parameters of the proposed network, we conducted various
experiments. Initially, we preset the number of n_ inputs to 5, the stride of the pooling
layer to 8 and use stitching to deal with the output of BILSTM. Because the ECG signal is
quasi-periodic, we set the length of convolutional filter to 200 which corresponds to the
average RR interval (0.8 s) at the sampling rate of 250 Hz.

The performance of our initial network was as shown in Figure 16 left, and the
accuracy with 4 conv filters was only 0.819. We then tried to increase the number of
features by augmenting the number of convolution kernels. In Figure 16, it can be seen
that as the number of filters increases, the accuracy rate continues to increase, and when
the number of filters reaches 32, the network achieved the maximum accuracy of 0.863.
Then, the number of convolutions further increased, the accuracy decreased instead, which
implied that when the number of filters exceeded 32, no more valid features could be
extracted, and the exceeded filters even caused over fitting, which reduced the accuracy of
the model in the test set. The 32 was used as the optimal parameter for the conv filter.
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Figure 16. The relation of filter number and learning accuracy and learning loss.

Based on the fixed optimal conv filter number, other experiments were conducted,
and a similar phenomenon could also be observed in the experiment of BiLSTM size. In
the experiment of BiLSTM size, as shown in Figure 17, the accuracy is not increased at
the size of 64 compared with the size of 32. However, the time for training did greatly
increase. Considering the accuracy and training time, 32 BiLSTM units were used for the

proposed network.
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Figure 17. The relation of LSTM size and learning accuracy and learning loss.

The size of pooling window and n-inputs of BILSTM was determined based on the
maximum accuracy. As shown in Figure 18, the proposed network achieved the highest
accuracy when the pool length was set to 8. The set implies that for the features generated
by the convolutional layer, the pooling layer will downsample using a window of size 8.
As shown in Figure 19, the proposed network achieved the highest accuracy when the
n_input was set to 50. The set implies that BILSTM could further extract more abstractive
features from each 50 initial features that CNN was able to extract.

The pool length versus Accuracy and Loss
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Figure 18. The relation of pool length and learning accuracy and learning loss.
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Figure 19. The relation of input size and learning accuracy and learning loss.

To reduce training time without affecting the performance of the proposed network,
we also attempted to reduce redundant features and save training time by adjusting the
size of the stride in the pooling layer. At the beginning, we set the size of the stride to
2. This implies that there will be 0.5 times features that the Conv layer extracted when
inputting to the BILSTM layer. As seen in Figure 20, until the stride size increased to 8, the
accuracy of the model began to decline, which implies that the size of 8 could filter out
redundant features to the maximum. Finally, for the outputs of BILSTM, we tried three
stitching methods based on the previously obtained optimization parameters. As shown in
Figure 21, the method of addition which was adopted by the proposed network obtained
the highest accuracy.

The stride size versus Accuracy and Loss
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©
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= ACCURACY LOSS

Figure 20. The relation of stride size and learning accuracy and learning loss.
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Figure 21. The relation of stitching methods and learning accuracy and learning loss.

The proposed network obtained the accuracy of 0.865, and a specificity of 0.928. Com-
pared to the conventional methods (XGboost), our proposed network improves accuracy
by 0.228. The ROC curves of the proposed network and the XGBoost are as shown in
Figures 15 and 22, the area under the curve (AUC) in moderate stress was 0.88 improved
by 0.1 compared with XGboost’s, the AUC in high stress was 0.85 improved by 0.17. The
confusion matrix of the proposed network was as shown in Figure 23, the recall of low
stress was 0.913, the recall of moderate stress was 0.894, and the recall of high stress was
0.798. It could thus be concluded that the proposed network produces a significant increase
in the classification of the stress on three levels compared to the conventional methods.

3
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Figure 22. The curve of the proposed network.
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Figure 23. The confusion matrix of the proposed network.

4. Discussion and Conclusions

This paper proposes a model for psychological stress detection by using deep learning
technology and obtaining the optimal parameters of that model by various experiments.
For a comparison, we also implemented the conventional methods, and the results showed
our proposed network obtained significant improvement in both medium stress and high
stress detection compared to the conventional methods using 10 s ECG. This finding implies
our model is more satisfactory for real-time application. That conclusion is mainly due
to the use of CNN and BiLSTM. CNN’s excellent ability when dealing with local features
and BiLSTM'’s excellent ability when dealing with long-term sequence signals enable our
network extracting features automatically to overcome the limitations of conventional
methods by using prior knowledge for extracting key features.

Individual differences, especially personality differences are important factors affect-
ing emotional stress. In the process of building the proposed network, we did not take
into account the personality differences of the experimenter, exploring how to improve
the performance of the proposed network using personality differences will become our
future work.
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