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Abstract: Implementation of model-based fault diagnosis systems can be a difficult task due to the
complex dynamics of most systems, an appealing alternative to avoiding modeling is to use machine
learning-based techniques for which the implementation is more affordable nowadays. However,
the latter approach often requires extensive data processing. In this paper, a hybrid approach using
recent developments in neural ordinary differential equations is proposed. This approach enables
us to combine a natural deep learning technique with an estimated model of the system, making
the training simpler and more efficient. For evaluation of this methodology, a nonlinear benchmark
system is used by simulation of faults in actuators, sensors, and process. Simulation results show that
the proposed methodology requires less processing for the training in comparison with conventional
machine learning approaches since the data-set is directly taken from the measurements and inputs.
Furthermore, since the model used in the essay is only a structural approximation of the plant; no
advanced modeling is required. This approach can also alleviate some pitfalls of training data-series,
such as complicated data augmentation methodologies and the necessity for big amounts of data.

Keywords: fault diagnosis; deep learning; neural ordinary differential equations

1. Introduction

Fault diagnosis systems are of great importance in industrial processes, especially in
those with high stakes systems, where it is important to perform continuous diagnostics
and monitoring of the main variables. Furthermore, it could also be used to perform fault
prediction for improving the maintenance plan and to avoid undesired malfunctions. In
the fault detection literature, a great number of methods have been dedicated to model-
based techniques [1,2] with great success in many cases, although a known drawback
of such methods is their limitation to processes with relatively simple dynamics and
sensiblity to model approximations. Examples of model-based methods are: the structural
approach, which searches for irreducible relations that attains sensibility to the selected
faults [3,4], and eigenstructure-based fault diagnosis, which deals with a minimization
problem for the sensibility of perturbations against faults [5,6]. The same minimization
problem is approached using Linear Matrix Inequalities (LMI) [7], and another common
approach is to use observers, such as sliding mode observers [8], Kalman-based fault
detection [9], and also residuals generation using parity space relations [10,11]. Likewise,
for complex processes with functional constraints, methods have been developed that
consider decentralized and distributed diagnostic architectures [12,13].

Another important group of fault detection techniques, regarded as data-based ap-
proaches, are used when the model of the plant under evaluation is not available. They are
dedicated to the analysis of collected data to detect unusual trends in it, and thus identify
faults in the system. Principal Component Analysis (PCA) performs a dimensionality re-
duction of the data map for finding faults in the system, although it requires high amounts
of data [14,15]. Support Vector Machines (SVM) is a technique for classification that per-
forms high generalization even with small data-sets but can suffer from data imbalance,
although learning ability can be added such as in the multikernel SVM [16]. Artificial
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neural networks (ANN) are employed using supervised training and can detect faults after
learning hidden relations in the data [17]; however, they lack visual representation and can
suffer from overfitting. Use of Deep Learning (DL) techniques have become increasingly
popular in the latter years due to an increase in power computation, higher availability of
information, and high accuracy, many DL models have been tested such as Dense Neural
Networks [18], Deep Belief Networks [19–21], Convolutional Neural Networks [22,23],
Recurrent Neural Networks [24,25], and Generative Neural Networks [26], however, in
most of the examples the DL model is adapted only to the plant in the study, therefore a
change of plant will require a change of the methodology.

Some works have also been devoted to the elaboration of hybrid techniques, model-
based plus data-based systems for fault diagnosis. These techniques aim to have combined
advantages from both previously mentioned approaches, they use mainly machine learning
techniques for fault identification coupled with model-based fault detectors. In [27], a
hybrid model-based and data-driven system is elaborated for fault detection and diagnosis,
although both methods are used independently. In [28], Jung proposed the use of SVM to
improve fault identification, and in [29], the merging mechanism between residuals and
SVM is improved for fault location. In [30], the hybrid mechanism is used for the selection
of residual generators. Meanwhile, in [31], a Modified PCA was combined with filters to
detect faults. On the other hand, the use of DL techniques in hybrid fault diagnosis systems
has not been extensively developed, although the use of DL is recognized for improving
accuracy in many other recognition tasks [32].

Deep neural networks are composed of finite transitions, in [33] the Neural Ordinary
Differential Equations (Neural ODE) was presented using an idea inspired in ResNets [34]
to give continuity to the network layers using ODE solvers, this development has been
resembled and employed in many fields such as [35] for continuous graph flows that can be
applied in generative tasks, moreover, it can be used to represent dynamics such as in [36]
for Hamiltonian processes, in [37] for an extension of stochastic processes, and in [38] for
inclusion in Graph Neural Networks as a tool to have a continuous flow of node features.
These groundbreaking developments make the application of DL networks for hybrid fault
detection systems very natural.

In this research, we embedded a preliminary plant model in the Neural ODE network;
this network receives the measurements and inputs of the plant, given in state-space
representation, and mirrors its corresponding dynamics. The training is performed in two
phases; the Neural ODE is trained in the first stage in order to mimic the plant dynamics,
and later it is conditioned to be used for the fault diagnosis system, which is trained in the
second stage. The preliminary model is employed on behalf of two desired aspects: to have
a more robust network behavior and reduce the training complexity. Since the Neural ODE
allows us to represent the dynamics of a process, then the first aspect is demonstrated using
an approximated (preliminary) plant model. We show that this is beneficial in comparison
to model-less neural networks. Additionally, the Neural ODE’s internal dynamics permits
us to have a visual representation of the network state.

The article is divided as follows, in Section 2 we present the theory for Neural ODE.
Section 3 is dedicated to model representation and how Neural ODE is used for the
implementation. In Section 4, a nonlinear benchmark model is used to illustrate the
application of the approach. In Section 5, a visual representation of the network is proposed.
In Section 6 the characteristics of the methodology are discussed. Finally in Section 7, some
conclusions are given.

2. Graph Neural Ordinary Differential Equations

Resnet networks are shown to be one inspiration for the key concept of continuum
layers in the neural ODE network. However, the neural ODE training poses the problem of
finding an efficient training procedure; in this regard, the adjoint method has been proposed
in the literature as a manner to calculate the gradients for the backward propagation;
besides, we establish the procedure to include external inputs into the system.
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2.1. ResNets Inspiration

ResNet [34] was a breakthrough in the training of deeper neural networks, the concept
was simple and based on the use of residual functions. These residual functions are
employed to obtain referenced signals that improve the training of networks with many
layers, this is illustrated in Figure 1, a ResNet block is described by (1)

hk+1 = hk + f (hk, θk) , (1)

where hk represents the state at layer k and θ represents the parameter of this layer in
the network.

weight layer

weight layer

+

Figure 1. ResNet block.

Moreover, considering a network with D layers, stacking the blocks and representing
the discrete transitions at step t in an iterative process, then we have the relation given
in (2)

Ht+1 = Ht + F(Ht, Θ) , (2)

where t ∈ {0, · · · , T} and HT ∈ RD, transitions can be seen as an Euler discretization of
the continuous transformation [39].

Neural ODE [33] represents continuous transitions of the network, therefore (2) can
be expressed as a dynamical transition and define the solution by the following Cauchy
problem for an initial state X0: {

Ḣ(t) = F(t, H(t), Θ)

H(0) = X0
(3)

A discussion for the well-posedness of (3) is presented in [33,38].

2.2. Training Using ODE Solvers

Solution to (3) is performed through training using ODE solvers. The loss L is calcu-
lated using the forward propagation and a first ODE solver as (4).

L(z(t1)) = L
(

z(t0) +
∫ t1

t0

F(z(t0), t0, t1, Θ) dt
)
= L(ODESolve(z(t0), F, t0, t1, Θ)) , (4)

where z(t) is the hidden state at each instant, t0 and t1 are the initial and final time
respectively.

For the backward propagation, Chen et al. [33] proposes the use of adjoint state,
a(t) = ∂L/∂z(t), for the calculation of the propagation gradients. The adjoint sensitivity
method is applied and the adjoint dynamics are calculated using a backward solver for the
relation given in (5)
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∂a(t)
∂t

= −a(t)>
∂F(z(t), t, Θ)

∂t
. (5)

Computation of the gradient change with respect to the parameters requires to solve
relation (6) also backward

∂L
∂Θ

= −
∫ t0

t1

a(t)>
∂F(z(t), t, Θ)

∂t
. (6)

Finally, Equations (4)–(6) are implemented as an augmented dynamics that permit to
evaluate the respective integrals for z, a and ∂L

∂Θ jointly in a single call to the ODE solver.
More elaborated details can be found in the original article [33].

2.3. External Inputs

In a system process, some external inputs had to be considered in the system. They
are added as dynamical variable into the derivatives, thus modifying (3){

Ḣ(t) = F(t, H(t), Θ) + u(t)

H(0) = Xe
(7)

Note that this does not modify the ODE implementation but an additional term has
to be included for relation (4), therefore for the integral calculation, the total loss in the
system is calculated using (8).

L(z(t1)) = L
(

z(t0) +
∫ t1

t0

F(z(t0), F, t0, t1, Θ) dt +
∫ t1

t0

u(t) dt
)

. (8)

Meanwhile, Equations (5) and (6) remain the same. Hence, in the ODE layer imple-
mentation, as employed in Section 4, Equations (5)–(8) are used.

3. Model Representation

The system representation used is a state-space for nonlinear systems; such repre-
sentation is employed to have a defined number of system variables that will coincide
with the neural ODE outputs; moreover, we describe the signals used in the training of the
neural ODE.

3.1. State-Space

We consider a nonlinear state-space representation in the following form:

ẋ(t) = f (x) + g(u) , (9)

y(t) = h(x) , (10)

where x(t) ∈ Rn is the state vector, f (.) is a function Rn → Rn, u(t) ∈ Rm the input vector,
g(.) is a function Rm → Rn, y(t) ∈ Rp the output vector, and h(.) is a function Rn → Rp.

Relation (9) is termed the process equation and relation (10) is termed the measurement
equation.

3.2. Neural ODE Networks

It is clear that any state-space system in the form given by (9) is composed of a set
of ODE systems, here each state xi, where i = {1, 2, · · · , n} ∈ N, can be modeled as an
output of the neural ODE. Training is challenging since states are not always available, one
reasonable solution is to generate an embedding using the measurement equation given by
(10), this is the part of the model that we include in the network.

The neural ODE thus has n outputs for which loss calculation is done using the
measurements fed through h(x). Meanwhile, the inputs u(t) are incorporated as dynamic
external inputs in the network. Also, note that knowledge of function f (x) is not required
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for the training, since weights and transition functions are learned by the neural ODE.
The network can be then especially sensible to faults in the process functions and in the
measurement functions as will be proved in the following sections.

4. Fault Diagnosis via Neural ODE Applied to Nonlinear Benchmark System

The fault diagnosis system for a non-linear plant based on the 4-tank model is pre-
sented. Hence, the model is first presented, and thereafter the generation and processing
of the data-sets are described; since this is a solution for actuators, sensors, and process
faults, training and results for each case are presented separately. The schemes used for the
neural ODE training and the fault diagnosis training are also presented.

4.1. System Model

A non-linear four-tank plant (Figure 2) is a MIMO benchmark model to evaluate FDI
algorithms, first proposed in [40], studied for control [41] and fault diagnosis systems [42].
The system has 2 pumps which are controlled to input water flow into the system, the
valve formation distributes the flow into the tanks in a proportion given by the constants
γi and ki. The states of the plant are the levels in each tank (hi) and they are related by the
following relations:

ḣ1(t) =
−a1

√
2gh1(t)

A1
+

a4
√

2gh4(t)
A1

+
γ1k1u1

A1(t)
,

ḣ2(t) =
−a2

√
2gh2(t)

A2
+

a3
√

2gh3(t)
A2

+
γ2k2u2(t)

A2
,

ḣ3(t) =
−a3

√
2gh3(t)

A3
+

(1− γ1)k1u1(t)
A3

,

ḣ4(t) =
−a4

√
2gh4(t)

A4
+

(1− γ2)k2u2(t)
A4

,

where the coefficients Ai, ai, γi and ki are described in Table 1. Only parameters related to
the inputs are used for the training.

T3T4

T1 T2

LT1 LT2

LT3 LT4

𝛾1𝑘1 𝛾2𝑘2

(1 − )𝛾1 𝑘1
(1 − )𝛾2 𝑘2

𝑢1 𝑢2

Figure 2. Four tank plant scheme.
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Table 1. Process Parameters.

Parameter Units

Bottom area, Ai, for i = 1, 2, 3, 4 cm2

Outlet pipe cross section, ai, for i = 1, 2 cm
Outlet pipe cross section, ai, for i = 3, 4 cm
Gravity constant, g cm2/s
Pump constants, ki, for i = 1, 2 cm3/(Vs)
Main valve positions, γi for i = 1, 2
Heights 1 and 2, h1o, h2o cm
Heights 3 and 4, h3o, h4o cm
Inputs 1 and 2, u1o, u2o cm3/s

Hence, for this system, the measurements and state vectors in (11) are considered.

y(t) =


h1(t)
h2(t)
h3(t)
h4(t)

+ ν(t) , x(t) =


h1(t)
h2(t)
h3(t)
h4(t)

. (11)

The faults considered are two actuators faults, four sensor faults, and four process faults,
we will treat them separately for the training but a complete system can be easily composed
by joining the neural models.

4.2. Data-Set

The data-set for the Four Tank Process are generated using the exact model of the sys-
tem, including typical dynamic possibilities present in the real system, such as controllers,
set-point modifications, measurement noise, perturbations, and also actuators, sensors and
process faults. A total of 1,000,000 samples are obtained for each case (actuator, sensor, and
process fault scenarios), considering only the known signals (measurements and inputs)
and the labels for each fault. An extract of the whole data-set is shown in Figure 3, and its
corresponding actuator faults are shown in Figure 4.

Figure 3. An extract from the data-set of the four tank system. Above: Inputs, Below: Measurements.
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Figure 4. Actuator faults in an extract of the data-set, shaded areas indicate that a fault has occurred,
and signals are normalized.

4.3. Actuator Faults
4.3.1. Training

Training is performed in two stages, in the first stage the Neural ODE [33] is trained
using the block representation presented in Figure 5, the measurements (y(t)) pass through
4 linear layers, where the first three layers are followed by activation functions of Tanh
type, meanwhile, the inputs (u(t)) are considered using a linear layer. For this stage, the
training is done in 2000 epochs, with a learning rate that starts at 10−3 and is varied at
epoch 1000 to 10−4. The ODE tolerance is kept at 10−7 during the whole process. Inputs
(u(t)) are added sequentially using a linear layer that is kept constant.

For the second stage of training, one additional linear layer with a Tanh activation
function and a softmax classifier for four classes (two actuator faults) are added. The model
considered is presented in Figure 6. The input for this stage is the propagated derivatives
of the internal states ( ˙̂y) and the derivatives for the measurements (ẏ). This training is
performed in 20,000 epochs starting with a learning rate of 10−3 that is reduced at epoch
15,000 to 10−4. For simplicity, we kept the model of the first stage, the neural ODE, constant
during this second stage training. However, is possible to continue adapting the neural
ODE in this stage or even during evaluation for possible model changes.
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Figure 5. Neural network model for ODE training.
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Figure 6. Neural network model for fault diagnosis training.

4.3.2. Results

In order to evaluate the results, we first show in Figure 7 the generated dynamics
using the neural network for 2000 points with initial conditions x = [0, 0, 0, 0], that is
compared in the same plot with the real system responses, this demonstrates that the
network is representing essential information from the model.

For the diagnosis, a total of 20,000 samples from the data-set are used, results are
shown in Figure 8, where a comparative of the real faults and detected faults is presented,
the network reached 98.73% of accuracy for this test. In the total data-set with 1,000,000
samples, the accuracy was 98.5%.
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Figure 7. First stage. Continuous line: true dynamics, dotted line: learned dynamics.



Appl. Sci. 2021, 11, 3776 9 of 16

Figure 8. Actuator faults detection, the faults are represented in the shaded areas, states are given in
black for reference. Above: faults labeled in the data-set. Below: faults detected by the system.

4.4. Sensor Faults
4.4.1. Training

The first stage of this training is not required since the model is already embedded in
the neural ODE from training in Section 4.3.1 using the same scheme presented in Figure 7.
For the second stage of training, the model considered is the same as presented in Figure 6
but using a softmax classifier with 16 classes (4 sensor faults). This training is performed in
10,000 epochs starting with a learning rate 10−3 that is reduced at epoch 8000 to 10−4, for
simplicity we also kept the model of the first stage constant during this training.

4.4.2. Results

The results for a group of 20,000 samples of the data-set are shown in Figure 9, where
a comparative of the real faults and detected faults are given. In this case, the network
reached 98.36% of accuracy for this test. On the total data-set, with 1,000,000 samples, the
accuracy was 98.1%.

Figure 9. Sensor faults detection, the faults are represented in the shaded areas, states are given in
black for reference. Above: faults labeled in the data-set. Below: faults detected by the system.
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4.5. Process Faults
4.5.1. Training

In this case, the first stage of training was also not required. For the second stage
of training, the model considered was is based as well in the scheme of Figure 6, and
the softmax classifier used 16 classes (4 process faults). This training was performed in
30,000 epochs starting with a learning rate 10−3 that is reduced at epoch 20,000 to 10−4, the
model of the first stage is kept constant during this training.

4.5.2. Results

The results for a group of 20,000 samples of the data-set are shown in Figure 10, where
a comparative of the real faults and detected faults are given. In this case, the network
reached 98.75% of accuracy for the test. On the total data-set, with 1,000,000 samples, the
accuracy was 98.11%.

Figure 10. Process faults detection, the faults are represented in the shaded areas, states are given in
black for reference. Above: faults labeled in the data-set. Below: faults detected by the system.

5. Visual Representation of the Network

A common pitfall of using DL networks is the lack of visual representation of the
neural network which is often seen as a black box. With the proposed approach we
furthermore could establish an additional representation for the network, since dynamics
in the network follows closely that of the plant, an interesting representation is the phase
diagrams generated by the Neural ODE. To illustrate this concept, we present the phase
diagram for normal states of the system in Figures 11 and 12 against faulty conditions for
actuators and sensors in Figures 13 and 14 respectively. These diagrams are generated
using the ODE projection for 200 samples. It is noticeable that continuous predictions are
obtained when normal conditions are happening. On the other hand, the predictions are
not continuous in the case of faults.
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Figure 11. Phase diagram for normal prediction in actuators data-set.
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Figure 12. Phase diagram for normal prediction in sensors data-set.
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Figure 13. Phase diagram during fault in actuator.
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Figure 14. Phase diagram during a fault in sensor.

6. Discussion

Training methodology of DL structures is vital to reach models with high performance.
A review of the literature demonstrates that training can be very demanding for DL models.
In [43], a common procedure for fault detection using DL models is proposed, feature
extraction and neural network type are regarded as two key elements of the process. In [44]
an autoencoder is used with 4 different and selectable behaviors. In [21], the training is
divided into many steps in accordance with the aging of the system. In [20], the training
is performed using ensemble learning, which uses multiple learners. In [25], a feature
extraction and a dimensionality reduction are performed previously over the data-set.
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In [24], a group of 14 features is extracted and then selected using a criterion before the
training. All these approaches shown the complexity that features selection requires.

Our approach aims to alleviate these complicated procedures with the inclusion
of some characteristics of the model dynamics to be learned by the Neural ODE. We
incorporated in the training an approximation of the system using features in form of the
measurement equations and inputs of the process. Those characteristics allow us to reduce
the epochs and complexity and furthermore to work with data-series in a natural manner,
as was demonstrated in Section 4.

Some final tests were performed using classical SVM, ANN, and DL models with the
data-set of actuator faults, Table 2 shows the results for each model tested, we include
weighted accuracy as a measure for accuracy considering weights for each class, class 0 for
no fault is weighted 0.08 and other classes are weighted 0.95, 0.96 and 0.99, respectively.
Additionally, in all the deep learning methods, except for the Neural ODE method, data
augmentation is previously performed using noise injection, dropout, pooling, and time-
warping [45]; and batch normalization is included for the fully connected layers. It is
noticeable from the results that the Neural ODE model allows improving the efficiency of
the network for this case.

From Table 2, the SVM method reaches a high accuracy for this case, but it is clearly
due to false negatives, as is appreciated in its corresponding weighted accuracy. The
ANN and DL models had a lower accuracy; hence, it is likely required a more advanced
pre-processing of the data-set to reach better results. Meanwhile, the use of neural ODE
and dense network, proposed in this work, shows that, even excluding pre-processing and
data augmentation, the model can achieve higher accuracies.

Table 2. Accuracy for different Machine learning Models.

Model Accuracy Weighted Accuracy

Suport Vector Machine
(Polynomial Kernel) 93.3% 62.657%

Artificial Neural Network
(4 Fully connected Layers) 80.9% 74.8%

Convolutional Neural Network
(2 Convolutional Layers + 1 Fully connected Layer) 77.5% 55.8%

Recurrent Neural Network
(4 LSTM Layers + 1 Fully connected Layer) 80.53% 73.8%

Neural ODE & Dense Network
(Neural ODE + 2 Fully connected Layers) 98.5% 90%

7. Conclusions

Over the past few years, the development of new techniques for deeper networks such
as ResNet has inspired the training of neural networks using ODE solvers as a manner
to generate a continuous layer representation and even further allowed to improve the
representation of systems dynamics by neural ODE networks. Therefore, a hybrid approach
was presented in this article for fault diagnosis of sensors, actuators, and process faults.
Results of simulations show that high performances of fault diagnosis can be obtained using
neural ODE networks not requiring extensive data-processing and advanced modeling.
In a nonlinear benchmark system, the training efficiency was demonstrated for each fault
type, and shows an improvement when compared with classical Deep Learning models.
Here, the accuracy of the network is demonstrated to be higher than 90%. In addition, a
visual representation is proposed by using phase diagram representations. Likewise, the
data needed to train effectively the network is reduced which permits to avoid elaborated
procedures such as feature extraction, pre-processing and data augmentation.
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