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Featured Application: Quick and non-destructive applications of Infrared Thermography on rocks.

Abstract: Infrared thermography is a growing technology in the engineering geological field both for
the remote survey of rock masses and as a laboratory tool for the non-destructive characterization
of intact rock. In this latter case, its utility can be found either from a qualitative point of view,
highlighting thermal contrasts on the rock surface, or from a quantitative point of view, involving
the study of the surface temperature variations. Since the surface temperature of an object is
proportional to its emissivity, the knowledge of this last value is crucial for the correct calibration of
the instrument and for the achievement of reliable thermal outcomes. Although rock emissivity can
be measured according to specific procedures, there is not always the time or possibility to carry out
such measurements. Therefore, referring to reliable literature values is useful. In this frame, this paper
aims at providing reference emissivity values belonging to 15 rock types among sedimentary, igneous
and metamorphic categories, which underwent laboratory emissivity estimation by employing a
high-sensitivity thermal camera. The results show that rocks can be defined as “emitters”, with
emissivity generally ranging from 0.89 to 0.99. Such variability arises from both their intrinsic
properties, such as the presence of pores and the different thermal behavior of minerals, and the
surface conditions, such as polishing treatments for ornamental stones. The resulting emissivity
values are reported and commented on herein for each different studied lithology, thus providing not
only a reference dataset for practical use, but also laying the foundation for further scientific studies,
also aimed at widening the rock aspects to investigate through IRT.

Keywords: infrared thermography; rock; emissivity; laboratory test; surface temperature

1. Introduction

Infrared thermography (IRT) is a scientific application for the acquisition and analysis
of thermal information, based on the detection of the thermal radiation emitted by an
object. At temperatures above absolute zero, all bodies emit electromagnetic radiation,
with wavelengths mainly falling within the infrared band of the electromagnetic spectrum,
as the result of thermally excited electron oscillations or transitions within the matter [1,2].
Infrared radiation is therefore invisible to the human eye and specific devices are required to
process such signals. These are infrared cameras, which can detect and record the radiation
emitted by a material to build a thermal image, from which the temperature pattern can
be reconstructed. The feature controlling the relation between the emitted radiation and
the surface temperature of the investigated material is known as emissivity (ε) [3]. This
surface property, characterizing all forms of matter capable of emitting thermal radiation,
ranges between 0 (referred to as a perfect emitter—mirror) and 1 (referred to as a theoretical
perfect absorber—blackbody). Based on this value, the surface temperature of an object
can be quickly estimated in a non-destructive way. Thanks to this, IRT has experienced
a growing diffusion across a wide range of scientific fields; a literature review [4] and
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references therein highlighted that IRT is employed in medicine or biology, chemistry,
engineering and material science, life and sport sciences, meteorology and agriculture,
although the most predominant fields involving IRT applications are applied science
and engineering. In the latter cases, the use of IRT is also focused on building materials
and structures characterization: Al-Hadhrami et al. [5] studied the thermal behavior of
concrete specimens aiming at assessing their density, while Huh et al. [6] and Janku et al. [7]
employed IRT to detect deterioration signals in concrete structures. More recently, IRT has
found its utility even in engineering geological sciences, with satisfactory results in the
study of landslides, hydrogeology and rock mechanics, e.g., [8–14]. With specific reference
to rock materials, Mineo and Pappalardo [15] used IRT for the indirect estimation of rock
porosity in laboratory, while Huang at al. [16] and Danov et al. [17] suggest that rock
spectral emissivity is subject to variation during mechanical loading and with respect to the
rock composition, respectively. Estimating the emissivity of a rock is possible according to
specific procedures, although often, it is useful to have a reference value due to time issues
or the impossibility of measuring. NASA’s ECOSTRESS (ECOsystem Spaceborne Thermal
Radiometer Experiment on Space Station) Spectral library [18,19] is a good reference in
terms of the reflectance spectra of rocks, minerals, lunar/terrestrial soils covering the visible
through thermal infrared wavelength region (0.4–15.4 µm). FLIR Systems [20] collected
several experimental data on emissivity values belonging to different materials. The
provided table, compiled by using a shortwave camera (i.e., a camera sensitive to shorter IR
wavelengths between visible light and 3 µm), lists numerous kinds of material, but only a
few examples of rocks. Some articles provide a mention on the emissivity of marble, granite,
sandstone, limestone and gypsum, due to their employment in constructions, clay and
soil [21,22]. On this trend, this paper aims at increasing the scientific casuistry providing
representative emissivity values for different rock types, according to their laboratory
assessment through the method suggested by FLIR [20]. Specimens of igneous, sedimentary
and metamorphic rocks were chosen among the most common lithologies considered for
engineering geological and cultural heritage purposes. The applied laboratory procedure
allowed the estimation of a range of suitable emissivity values for 15 different rock types,
which are herein made available to the scientific community and commented on, shedding
light on new potential IRT applications.

2. IRT Background

Infrared radiation, or infrared light, is part of the electromagnetic spectrum (Figure 1).
Due to its wavelength (700–1 mm) the human eye cannot see it, but humans can sense some
of this energy as heat [23]. According to the temperature of an object, most of its infrared
radiation can be “seen” by specific devices known as thermal cameras, which convert
infrared radiation into visible images [24]. According to the Wien’s displacement law, the
peak wavelength of the emitted radiation is inversely proportional to the temperature.
For a body at ambient temperature, the peak occurs in the infrared band (Figure 1). For
this reason, thermal imaging is considered a very powerful remote sensing technique for
numerous field studies, thanks to the fact that thermal radiation can penetrate smokes,
aerosols, dust, and mists more effectively than visible radiation [24].

The Stefan–Boltzmann law (Equation (1)), explains the relationship between the energy
emitted by a body (J), across all wavelengths, and the Stefan–Boltzmann constant (σ), the
surface temperature of the body (T) to the fourth power and its emissivity (ε) [25]:

J = εσT4 (1)
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Figure 1. The electromagnetic spectrum with the range of occurrence of thermal radiation and the infrared band highlighted.

Mathematically, emissivity is the ratio between the infrared radiation emitted by a
body and the radiation emitted by a blackbody at the same temperature. It is self-evident
that it plays an essential role in infrared thermographic surveys and it is dependent on
temperature, wavelength and surface condition [3]. For example, a surface with a low
emissivity value (i.e., aluminum, steel, etc.) acts as a mirror (high reflectance).

With reference to the engineering geology, IRT use represents a new frontier for both
the remote surveys of landslides/rock masses and rock mechanics laboratory applications.
It has proved a useful tool in detecting crevasses, cave openings and rock fracturing [26–28],
or the integrity of rock mass behind a shotcreted slope [14]. Some authors [29] tested the
application of IRT to rock masses under different daily and seasonal conditions, finding
out a statistical relation between the rock mass cooling and its grade of fracturing. Based
on such innovative results, Pappalardo et al. [30] used IRT to characterize unstable rock
wedges, while Fiorucci et al. [31] studied the thermal response of jointed rock masses. IRT
was further employed to characterize landslides, even in combination with other remote
survey or geophysical techniques, e.g., [32–34], and for the detection of rock bridges within
rock mass cracks [35]. Further applications refer to the study of rock behavior under stress,
where IRT can highlight the unstable crack propagation and/or flaw coalescence [36],
to the evolution monitoring of excavation damaged zones [37], and to the detection of
microstructural changes of reservoir rocks [38].

A parallel pioneering scientific trend is the indirect estimation of rock porosity in
laboratory by using IRT to monitor the cooling rate of oven-heated rock specimens. More
specifically, the strong relationship existing between the rock porosity and its cooling
speed has recently been highlighted, demonstrating that a porous rock cools faster than
a massive one [15,39]. Such evidence leads the way to a potentially increasing number
of IRT applications on rocks, which must be supported by reliable data. In this light, the
emissivity knowledge of a framed target is essential to achieve a correct estimation of its
surface temperature by IRT. For this reason, emissivity values belonging to different natural
and human-made matters have been experimentally estimated and are available in the
literature, although there are few data on rocks [20]. Among the low-emissivity materials,
polished bronze, copper, chromium, iron, steel, gold and platinum can be found, while
masonry bricks, asphalt pavement, concrete, carbon and human skin are counted among the
high-emissivity materials. With reference to rock applications, available and quickly usable
values belong to rocks employed for decorative and construction purposes, such as fired
clay (ε = 0.91), granite (ε = 0.77–0.97), gypsum (ε = 0.8–0.9), sand (ε = 0.6–0.9), sandstone
(ε = 0.909–0.935), and soil (ε = 0.92–0.95 in dry and saturated condition, respectively) [20],
thus highlighting the need of implementing such scientific casuistry, which is the aim of
this paper.
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3. Materials

The targets of this research are 27 specimens belonging to 15 different rock types
chosen among sedimentary, igneous and metamorphic categories (Figure 2). Specimens
offer a planar surface, either smooth or polished, to be framed by IRT.
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The sedimentary lithologies taken into account herein include:

- Limestones (L): fine-grained, light beige, limestone with a porous texture, showing
millimetric voids and rare traces of bioturbation. This rock type was specifically
employed for the reconstruction of a UNESCO world heritage monument in south-
eastern Sicily.

- Calcarenites (C): two varieties of sicilian calcarenites were tested herein. The first is
known as Sabucina stone, classifiable as a yellowish biosparite, with allochems mainly
given by small fragments of foraminifera/bryozoa and orthochems represented by
spathic calcite and small amount of micrite [39] and reference therein. The second
belongs to the “Panchina” formation and it is a yellowish organogen calcarenite.
Rocks show a porous texture, with micro and macro voids up to millimetric size.

- Quartzarenites (QA): belonging to the arenaceous member of a Flysch succession,
such greyish rocks contain sharp to sub-rounded lithic fragments (<1 mm) and widely
crop out in northeastern Sicily.

- Calcisiltite (CS): dark grey marly calcisiltites, with rare mineral clasts in a microcrys-
talline carbonate cement.

- Sandstones (S): yellowish to grayish sandstones affected by a grain-size variability,
from fine-to medium belonging to the Capo d’Orlando Flysch formation of northern
Sicily. Such sandstones have been defined as quartzofeldspathic arcoses [40] and
references therein.

- Dolostones (D): cropping out on the Peloritani Mountains (northeastern Sicily) and
belonging to the Longi-Taormina Unit, these rocks are characterized by a massive to
brecciated structure and show the occurrence of calcite veins. Color ranges from grey
to a light pink.
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- Travertine (T): cream-colored banded rock composed of calcite, usually formed by the
evaporation of river and precipitation of carbonate minerals at spring waters. It is a
variety of rock often used for walls and interior decorations.

Igneous samples are:

- Basalt: volcanic, effusive rocks from Mount Etna. At hand-scale, specimens show a
porphyritic texture with a massive (Bm) or vesicular (Bv) structure. In the first case,
olivine, pyroxene and plagioclase crystals are found in a groundmass and no visible
voids can be detected; in the second case, millimetric voids occur within the rock
structure, e.g., [41].

- Granite: coarse-grained igneous rock mainly composed of quartz, alkali feldspar,
and plagioclase tested herein in three different varieties, i.e., alkali feldspar granite
also known as “red granite” with both polished (AGp) and smooth (AGs) surface;
K-feldspar pinkish granite with both polished (KGp) and smooth (KGs) surface; white
plagioclase granite (WG) with a smooth surface.

- Tuff (TF): medium grain sized volcanic grayish rock, with plagioclase, biotite, with
pumice concentration.

Metamorphic samples are:

- Migmatites (M): massive and fracture-free rocks, with the occurrence of banding given
by millimetric alternation of leucocratic and melanocratic portions. The mineral con-
tent is represented by quartz, plagioclase, biotite and muscovite with minor chlorite,
K-feldspar, and sillimanite.

- Serpentinites (SP): dark green rocks sometimes affected by affected by serpentine and
calcite veins.

- Slate (ST): black fine-grained, foliated, low-grade metamorphic rock derived from an
original shale-type sedimentary rock composed of clay or volcanic ash.

- Granitoid plutonites (GP): holocrystalline rocks with a faneritic texture mainly com-
posed of quartz, plagioclase, biotite and muscovite.

- Marble: white metamorphic rock composed of recrystallized carbonate minerals from
a limestone or dolomite protolith, with both polished (MBp) and smooth (MBs) surface.

4. Methodology

The experimental methodology for the emissivity estimation was carried out herein
according to [20,42] by employing a high-sensitivity thermal camera FLIR T420 (Table 1).
It is a non-contact measurement method requiring the use of an emissivity-known surface
material. In this case, a piece of electrical tape, with known high emissivity (ε = 0.97),
was placed on the specimen face, adjacent to the area where the emissivity was to be
measured (Figure 3). This method is based on the rock emissivity estimation by comparing
its optic features with the ones of a nearby blackbody at the same temperature, simulated
by the black tape [43]. The rock was then oven-heated to reach, at least, 20 K above room
temperature, according to the specifications, and the temperature difference between the
specimen and the ambient was stable during the quick test, thus minimizing potential
measurement errors.

Table 1. Main technical specification of the employed thermal camera.

IR resolution 320 × 240 pixels

Object temperature range −20 ◦C to +120 ◦C (−4 ◦F to +248 ◦F)
0 ◦C to +650 ◦C (+32 ◦F to +1202 ◦F)

Accuracy ±2 ◦C (±3.6 ◦F)
Spectral range 7.5–13 µm
Focal Plane Array Uncooled microbolometer
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Figure 3. Phases of the methodological approach carried out to determine the emissivity of rock specimens. Sketch in inset
(2) is modified from [20].

The second step (Figure 3) was the determination of reflected apparent temperature,
i.e., a parameter used to compensate the radiation reflected in the object [44]. This step is
crucial, because it allows the avoidance of potential error sources. The reflected apparent
temperature was estimated herein according to the “reflector method”, which consists in
crumbling up a large piece of aluminum foil and then unscrambling it on a piece of card-
board of the same size. This was placed in front of the target to frame and pointed by the
thermal camera with the emissivity set to 1.0. The apparent temperature of the aluminum
foil was measured. Since laboratory measurements were carried out from an acquisition
distance of 0.4 m, atmosphere effects were negligible. Moreover, the experimental set was a
laboratory room with constant ambient temperature and humidity and no artificial sources
of light; heating conditions were constant for all the specimens, so this ensured a strong
reduction in potential measuring errors.

For the emissivity determination, the rock specimen with the attached electrical tape
was placed in front of the camera, after having verified that the tape was in good contact
with the specimen, and the IRT image was taken. Such an image was processed by the
software Flir Tools, which allowed one to adjust the level and span for best image brightness
and contrast. Emissivity was set according to the tape value and the reflected temperature
was set according to the previous measure. The temperature of the tape (Tt) was measured
according to the “area function” (indicated for surfaces with varying emissivity such as
rocks composed of different minerals or affected by voids). Then, the measurement function
was moved to the sample surface and the emissivity setting was adjusted until the same
temperature Tt was recorded. The emissivity corresponding at the Tt detected on the rock
surface was the emissivity of the tested rock.

Furthermore, measures were repeated a minimum of three times and at different
portions of the specimen surface. This was carried out because the rock surface may be
affected by specific macroscopic features, such as a preponderant concentration of pores or
minerals, which could play a role on the final emissivity value. Therefore, in order to find
out their influence on emissivity, along with a reliable range of values to be considered
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representative of the entire framed surface, measuring area tools were located at different
portions of the rock face and emissivity was measured at different rock face sectors. The
results were then compared to find out the average emissivity value to be considered
representative for the tested rock types. Considerations on the main controlling features
are provided.

5. Results

The values estimated herein fall within a general 0.83–0.99 emissivity range (Figure 4a),
with the sedimentary rock group affected by the narrowest interval (0.91 < ε < 0.99),
followed by the metamorphic (0.89 < ε < 0.99) and igneous (0.83 < ε < 0.98) categories
(Figure 4b). The width of this last case arises from the lowest ε estimated on two polished
granite samples, without which the emissivity igneous range would have overlapped with
the others (rock ε ≥ 0.89). The resulting values for each rock type are listed in Table 2 in
alphabetic order.
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5.1. Sedimentary Rocks

The lowest ε values are related to quartzarenites and sandstones, both showing a
coarse-grained structure and the presence of quartz minerals. The sandstone average ε
(0.935) matches with the literature’s available data for the same rock type provided by
FLIR [20]. The intermediate sedimentary average ε values (0.945–0.95) belong to dolostone,
limestone and calcisiltite, united by the carbonate rock nature and the fine-grained structure
with a variable micro-porosity. The greatest values refer to travertine and calcarenite
samples, which are also carbonate rocks, although they are formed by different processes,
but affected by macroscopic porosity. In fact, both rock types are characterized by a surface
hosting millimetric to centimetric visible voids with different persistence (Figure 2).

5.2. Igneous Rocks

Igneous rock samples can be divided herein into two sub-groups: polished and smooth.
The polished variety results from rock manufacturing processes aimed at their ornamental
use, while smooth faces are proper of the natural aspect of rocks undergoing laboratory
tests. Starting from the lower part of the range, polished granites are characterized by
0.83 < ε < 0.86, with no relevant distinction between the slightly different mineral composi-
tion and color of tested rocks. This result is in accordance with the available literature data
on the same polished rock type, reporting an average emissivity of 0.849 [20]. Smooth light
granite samples are characterized by an average 0.92 emissivity, while the darker variety
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(red granite) shows a wider range, partially overlapping with the previous one (Figure 4a),
with a 0.935 mean value. Basalt rocks rank above the holocrystalline samples, with a mean
ε= 0.94 for the massive variety and 0.965 for the vesicular one, followed by the highest tuff
value (mean ε = 0.975).

Table 2. Emissivity values estimated for the tested rock types.

Rock Type Acronym Emissivity Range Average Emissivity

Basalt (massive) Bm 0.93–0.95 0.94
Basalt (vesicular) Bv 0.96–0.97 0.965
Calcarenite C 0.98–0.99 0.985
Calcisiltite CS 0.94–0.96 0.95
Dolostone D 0.94–0.95 0.945
Granite (polished) WGp-KGp 0.83–0.85 0.84
Granite (smooth) WGs-KGs 0.91–0.93 0.92
Granitoid plutonite GP 0.89–0.91 0.90
Limestone L 0.94–0.96 0.95
Marble (polished) MBp 0.95–0.96 0.956
Marble (smooth) MBs 0.97–0.99 0.98
Migmatite M 0.89–0.91 0.90
Quartzarenite QA 0.91–0.93 0.92
Red granite (smooth) AKs 0.92–0.95 0.935
Red granite (polished) AKp 0.83–0.86 0.845
Sandstone S 0.92–0.93 0.925
Serpentinite SP 0.92–0.95 0.935
Slate ST 0.89–0.90 0.895
Travertine T 0.96–0.97 0.965
Tuff TF 0.97–0.98 0.975

5.3. Metamorphic Rocks

With reference to the metamorphic group, slates hold the lowest emissivity (mean
0.895), followed by migmatites and granitoids, which are two macroscopically similar rock
types (Figure 4). Serpentinite is characterized by a wider emissivity range (0.92–0.95), due
to mineralogical heterogeneity of its surface. At the ranking top, marble samples are found,
with an emissivity difference based on the polished or smooth surface condition. As for
igneous granites, the polished marble sample is characterized by a lower ε (0.955 against
0.98 belonging to the smooth one).

6. Discussion

The achieved results pave the way to multiple discussion points, starting from the
fact that a univocal emissivity value for each rock type could not be detected, but rather
a range of values (Figure 4a). This is likely due to the effect of some features, which
lead to an uneven thermal behavior of the framed rock surface. In fact, by moving the
measuring area during the image processing, slight temperature and emissivity variations
were experienced (Figure 5a). This suggests the need to define a representative ε value for
IRT applications on rocks, whose approach is focused on the framing of the whole rock
specimen surface, rather than on a small portion (e.g., voids or crystals). Therefore, it is
reasonable to consider the mean value of the ranges found herein for each rock type as the
representative emissivity. This choice is quite objective, also thanks to the narrow ε range
extension of each rock type, which generally involves two or maximum three consecutive
values (Figure 4a).
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Based on the above consideration, a discussion on the effects causing such slight
emissivity variations deserves to be proposed. According to achieved results, two main
macroscopic features can be, indeed, indicated as “emissivity controllers”, i.e., the presence
of pores and mineral composition.

6.1. Pore Effect

In the frame of the relationship between rock porosity and IRT, it was demonstrated
that the presence of macroscopic voids on a framed rock causes surface temperature
variations [45]. In particular, macropores occurring within an oven-heated rock sample
are labeled by a higher surface temperature than the rock matrix, with the greatest values
recurring at the most persistent voids. This suggests that the IRT output of a rock surface is
controlled by the presence of voids (Figure 5b). Such an effect, from now on referred to
as the “pore effect”, was detected herein; for example, at the carbonate rock group, where
the massive or microporous dolostone, limestone and calcisiltite keep a lower emissivity
than the macroporous travertine and calcarenite samples (Figure 4a). It must be underlined
that this discussion point only involves the presence of macroscopic porosity, whose
surface temperature can be detected by an infrared camera, regardless of the porosity
percentage of the rock. A similar outcome can be highlighted for basalts, in their massive
(ε = 0.94) and vesicular (ε = 0.965) varieties (Figure 5c,d). Even in this case, samples affected
by macropores returned a higher emissivity due to the higher surface temperature of
vesicles. Once it is further proved that the presence of voids affects the surface temperature
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distribution on the rock surface and considering that voids can be represented both by
pores and by cracks, a reasonable hint for future studies could be represented by the
tentative correlation between the emissivity dispersion and the presence of cracks/damage
zones within the rock itself.

6.2. Mineral Effect

Rock surface temperature variation is not controlled only by pores, but also by the
macroscopically occurring mineral phases. The “mineral effect” can be well observed
in thermograms belonging to holocrystalline rocks, where crystals can be distinguished
according to their different surface temperature. In granite, for example, micas are charac-
terized by the highest surface temperature (approximate estimated ε = 0.97–0.98), while
feldspars own intermediate values (approximate estimated ε = 0.85–0.89) and quartz is the
coldest phase (approximate estimated ε = 0.77–0.80) (Figure 6a,b). This proves the hetero-
geneity of such rock types with respect to emissivity, supporting the need of weighting the
representative rock emissivity value on the whole framed surface. This outcome paves the
way for further studies aimed at shedding light on a new potential IRT application as a
tentative mineral mapping tool for crystalline rocks.
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A kind of mineral effect can be also hypothesized for sedimentary rocks, although no
visible crystals occur, where the quartz content of quartzarenite and sandstone could be
responsible for their lower emissivity if compared to limestone and calcisiltite of the same
rock group.

6.3. Consideration on a Possible Color Effect

The mineral effect observed at granites and migmatites may suggest a sort of color-
dependance of emissivity. In fact, it has been experienced herein that higher ε values
correspond to darker minerals (micas). This would also justify the higher mean emissivity
of red granites (darker variety) if compared to the lighter ones (Figure 4a).

Nevertheless, single mineral phases are not the target of IRT for engineering geological
applications, which is instead focused on framing the whole rock surface, on which both
pore and mineral effects take place. In this perspective, a color-emissivity dependance
was not found herein, as dark colored rocks are not always characterized by the highest
emissivity values. An example is the case of light beige limestone vs. dark grey calcisiltite,
which returned the same emissivity although showing an evident color difference to the
naked eye; similarly, black slate holds a lower ε than white marble (Figures 2–4). This is not
surprising; in fact, colors surely affect the visible light wavelength, which has the highest
energy in the electromagnetic spectrum according to Planck’s law, but at the infrared
eye, only slight differences occur. Rather, such discrepancies can be explained by a mix
of simultaneous mineral and pore effects, although differently weighted on the framed
rock surface. In fact, the mineral effect plays a preponderant role on the emissivity of
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macroscopically holocrystalline rocks, where crystals dominate the framed area. Similarly,
in the case of light beige limestone vs. dark grey calcisiltite, the carbonate nature is common
to both rocks, as well as the absence of macropores. On the contrary, the emissivity of
a rock affected by the presence of voids is strongly influenced by the pore effect, which
overcomes the eventual mineralogical differences.

These considerations further confirm the reasonability of choosing an average emis-
sivity value for IRT applications on rocks when the framing of an “averaged” rock surface
is required.

6.4. Rock Surface Manufacturing

A final discussion point is focused on the differences arising from the rock surface
condition in case of ornamental stones, such as the granites and marble tested herein
in the polished and smooth versions. Observed results show that polished varieties
are affected by lower emissivity than the corresponding smooth ones. This is due to
the different reflection power gained by polished surfaces, which act more as reflectors
(mirrors), thus are characterized by a lower emissivity [20]. Therefore, the choice of a
proper emissivity value prior to the thermal image processing is needed, especially if
quantitative considerations have to be carried out. This represents a key point considering
the growing application of IRT to cultural heritage and ornamental stones.

7. Conclusions

In this paper, the experimental estimation of rock emissivity was carried out to provide
new scientific data on the use of infrared thermography (IRT) for engineering geological
purposes. The development of new survey remote methodologies has opened the way
to the application of IRT in laboratory and field activities involving rocks, through both
qualitative and quantitative approaches. In the second case, the surface temperature of a
rock framed by a thermal camera can be properly estimated by knowing its characteristic
emissivity. In this paper, the emissivity was estimated herein on 27 oven-heated specimens
belonging to 15 different lithologies among sedimentary, igneous and metamorphic ones
by employing a thermal camera operating in the 7.5–13 µm spectral range. The achieved
results show that tested rocks are characterized by high emissivity values, generally greater
than 0.89, with the exception of polished rock granite surfaces, which show a slightly lower
value due to the reflection effect brought by the polishing treatment (Figure 7). Moreover,
each rock type is not characterized by a univocal emissivity value, but rather by narrow
ranges of variability arising from the heterogeneity of the rock surface. In fact, it must be
taken into account that rocks are natural aggregates of mineral affected by different textural
features playing a key role on their emissivity. The first effect observed herein is played by
pores, whose presence leads to the basic physical property known as porosity. In this case,
the key controlling element is the presence of macroscopic pores, whose IRT attitude in
oven-heated specimens is a high surface temperature at the pore location. Therefore, it is
self-evident that the emissivity of a rock surface is conditioned by pores, which contribute
to enhance its value (Figure 7). A further controlling feature is the mineralogical content,
which is particularly evident for holocrystalline rocks, where minerals are macroscopically
recognizable according to their different thermal behavior. It was experienced herein that
the IRT output of dark minerals, such as micas in granites, is represented by positive
anomalies (high temperatures) and high emissivity, while lighter minerals, such as quartz,
are affected by lower temperature and emissivity (Figure 7). Therefore, both pore and
mineral effects play a controlling role on the rock emissivity, although with different
weights depending upon the rock type (the emissivity of holocrystalline rocks with no
macroscopic pores is more affected by the mineral effect, while sedimentary porous rocks
mainly respond to the pore effect). The combination of such two effects is so relevant
that the rock color, at the hand scale specimen, seems not to produce relevant emissivity
variations. Based on such considerations and for IRT applications requiring a general
framing of the rock surface, it is reasonable to overcome these effects by considering an
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average emissivity value for each rock type. Nevertheless, cases of same rock types but
with different porosity must be distinguished (e.g., massive and vesicular basalts).
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