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Abstract: Prostate cancer is the second most frequent malignancy (after lung cancer). Preoperative
staging of PCa is the basis for the selection of adequate treatment tactics. In particular, an urgent
problem is the classification of indolent and aggressive forms of PCa in patients with the initial
stages of the tumor process. To solve this problem, we propose to use a new binary classification
machine-learning method. The proposed method of monotonic functions uses a model in which the
disease’s form is determined by the severity of the patient’s condition. It is assumed that the patient’s
condition is the easier, the less the deviation of the indicators from the normal values inherent in
healthy people. This assumption means that the severity (form) of the disease can be represented by
monotonic functions from the values of the deviation of the patient’s indicators beyond the normal
range. The method is used to solve the problem of classifying patients with indolent and aggressive
forms of prostate cancer according to pretreatment data. The learning algorithm is nonparametric. At
the same time, it allows an explanation of the classification results in the form of a logical function. To
do this, you should indicate to the algorithm either the threshold value of the probability of successful
classification of patients with an indolent form of PCa, or the threshold value of the probability
of misclassification of patients with an aggressive form of PCa disease. The examples of logical
rules given in the article show that they are quite simple and can be easily interpreted in terms of
preoperative indicators of the form of the disease.

Keywords: machine-learning; monotonic function method; likelihood ratio; prostate cancer

1. Introduction

Machine-learning methods are widely used in modern medicine. These methods have
the potential to be used to extract knowledge from medical data to diagnose a disease,
determine the severity of a patient’s condition, choose a treatment method, and predict
their condition after treatment [1–4]. Most machine-learning methods are based on general
statistical classification models. However, there are problems of diagnostics and forecasting,
the features of which are not taken into account in these models. These include the tasks of
medical diagnostics with a monotonous relationship between prognostic and predicted
indicators: the stronger the deviation of prognostic indicators from the norm, the more
serious the predicted degree of the disease. Therefore, for example, in the works [5,6] to
determine the severity of the patient’s condition, a model was proposed in which it was
assumed that an increase in the deviation of any of the indicators of the patient’s condition
from the norm, all other things being equal, increases or does not change (but does not
decrease) the severity of the disease. Taking into account the property of monotonicity
inherent in such problems would facilitate their more efficient solution.
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To solve diagnostic problems with a monotonic relationship between prognostic and
predicted indicators, we have developed a method of monotonic functions. In this paper,
we consider the method and its application to select one of two types of surgery for prostate
cancer based on preoperative data. Prostate cancer (PCa) is the second most common
malignant neoplasm (after lung cancer). Globally in 2018, it amounted to 1,276,106 new
cases and caused 358,989 deaths (3.8% of all cancer deaths in men) [7]. The choice of
appropriate treatment tactics is based on the results of pretreatment staging of PCa.

Research on the indicators of prostate cancer is developing intensively. Studies aimed
at identifying the specific features of PCa have identified the diagnostic potential of separate
indicators of the disease. These studies have shown the need for the development of
multivariate models for diagnosis and determination of the stage of the disease, as well as
for the prognosis and choice of treatment tactics. Research related to the development of
the Prostate Health Index (PHI) is a very successful example of aggregating prostate cancer
indices [8–10]. The cycle of works on the Prostate Cancer Risk Assessment Index (CAPRA)
is widely known [11–13]. The CAPRA Index was designed to facilitate the classification
of disease risk when conducting clinical assessments of the likelihood that a given tumor
will recur after treatment, progress, and be life-threatening, according to pretreatment
data. One of the urgent problems when choosing the type of surgery is the classification of
indolent and aggressive forms of PCa in patients with the initial stages of the tumor process.
The problem of the classification of patients with indolent and aggressive forms of PCa
before treatment was considered in [14–19]. In these works, the logistic regression method
was used to solve the problem. Five indicators were used for classification. Based on cross-
validation data, the algorithm identifies a group of 55% of patients with aggressive PCa in
the absence of patients with indolent PCa status. These forms of the disease are ordered.
The aggressive form of the disease refers to a more severe form, which is characterized by
the presence of a more common tumor process. To solve this problem, we propose to use
a new machine-learning method of binary classification, which we called the method of
monotonic functions.

We consider the basics of the method of monotonic functions in Sections 2 and 3.
Section 4 describes the experimental modeling and the result of applying the method to
the problem of classifying patients with indolent and aggressive PCa.

2. Monotonic Functions Method

Several disciplines study complex processes, exploring the relationship with their
simpler properties. Several disciplines study complex processes, exploring the relationship
with their simpler properties. At the first stage, the relationship of the process only with
individual indicators is studied. At the second stage, it becomes possible to study the
relationship of the process with a set of indicators. To evaluate a connection between the
process and a set of indicators, machine-learning methods are used.

The main task of machine-learning is to find a classification rule based on a sample of
precedents. Most of the methods use the analytical function of properties (indicators or
features) of objects for classification. The type of analytical function is selected based on
the mathematical model of the problem being solved, and its parameters are found using
the learning algorithm. The linear relationship between indicators and classes of objects is
approximated by a weighted algebraic sum of indicators. Non-linear dependence is ap-
proximated in a wider class of functions. An example of a non-linear relationship between
disease severity and indicators of immunochemical analysis of blood is the Prostate Health
Index (PHI) function. Usually, when solving a classification problem, the information about
the type of analytical function is absent. Statistical methods are used to estimate it.

The problem of choosing the type of analytical function can be bypassed in nonpara-
metric classification methods. In these methods, it is assumed that for each test object,
there is a precedent or several precedents of the same class, the indicators of which are
closer to this object than the indicators of one or more precedents of the alternative class.
The class membership decision is based on the minimum distance to one or more objects
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in the training class set. Methods of nonparametric classification, similar to the previous
parametric ones, require the introduction of a classification model. This is where the model
must determine how the distance is calculated (metric). In most cases, a priori knowledge
about the choice of a metric in classification problems is usually absent. From statistical
considerations, it is known that in the general case, the most successful is the application
of the Mahalanobis metric.

Thus, from the above, it can be seen that both methods of teaching classification,
in addition to the training sample, need knowledge about the model of the relationship
between the estimated value and the used indicators of objects. Such knowledge is available
in those problems of medical classification, in which the class number can be associated
with the degree of manifestation of the disease. Long-term studies of medical indicators
have revealed for each of them the boundaries of the intervals with values that are typical
for healthy people. It can be assumed that the smaller the deviation of the indicator from
the norm, the less or equal (but not more) the deviation of the degree of manifestation of
the disease from the state of a healthy person. This means that deviations of the process
from the norm can be represented by monotonic functions of the values of indicators
characterizing the exit of the indicators of the process beyond the range of normal values.
This knowledge determines the model underlying the method of monotonic functions.

In this article, the method of monotonic functions is used to the binary classification of
patients with indolent and aggressive forms of prostate cancer according to pretreatment
data. The method uses two obvious assumptions: (1) the degree of manifestation of the
disease is less, the less the deviation of the patient’s indicators from the norm, and (2)
patients with an indolent form of prostate cancer have a lower degree of manifestation of
the disease than patients with an aggressive form. The model of the method is as follows:
(1) a patient whose indices differ from the norm is less than or equal to those of at least one
patient from a sample of precedents with an indolent form of prostate cancer, also has an
indolent form of prostate cancer; (2) a patient who, in at least one indicator, has a deviation
from the norm greater than the deviation from the norm of each patient from a sample of
precedents with indolent PCa has an aggressive form of PCa.

Machine-learning methods can extract empirical knowledge from medical data that
enable two ways to justify a decision: (1) reasoning by the precedent, which consists of the
fact that patients with similar values of indicators have the same diagnoses and severity of
the disease and, most likely, will respond in the same way to a certain treatment regimen;
(2) reasoning by the decision rule in the language of the subject domain. In the first
case, empirically selected knowledge is intuitively understandable, has concrete precedent
confirmation, but is not verbalized, and depends on the similarity function that determines
the proximity of objects. In the second case, knowledge is verbalized, understandable to
specialists in the subject area but does not always have specific precedent confirmation. As
you can see, these arguments complement each other. Therefore, when solving classification
problems, it is desirable to extract knowledge that can justify the decision using two types
of reasoning. The method of monotonic functions finds two solutions from the available
data: the rule of nonparametric classification by analogy with the precedent and the rule of
logical decision, which is formulated in the language of the subject domain.

3. Algorithm

The method of monotonic functions finds two solutions from the available data: the
rule of nonparametric classification by analogy with the precedent and the rule of logical
decision, which is formulated in the language of the subject domain. The method uses
the following data model. There are two forms of the disease (classes) ω1 and ω2. We
know of a limited sample of patients. Patients q = 1, 2, . . . , Q1 belong to the class ω1,
and patients q = 1, 2, . . . , Q2 belong to the class ω2. Each patient is described by a set of
indicators (a set of features). Patients correspond to points of the I-dimensional feature
space x(q) = {x(q)i } and x(q) = {x(q)i }, i = 1, . . . , I. Let the severity of the disease in patients
of class ω1 be lower than that in patients of class ω2. For each feature, the interval [ai, bi]
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of the indicator norm is known. Patients with indices x = {xi} whose deviations from
the norm are component-wise less than or equal to deviations from the norm in indices of
any point x(q) ∈ ω1 have a disease severity no more than in a patient with indicators x(q)

(monotonicity condition).
For simplicity of explanation without loss of generality, we further assume that the

monotonicity condition consists of the fact that all points x of the feature space take values
either from the intervals of the norms of the indicators, xi ∈ [ai, bi] or the larger right
boundaries of these intervals, xi > bi. Then, according to the condition of monotonicity,
the patient, to whom the point x = {xi}, i = 1, 2, . . . , I corresponds, has a severity of the
disease no higher than the severity of the disease in a patient of class ω1 with indicators
x(q) = {x(q)i } if xi ≤ x(q)i for all i = 1, 2, . . . , I. If at least one indicator i = 1, 2, . . . , I

occurs, xi > x(q)i , then the severity of the patient’s disease is greater than that of a patient
with indicators x(q). The monotonicity condition corresponds to an ideal situation in
which all the indicators of objects necessary for classification are present and the values of
indicators are measured accurately. In real situations, due to the incomplete description of
the differential properties of objects and the inaccuracy in the measurements of indicators,
inequalities xi ≤ x(q)i , i = 1, 2, . . . , I are not fulfilled for some pairs of objects. This is one of
the reasons for misclassification.

Consider a classification algorithm.
With each point of the training sample x(q) ∈ ω1, we connect the area of the feature space

W(q) = {x : xi ≤ x(q)i , i = 1, 2, . . . , I}. (1)

We call this set the orthant W(q) with apex at point x(q). Since the monotonicity
condition is not satisfied for all objects, the orthant with apex at point x(q) can contain Q(q)

1

points of the class ω1 and Q(q)
2 points of the class ω2. Each orthant W(q) with vertex x(q)

corresponds to three parameters:

P(q)
1 = Q(q)

1 /Q1, (2)

P(q)
2 = Q(q)

2 /Q2, (3)

L(q) = P(q)
1 /(P(q)

2 + 1/Q1Q2), (4)

where P(q)
1 is the probability that the points of the orthant belong to class ω1, P(q)

2 is the
probability that the points of the orthant belong to class ω2 in the orthant, and L(q) is the
likelihood ratio, where the term 1/Q1Q2 corrects the value of L(q) when P(q)

2 = 0.
The machine-learning algorithm consists of the following steps:

1. Calculate the likelihood ratio estimates for all orthants of the target class q = 1, 2, . . . , Q1

and obtain the training set {x(q), L(q)}.
2. Renumber the orthants W(q) in accordance with the decrease in the likelihood ratio

estimates L(1) ≥ L(2) ≥ · · · ≥ L(Q1).
3. For points of the set W(1), determine the values of the functions

U(x)(1) = P(1)
1 (5)

is the probability of a sample point of class ω1 in the orthant W(1), and

V(x)(1) = P(1)
2 (6)

is the probability of a sample point of class ω2 in the orthant W(1). Determine for
points from the set W(2)\W(1) the values of the functions U(x)(2) and V(x)(2), where
U(x)(2) is the probability, which is defined as the ratio of the number of points of
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class ω1 from the set W(1) ∪W(2) to the number of all points Q1 of the training
sample of the class ω1; V(x)(2) is the probability equal to the ratio of the number of
points of class ω2 from the set W(1) ∪W(2) to the number of points Q2 of the class
of the training sample ω2. Determine for points from the set W(3)\(W(1) ∪W(2))
the values of the probabilities U(x)(3) and V(x)(3), which are calculated from the
set W(1) ∪W(2) ∪W(3). Next, in the same way, calculate the values U(x)(n) and
V(x)(n) on the sets of points of the feature space in accordance with the orthant
numbering specified in Step 2. Assign the value U(x) = V(x) = 1 to other points of
the feature space.

Thus, a system of nested sets is constructed on the space of features for the training
sample. The system defines two functions related to each other by a monotonic dependence
U(V), where U = U(x) is the probability of the successful classification of objects of class
ω1 and V = V(x) is the probability of erroneous classification of objects of class ω2. From
the values of the functions U(x) and V(x) for any given values of the thresholds α and
β, we can calculate the decision rule of classification: x ∈ ω1 if V(x) ≤ α and x ∈ ω2 if
V(x) > α or x ∈ ω1 if U(x) ≤ β and x ∈ ω2 if U(x) > β. The resulting decision rules can
be represented as logical functions of features. These solutions explain the classification
rule in terms of the problem domain.

The logic function calculation algorithm consists of the following steps:

1. Select points x(q) of the target class ω1, for which the probability of misclassification of
objects of class ω2 as objects of class ω1, V(x) ≤ α (to select points, a similar condition
U(x) ≤ β) can be used).

2. Construct the membership matrix (Mpq). The rows of the matrix denote the orthants
W(p), with vertices at points x(p) selected in the previous step, and the columns of
the matrix denote the points of the target class x(q). Matrix element mpq = 1, if point
x(q) of the class ω1 belongs to the orthant with index p, and mpq = 0 otherwise. The
belonging of a point in the feature space to the orthant W(p) is determined by the
conjunction: x ∈W(p) if xi ≤ x(p)

i for all i = 1, 2, . . . , I. The set of rows of the matrix
corresponds to the disjunction of the conjunctions.

3. Determine a subset of the minimum number of orthants that contains all points of
the target class selected in Step 1. To do this, select a submatrix from the minimum
number of rows in the membership matrix (Mpq), for each column of which at least
one unit remains. The choice of the rows of the matrix (Mpq) is performed using
the method of minimizing the disjunctive normal forms of Boolean functions [20].
As a result of minimization, we obtain a logical rule in the form of a disjunction of
conjunctions. Furthermore, using linguistic variables and pre-prepared templates, the
resulting logical rule can be represented as a fairly simple text expression.

The number of matrix rows remaining after minimization may be too large for a
clear interpretation of the decision rule as a disjunction of conjunctions. The correction
algorithm approximates the previous solution and creates a logical rule from the number
of conjunctions K specified by a specialist.

The logic rule correction algorithm is as follows:

• For all pairs of orthants with vertices at the points x(q) and x(r), construct new orthants

W(s) with vertices x(s) = {x(s)i }, where x(s)i = max(x(q)i , x(r)i ). The orthant W(s) covers
all points W(q) ∪W(r).

• From the new orthants, choose the orthant W(s) with the maximum likelihood ratio
L(s) and remove two orthants W(q) and W(r), from which the union of the orthant
W(s) was received. In this case, the number of remaining orthants decreases by one.

• Repeat the procedure until the number of remaining orthants is equal to the predeter-
mined number of conjunctions K.

Figure 1 represents the flowchart of the algorithm of the method of monotonic func-
tions. An example of sample points and orthants in the space of two features is shown in
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Figure 2. The orthants correspond to the decision rule:
IF

(xi ≤ x(r)i AND xJ ≤ x(r)j ) OR (xi ≤ x(q)i AND xJ ≤ x(q)j ) (7)

THEN
the point x belongs to class ω1 with probability U(x) = 7/8 and with probability V(x) =
2/12 belongs to class ω2.

Figure 1. Block diagram of the algorithm of the method of monotonic functions.

Figure 2. Space of features, sample points of classes, and orthants. White dots correspond to class ω1,
and black dots correspond to class ω2. The rule corresponds to the disjunction of two conjunctions:

IF (xi ≤ x(r)i AND xJ ≤ x(r)j ) OR (xi ≤ x(q)i AND xJ ≤ x(q)j ) THEN the point x belongs to class ω1

with probability U(x) = 7/8 and with probability V(x) = 2/12 belongs to class ω2.

Due to the increase in the size of the orthants after correction, the probability of a false
alarm may increase. If this result is unacceptable, then the number of orthants must be
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increased. The threshold value α and the number of conjunctions K in the logical function
are selected using several iterations.

4. Diagnosis of Indolent and Aggressive Forms of PCa before Treatment
4.1. Data

Studies on the use of pretreatment data in patients with PCa are being conducted to
facilitate clinical decisions regarding the type of treatment and to assess the risk of disease
recurrence after treatment. According to the results of retrospective studies, preoperative
overdiagnosis (when the stage of prostate cancer exposed before surgery is higher than
that identified by the final histological conclusion) occurs in 30–45% of cases [21], and
underdiagnosis—in 10–15% of cases [22,23]. For this reason, patients with indolent forms
of prostate cancer received over-treatment with difficulties in subsequent labor and social
rehabilitation and a decrease in the quality of life in general; and in case of preoperative
underestimation of the degree of aggressiveness of the tumor process, the volume of
primary therapeutic measures, including surgical ones, was insufficient, with a high
probability of disease recurrence. Thus, the correct preoperative staging of prostate cancer
is one of the most important and urgent tasks of modern urological oncology. To this
end, new machine techniques are being developed to improve the preoperative stage of
prostate cancer.

To classify patients with indolent and aggressive PCa, we used data from P.A. Hertzen
Moscow Research Oncological Institute (Branch of the Federal State Budgetary Institution
“National Medical Research Radiological Centre”, Ministry of Health of the Russian Federa-
tion). The data sample was taken from the case histories of 341 patients operated on with a
diagnosis of PCa: 124 patients with indolent PCa (class ω1) and 217 patients with aggressive
PCa (class ω2). The form of prostate cancer was determined by postoperative data.

The preoperative state of the patient is described by the following indicators:

1. Histological analysis data (needle 12-gauge biopsy). Gleason Group (GrGl) for
two characteristic biopsy sites on the Gleason scale [24]. The indicator takes the
following values:

GrGl = 1, if the score is 6 or less;
GrGl = 2, if the score is 7 = 3 + 4 (the order of the items is important);
GrGl = 3, if the score is 7 = 4 + 3 (the order of the items is important);
GrGl = 4, if the score is 8 or higher.

2. Indicators of immunochemical analysis of blood (Beckman Coulter—Access 2 chemi-
luminescent analyzer, USA; Hybritech calibration) [25].

tPSA is a total Prostate-Specific Antigen.
fPSA is a free PSA.
[−2]proPSA is a precursor isoform of PSA.
fPSA/tPSA.

PHI = [−2]proPSA
fPSA ×

√
tPSA is the Prostate Health Index.

3. Indicators of clinical group.

V is the volume of the prostate according to ultrasound (cm3).
Tumor process localization. The indicator takes on the following values:

T1 = 1, T2 = 1, if the tumor process is local;
T3 = 2, if the tumor process is locally distributed;
T4 = 3, there were no cases of T4 in the study population.

4. Anthropometric indicators.

Age (years).
(BMI) = (body mass)/(height)2 is a Body Mass Index (kg/m2).

The form of the disease after surgery was determined by two postoperative indicators:
clinical stage (GrT) and Gleason Group (GrGl). If, as a result of histological examination,
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it was found that the prevalence of the primary tumor in the prostate did not exceed
T2 (the tumor process was local and there were no metastases to regional lymph nodes
and distant metastases) and the Gleason Group was no more than six points, then the
cancer status of the prostate was considered indolent. Otherwise, the PCa status was
considered aggressive.

4.2. Materials and Methods

The study included only primary patients with a confirmed diagnosis of prostate
cancer and a tPSA level < 30 ng/mL according to the WHO calibration (ARCHITECT
i1000SR, Abbott, USA) before surgery. All patients were operated. The average age of
patients is 62.6± 0.4 years (41–85 years). Most patients with prostate cancer are persons
aged 51–60 years—29.4% and 61–70 years old—53.8%; men under 50 make up 4.7%, under
70—12.2%.

The patient’s preoperative data include: the degree of differentiation of tumor tissue
according to the results of biopsy (6–12 points) according to the Gleason scale; laboratory
parameters: serum levels of tPSA, fPSA, [−2] proPSA; classification of TNM tumor accord-
ing to the results of clinical examination; age. After surgery, patients were characterized
by pTNM-classification of the tumor process [26], including the assessment of tumor ag-
gressiveness according to the Gleason scale in accordance with the pathomorphological
conclusion after prostatectomy.

Before the surgery, the patients were divided into stages T1 (12%—40 patients), T2
(69%—235 patients), T3 (19%—66 patients). After surgery, the T1–T2 stage was insufficient
in 31% of cases (in 84 of 275 patients the stage was changed to pT3), T3 became excessive
in 26% of cases (in 17 of 66 patients the stage was pT2). After surgery, the dominant
group consisted of patients with PCa pT2 (61%), including 56.3% of patients with pT2c. In
133 (39%) patients with prostate cancer, the tumors corresponded to pT3 (pT3a—19.4% and
pT3b—19.6%). These data are summarized in Table 1.

Table 1. Distribution of patients by the volume of prostate tumor lesions by biopsy (T) and after
surgery (pT).

T
Before Surgery After Surgery

n % n %

T1 40 11.7% — —
T2, including: 235 68.9% 208 61.0%

T2a–b 111 32.6% 16 4.7%
T2c 124 36.4% 192 56.3%

T3, including: 66 19.4% 133 39.0%
T3a 37 10.9% 66 19.4%
T3b 29 8.5% 67 19.6%

The distribution of prostate cancer patients according to the tumor grade according to
the Gleason scale is presented in Table 2. Of the entire sample, according to the histological
examination of biopsy material, 208 (61%) patients had highly differentiated prostate cancer
(Gleason index up to 6), 109 (32%) patients had a Gleason index of 7, and 24 (7%) patients
had a Gleason index 8 or more. According to the results of a pathomorphological study, the
proportion of patients with a low Gleason grade of tumor malignancy (with an indicator
of up to 6) decreased to 44.6%. Gleason level 7 was recorded in more patients than before
surgery—in 46.6% of cases. The smallest was the group with a Gleason score of 8–9 (8.8%).
Thus, after surgery, 43.8% of patients (91 out of 208) with a Gleason biopsy score of up to
6 were diagnosed with a high degree of tumor malignancy (≥7), and 5.2% of patients (7 out
of 133) had a biopsy of ≥7 showed a low tumor grade (≤6).
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Table 2. Distribution of patients by the degree of tumor malignancy according to the Gleason scale in
accordance with the final histological conclusion.

Gleason Index
Before Surgery After Surgery

n % n %

3 2 0.6% 1 0.3%
4 4 1.2% 3 0.9%
5 33 9.7% 24 7.0%
6 169 49.6% 124 36.4%

7, including: 109 32.0% 159 46.6%
7 (3 + 4) 65 19.1% 95 27.9%
7 (4 + 3) 41 12.0% 51 15.0%

8 17 5.0% 17 5.0%
9 7 2.1% 13 3.8%

The prevalence of the tumor process in the PT of the prostate gland and the degree of
its differentiation (Gleason index according to the results of pathological and anatomical
examination) were used to divide patients according to the aggressiveness of the tumor
process [27–29] into the following groups:

• Indolent PCa (124 patients)

– Localized PCa: pT2N0 and Gleason index up to 6

• Aggressive PCa (217 patients)

– Localized prostate cancer: pT2N0 and Gleason score greater than or equal to 7
(85 prostate cancer patients)

– Locally advanced PCa: pT3N0 (87 PCa patients)
– PCa with regional metastases: pT1-3N+ (45 PCa patients).

Serum levels of total PSA (ng/mL), fPSA (ng/mL), [−2]proPSA (pg/mL) were as-
sessed by chemiluminescence using an immunochemical assay system (Access 2, Beckman
Coulter, CA, USA) with Hybritech calibration. On their basis, the indicators% fPSA,% [−2]
proPSA and PHI were calculated according to the following formulas:

%fPSA =
fPSA (ng/mL)
tPSA (ng/mL)

∗ 100%

%[−2]proPSA =
[−2]proPSA (ng/mL)

fPSA (ng/mL)
∗ 100%

PHI =
[−2]proPSA

fPSA
×
√

tPSA

Table 3 presents statistics for a sample of patients. It can be seen that some indicators
poorly distinguish between patients by disease forms.

Table 3. Statistical indicators of a sample of patients with indolent (class ω1) and aggressive (class ω2) prostate cancer.

tPSA fPSA ProPSA PHI Age BMI V T GrGl tPSA/ fPSA

Indolent form (class ω1)

Average 9.13 0.94 17.19 55.57 61.46 28.60 45.11 1.05 1.06 10.85
Standard
deviation 5.49 0.69 12.72 26.67 6.48 17.78 25.14 0.21 0.23 4.75

Aggressive form (class ω2)

Average 13.94 1.17 26.76 84.61 63.44 26.90 38.87 1.29 2.01 12.70
Standard
deviation 8.29 0.72 19.95 46.29 6.83 5.66 15.31 0.45 1.04 5.81
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4.3. Modeling and Results

The classification rule was sought using the algorithm of the method of monotonic
functions. The software implementation of the algorithm includes a step-by-step feature
selection technique and a cross-validation method to assess the quality of the classification.
The best classification results were obtained according to the following three indicators: GrT,
GrGl, and tPSA. Dependences U(V) of the probability of successful detection of patients
with the indolent form of the disease U(x) on the probability of misclassification of patients
with an aggressive form of the disease V(x) (probability of false alarm) are presented in
Figure 3, where line 1 shows the dependence U(V) when tested on the training set, and
line 2 shows the dependence U(V) averaged over 10 tests using k-fold cross-validation at
k = 10. The vertical segments in Figure 1 indicate the values of the standard deviations.

Figure 3. Dependences of the probability of successful classification of patients with indolent prostate
cancer (PCa) U on the probability of misclassification of patients with an aggressive form of the
disease V. 1—dependence U(V) when testing on a training sample; 2—dependence U(V) obtained
by 10-fold cross-validation; vertical segments define the values of standard deviation.

Notably, the classification results differed little when tPSA was replaced with PHI or
fPSA/tPSA. Adding other features to the selected set of indicators significantly increased
the discrepancy between the test results for the training set and the test results using
cross-validation. In this case, the result of the test of the classification rule for the training
set significantly improved, and the result of the cross-validation test slightly worsened.
Therefore, such options for solving the problem were not considered.

Figure 3 shows that the results of testing the classification rule based on the training
sample and cross-validation are very close. Therefore, to explain the decision, it is per-
missible to use logical rules obtained from the training sample. The U(V) dependence
determines the threshold that provides the same decision-making efficiency when classify-
ing patients with indolent and aggressive PCa [30,31]. For this threshold, the decision on
the training sample (line 1) corresponds to the probability of the successful classification of
patients with indolent PCa U(x) = 0.765 and the probability of misclassification of patients
with aggressive PCa V(x) = 0.235.
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The threshold α = 0.235 corresponds to the rule:
IF

(tPSA ≤ 9.72) AND (GrGl = 1)
OR (tPSA ≤ 8.24) AND (GrGl ≤ 2) AND (GrT = 1)
OR (tPSA ≤ 11.39) AND (GrGl = 1) AND (GrT = 1)

(8)

THEN
the patient has indolent PCa with a probability U(x) = 0.765 and with the probability of misclassi-
fication of a patient with aggressive PCa, V(x) = 0.235.

If this condition is not met, then the patient has aggressive PCa with a probability of
1−V(x) = 0.765, whereas the probability of misclassification of a patient with indolent
PCa is 1−U(x) = 0.235.

Below, we provide several examples of the found classification rule for the thresholds
α = 0.10, α = 0.15, β = 0.90, and β = 0.85.

The threshold α = 0.10 corresponds to the rule:
IF

(tPSA ≤ 8.21) AND (GrGl = 1)
OR (tPSA ≤ 8.40) AND (GrGl = 1) AND (GrT = 1)

(9)

THEN
the patient has indolent PCa with a probability U(ω1) = 0.548 and with the probability of
misclassification of a patient with aggressive PCa, V(ω1) = 0.097.

The threshold α = 0.15 corresponds to the rule:
IF

(tPSA ≤ 9.72) AND (GrGl = 1)
OR (tPSA ≤ 10.06) AND (GrGl = 1) AND (GrT = 1)

(10)

THEN
the patient has indolent PCa with a probability U(ω1) = 0.629 and with the probability of
misclassification of a patient with aggressive PCa, V(ω1) = 0.147.

The threshold β = 0.90 corresponds to the rule:
IF the following condition is not fulfilled:

(tPSA ≤ 9.72) AND (GrGl = 1)
OR (tPSA ≤ 8.24) AND (GrGl ≤ 2) AND (GrT = 1)
OR (tPSA ≤ 19.09) AND (GrGl = 1) AND (GrT = 1)

(11)

THEN
the patient has aggressive PCa with a probability 1−V(ω1) = 0.659 and with the probability of
misclassification of a patient with indolent PCa, 1−U(ω1) = 0.057.

The threshold β = 0.85 corresponds to the rule:
IF the following condition is not fulfilled:

(tPSA ≤ 9.72) AND (GrGl = 1)
OR (tPSA ≤ 8.24) AND (GrGl ≤ 2) AND (GrT = 1)
OR (tPSA ≤ 13.96) AND (GrGl = 1) AND (GrT = 1)

(12)

THEN
the patient has aggressive PCa with a probability 1−V(ω1) = 0.719 and with the probability of
misclassification of a patient with indolent PCa, 1−U(ω1) = 0.161.

5. Conclusions

The method of monotonic functions is intended for solving problems of binary clas-
sification with ordered classes. The method of solution assumes that the decision rule is
associated with the ordinal number of the class by a monotonic non-decreasing function
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of indicators of the patient’s condition (from the features of classification). In a simplified
formulation, the method classifies the belonging of an object to the first class ω1 if all
the attributes of the object are less than or equal to the values of the attributes of any
object in the training set of this class. If the value of at least one feature of the object is
greater than the corresponding value of the object of the training sample of the first class,
then a decision is made on the belonging of such an object to the second class ω2. The
monotonicity condition makes it possible to compare patients according to the severity
of the disease. Indeed, if all the key indicators in the observed patient are closer to the
normal indicators of a healthy person than in a control patient with a known severity of
the disease, then it is quite natural to consider the condition of this patient to be easier. On
the other hand, if at least one of the key indicators of the observed patient is further from
the norm than that of the control patient, then the patient’s condition is more severe.

Machine classification methods find rules that generalize objects within classes and
separate objects of different classes. In the feature space, each patient q corresponds to
a vector x(q), the components of which are the patient’s indicators. During training, the
vector x(q) of the class ω1 of patients with indolent prostate cancer selects a set of vectors
that correspond to patients with similar indicators. The monotonicity condition is that this
set is an orthant, which contains only vectors with values of indicators no more than y for
a patient q. This set can include vectors not only of class ω1, but also of class ω2. The larger
the fraction of vectors of the class ω1, the better this orthant separates the classes. The
learning algorithm selects the orthants with the best measure of separability. This allows
us to find a classification rule that, in the training sample, provides a close to maximum
probability of successful classification of patients with indolent PCa (class ω1), provided
the probability of misclassification of patients with aggressive PCa (class ω2) is given.

When teaching, the method extracts empirical knowledge that explains the result of
the classification. The justification of the result by analogy with the precedent is as follows.
The decision rule for a new patient, to whom the vector x corresponds, finds all orthants
of the training sample that contain the vector x. This is tantamount to selecting from the
training sample a set of patients with an indolent form of the disease, in whom all the
values of the indicators differ from the norm more than in the subject. If the monotonic
condition is correct, follow the principle of analogy, this patient has an indolent form of the
disease. If there are no orthants containing the vector x in the training set, then a decision
is made for this patient about the aggressive form of the disease.

Obviously, the probability of the vector x falling into the orthant is the less, the smaller
the number of vectors of the class ω1 got into this orthant during training. This pattern
is manifested in the fact that the probability of successful classification of patients in the
training sample can be significantly higher than the probability of classifying patients on
the test sample and when modeling the test sample using the cross-validation procedure.
It is well known that, in the general case, the number of vectors in orthants will decrease
with an increase in the number of indicators used in the classification rule. This reduces the
generalizing ability of the method. To overcome this drawback, it is necessary to increase
the number of patients in the training sample with an increase in the number of indicators.

The second justification of the classification result is performed using a logical function.
Each connection of the decision rule corresponds to an orthant, which is determined
by the parameters of a patient with an indolent form of the disease (class ω1). Logical
rules (8)–(12) consist of 2–3 conjunctions, which in the learning process are selected from
124 conjunctions of the training sample. Each of the conjunctions participating in the above
rules corresponds to an orthant containing a sufficiently large number of vectors of the
class ω1. Thus, each logical rule (8)–(12) generalizes well enough the knowledge contained
in the training sample of patients. Therefore, solution (8) gives a rule that determines the
balance point between sensitivity and specificity. When (8) is fulfilled, the probability of
successful classification of patients with indolent form is U(x) = 0.765 with the probability
of misclassification of patients with aggressive form V(x) = 0.235. If this rule is not met,
then we obtain a solution at which the probability of correct classification of patients with
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an aggressive form of 1−V(x) = 0.765 with an erroneous classification of patients with an
indolent form of 1−U(x) = 0.235. Equations (9)–(12) give higher levels of probability of
successful classification for patient subgroups.

The data of 341 case histories of operated patients with indolent and aggressive forms
of prostate cancer were analyzed. Analysis of preoperative and postoperative data revealed
the dependence of the form of prostate cancer on preoperative data. This relationship is
used to classify the form of the disease. For this, it is required to indicate to the algorithm
either the threshold value of the probability of successful classification of patients with an
indolent form of the disease or the threshold value of the probability of misclassification of
patients with an aggressive form of the disease.

As a result, we can draw two conclusions about the application of the method of
monotonic functions to the problem of classifying the form of prostate cancer accord-
ing to the data before treatment: (1) The satisfactory quality of the solution allows us
to consider the uniformity model. as adequate to the problem being solved; (2) The
above examples (8)–(12) show that the calculated logical rules are quite simple and easily
interpreted from the point of view of preoperative indicators of the form of the disease.
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