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Abstract: Recently, we have reported a series of isatin hydrazone, two of them, namely, 3-((2,6-
dichlorobenzylidene)hydrazono)indolin-2-one (1) and 3-((2-chloro-6-fluorobenzylidene)hydrazono)
indolin-2-one (2) having potent cytotoxicity, showing cyclin-dependent kinases (CDK2) inhibitory
activity and bearing recommended drug likeness properties. Since both compounds (1 and 2) showed
inhibitory activity against CDK2, we assumed it would also have multiple receptor tyrosine kinases
(RTKs) inhibitory activity. Considering those points, here, above-mentioned two isatin hydrazone 1
and 2 were synthesized using previously reported method for further investigation of their potency
on RTKs (EGFR, VEGFR-2 and FLT-3) inhibitory activity. As expected, Compound 1 exhibited
excellent inhibitory activity against epidermal growth factor receptor (EGFR, IC50 = 0.269 µM),
vascular epidermal growth factor receptor 2 (VEGFR-2, IC50 = 0.232 µM) and FMS-like tyrosine
kinase-3 (FLT-3, IC50 = 1.535 µM) tyrosine kinases. On the other hand, Compound 2 also exhibited
excellent inhibitory activity against EGFR (IC50 = 0.369 µM), VEGFR-2 (IC50 = 0.266 µM) and FLT-3
(IC50 = 0.546 µM) tyrosine kinases. A molecular docking study with EGFR, VEGFR-2 and FLT-3
kinase suggested that both compounds act as type I ATP competitive inhibitors against EGFR and
VEGFR-2, and type II ATP non-competitive inhibitors against FLT-3.

Keywords: isatin-hydrazones; EGFR inhibitor; VEGFR-2 inhibitor; FLT-3 inhibitor

1. Introduction

Cancer is not only a complex disease but it also life threatening [1]. Therefore, develop-
ment of an excellent anticancer agents are very much essential, especially ones with potent
biological activities, enzyme inhibitory activities and low/no toxicity [2–5] (Figure 1). Re-
garding enzyme inhibitory activities: (i) cyclin-dependent kinases (CDKs) are considered as
a vital feature, inciting various key transitions in the cell cycle for cancer cells, in addition to
instructing apoptosis, transcription and exocytosis; (ii) the epidermal growth factor receptor
(EGFR) [6] kinase enzyme promote overexpression, and overexpression of certain proteins
may play a role in various cancer development [7–15]; (iii) the vascular endothelial growth
factor receptor 2 (VEGFR-2) [16,17] is highly expressed in tumor-associated endothelial
cells, where it modulates tumor-promoting angiogenesis, and it is also found on the surface
of tumor cells [18]; (iv) FMS-like tyrosine kinase-3 (FLT-3) is a protein found in humans
and is encoded by the FLT-3 gene [19–21]. Mutations of the FLT-3 receptor can lead to the
development of leukemia, a cancer of bone marrow hematopoietic progenitors [22–25]. The
development of a cancer may be delayed or cured by inhibition of those kinase enzymes.
Recently, a number of researches have been focusing on how to block EGFR kinase enzyme
activity, applying synthetic organic molecules [26] such as imatinib [27], which is used in
treating gastrointestinal stromal tumors (GISTs), chronic myelogenous leukemia (CML) and
malignancies. Erlotinib [28], is used in the treatment of pancreatic cancer, non-small cell

Appl. Sci. 2021, 11, 3746. https://doi.org/10.3390/app11093746 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-5807-5625
https://doi.org/10.3390/app11093746
https://doi.org/10.3390/app11093746
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11093746
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11093746?type=check_update&version=2


Appl. Sci. 2021, 11, 3746 2 of 12

lung cancer (NSCLC) and several other types of cancer, but the mechanism of clinical anti-
tumor action of erlotinib is not fully characterized. Neratinib [29–31], is exhibits antitumor
action against EGFR, HER2, and HER4 positive carcinomas and used as an extended adju-
vant treatment in adult patients with early stage HER2-overexpressed/amplified breast
cancer, to follow adjuvant trastuzumab-based therapy. Sorafenib [32], is indicated for the
treatment of unrespectable hepatocellular carcinoma and advanced renal cell carcinoma.
Crizotinib [33–35], is used for the treatment of locally advanced or metastatic NSCLC
that is anaplastic-lymphoma kinase (ALK)-positive as detected by a FDA-approved test.
Further, many others [36–41] inhibit VEGFR-2 kinase [42–51] and FLT-3 kinase enzyme ac-
tivities [25,52–57]. However, most of them reported adverse reactions, which were edema,
nausea, vomiting, muscle cramps, rash, diarrhea, fatigue and abdominal pain, etc. In our
previous report [5], we have highlighted CDK2 kinase inhibitors (1 and 2), which act as
potential type-II ATP competitive inhibitor, have two-fold cytotoxicity for Compound 1
(IC50 = 1.51 µM) and have similar cytotoxicity for Compound 2 (IC50 = 3.56 µM) comparing
with known anticancer drug doxorubicin (IC50 = 3.1 µM) against human breast adeno-
carcinoma (MCF7) with recommended drug likeness properties. Those reported results
for Compounds 1 and 2 motivated us to do further inhibitory activities against EGFR,
VEGFR-2 and FLT-3 protein kinase enzymes with their docking simulations in order to
explore the behavior of 1 and 2 within the active site of EGFR, VEGFR-2 and FLT-3 to justify
its binding mechanism.
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Figure 1. Structure of isatin, some RTKs inhibitors, and Compounds 1 and 2 having isatin skeleton.

2. Materials and Methods
2.1. General

Solvents and chemicals were reagent grade (Sigma-Aldrich, St. Louis, MO, USA) and
were used without further purification. Electrothermal IA9100 (Stone, Stafforshire, ST15
OSA, UK) equipment were used to measure the melting points of synthesized product.
IR spectra were taken on a Perkin Elmer FT-IR Spectrum BX device (Ayer Rajah Crescent,
Singapore). The 600 MHz Bruker NMR spectrometer (Reinstetten, Germany) was used for
taking NMR (1H & 13C) spectra. An Agilent 6410 QQQ mass spectrometer was used to
take mass of the synthesized compounds (Agilent Technologies, Palo Alto, CA, USA).
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2.2. General Procedure for the Synthesis of Isatin-Hydrazones

A mixture of 3-hydrazineylideneindolin-2-one (5 mmol) and 2,6-dichlorobenzyldehyde/2-
chloro-6-fluorobenzaldehyde (5 mmol) in absolute ethanol (15 mL), and a few drops of
glacial acetic acid were added. The reaction mixture was refluxed for 4 h. The com-
pletion of the reaction was monitored by TLC. The precipitate solid was filtered, washed
with cold ethanol, air dried, and further recrystallized from ethanol to give
pure 3-((2,6-dichlorobenzylidene)hydrazono)indolin-2-one (1)/3-((2-chloro-6-fluoro-
benzylidene)hydrazono)indolin-2-one (2). 1: Orange powder (98%). m.p. = 286–287 ◦C
(m.p. = 286–287 ◦C [5]); 2: Reddish brown solid (75%). m.p. = 277–778 ◦C (m.p. = 277–778 ◦C [5]).

2.3. Calculation of the IC50 Values

Calculation of the IC50 values of EGFR, VEGFR-2 and FLT-3 inhibitory assays was
performed using linear equation (y = mx + c) for log concentration vs. percentage of
inhibition, and detailed results were inserted in the supporting material.

2.4. In Vitro EGFR/VEGFR-2 Inhibitory Activity

The EGFR/VEGFR-2 assay kit was designed to measure EGFR/VEGFR-2 inhibitory
activity for screening and profiling applications, using Kinase-Glo® MAX as a detection
reagent. The EGFR/VEGFR-2 assay kit comes in a convenient 96-well format, with enough
purified recombinant EGFR/VEGFR-2 enzyme, EGFR/VEGFR-2 substrate, ATP and kinase
buffer 1 for 100 enzyme reactions. The assay was performed according to the protocol
supplied from the EGFR/VEGFR-2 kinase assay kit #40321 (BPS Bioscience, San Diego,
CA, USA) and #40325 (BPS Bioscience, San Diego, CA, USA), respectively [58,59]. The
EGFR/VEGFR-2 activity at a single dose concentration of 10 µM was performed, where
the Kinase-Glo MAX luminescence kinase assay kit (Promega#V6071) was used. The
compounds were diluted in 10% DMSO and 5 µL of the dilution was added to a 50 µL
reaction so that the final concentration of DMSO was 1% in all of the reactions. All of
the enzymatic reactions were conducted at 30 ◦C for 40 min. The 50 µL reaction mixture
contained 40 mM Tris, pH 7.4, 10 mM MgCl2, 0.1 mg/mL BSA, 1 mM DTT, 10 mM ATP,
kinase substrate and the enzyme EGFR/VEGFR-2. After the enzymatic reaction, 50 µL of
Kinase-Glo® MAX luminescence kinase assay solution was added to each reaction and the
plates were incubated for 5 min at room temperature. Luminescence signal was measured
using a Bio Tek Synergy 2 microplate reader (For details, please see Table S1, raw data of
enzyme assay for Compounds 1 and 2 is given in the Supplementary Materials file).

2.5. In Vitro FLT-3 Inhibitory Activity

The FLT-3 assay kit (FLT-3 kinase assay, Promega Corporation, Madison, WI, USA)
was designed to measure FLT-3 activity for screening and profiling applications, using
ADP-GloTM as a detection reagent. The FLT-3 kinase-glo assays were carried out in 96-well
plates at 30 ◦C for 4 h and tested compound in a final volume of 50 µL [55,60]. Enzyme,
substrate, ATP and Compounds 1 and 2 were diluted in tyrosine kinase buffer. A total
1 µL of Compounds 1 or 2 in 5% DMSO, 2 µL of enzyme (defined from Table 1), 2 µL of
substrate/ATP mixture was added to the wells of 96 low volume plate and incubated at
room temperature for 120 min (For details, please see Table S1. raw data of enzyme assay
for Compounds 1 and 2 is given in the Supplementary Materials file).

2.6. In-Silico Binding Mechanism

Molecular docking was carried out using the Protein Data Bank (PDB) structures
corresponding to the EGFR, VEGFR-2 and FLT-3 protein kinases and were downloaded
from the RCSB PDB database (https://www.rcsb.org/, accessed on 5 December 2020) in
PDB format. The PDB IDs used for EGFR, VEGFR-2 and FLT-3 protein kinases were 6DUK,
3VHE and 6JQR, respectively. Protein and compounds structures were energy minimized,
refined and prepared for docking study by Schrödinger Maestro (Version 2018-4). OLPS3
force field and extra precision (XP) docking protocol was selected to generate induced fit

https://www.rcsb.org/
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docking scores which was explained in the established procedure [5,61–66]. Van der Waals
scaling factor and partial charges cutoff were selected to be 0.85 and 0.15 respectively for
ligand molecules. The docking cutoff value was fixed at−10.00 kcal/mole for the screening
of best poses of the docked compounds for subsequent processing.

Table 1. Inhibitory activities of Compounds 1 and 2 against MCF7 cell lines, CDK2, EGFR, VEGFR-2
and FLT-3 protein kinase.

Entry IC50 (µM) Kinase IC50 (µM) a

MCF7 [5] CDK2 [5] EGFR VEGFR-2 FLT-3

1 1.51 ± 0.09 0.246 ± 0.05 0.269 ± 0.08 0.232 ± 0.01 1.535 ± 0.03

2 3.56 ± 0.31 0.301 ± 0.02 0.369 ± 0.32 0.266 ± 0.04 0.546 ± 0.28

Control b–f 3.10 ± 0.29 b 0.131 ± 0.24 c 0.056 ± 0.02 d 0.091 ± 0.03 e 0.262 ± 0.01 f

a The values are the mean ± SD of triplicate measurements; b Doxorubicin; c Imatinib; d Erlotinib; e Sorafenib;
f Sunitinib.

3. Results
3.1. Synthesis of 1 and 2

3-((2,6-Dichlorobenzylidene)hydrazono)indolin-2-one (1) and 3-((2-chloro-6-fluoroben-
zylidene)hydrazono)indolin-2-one (2) were synthesized using previously reported method [5]
in excellent yields.

3.2. EGFR, VEGFR-2 and FLT-3 Protein Kinase Inhibitory Activities of 1 and 2

Inhibitory activity results of Compounds 1 and 2 against EGFR, VEGFR-2 and FLT-3
protein kinases are summarized in Table 1.

As summarized in Table 1, 1 and 2 exhibited excellent inhibitory activity against EGFR,
VEGFR-2 and FLT-3 comparing control drugs.

3.3. Overall Structural Arrangement of the Kinase Domain of EGFR, VEGFR-2 and FLT-3
Protein Kinases

Similar to the universal kinase domain conformations of numerous protein kinases,
EGFR, VEGFR-2 and FLT-3 also exhibit a common kinase domain conformation
(Figure 2) [67–69]. The main domain organization involves an N-terminal lobe which
contains the nucleotide binding loop with its core anti-parallel β-sheets and a C-terminal
lobe which comprises the activation loop and catalytic loop. The N- and C-terminal lobes
are connected by a short linker. To find the conserved regions in the kinase domain of the
three kinases, multiple sequence alignment was done which showed 6 highly clustered
conserved residues (Figure 3).

3.4. In-Silico Binding Mechanism Analysis

Molecular docking analysis of Compound 1 with EGFR kinase domain showed several
important interactions with ATP binding site residues as well as DFG motif residues, which
is important for inhibition of EGFR kinase. Interactions involved hydrogen bonding
interaction with ATP binding site and DFG motif residue Phe856 and π-anion interaction
with Asp855 (Figure 4A,B). Binding analysis of Compound 2 with kinase domain of
EGFR kinase revealed that, it formed hydrogen bond with Phe856, π-anion interaction
with Asp855, π-sulfur interaction with Met790, π-alkyl interactions with Met766, Leu777,
Leu747 and Leu858 (Figure 4C,D). Among them, Asp855 and Phe856 involved in the ATP
binding site and DFG motif.

Docking analysis of Compound 1 with VEGFR-2 kinase domain revealed 2 hydrogen
bond interactions with Cys919 and Glu917, π-π T shaped interactions with Leu840, Val848,
Ala866, Lys868, Val899, Val916, Leu1035, Cys1045 and Phe1047 as well as van dar Walls
interaction with Phe918 (Figure 5A,B). Compound 2 similarly made 2 hydrogen bond
interactions with the gate keeper residue Cys919 and π-π T shaped interaction with DFG
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motif residue Phe1047. Additionally, it formed several π-alkyl interactions as Compound 1
with the similar residues except Lys868 (Figure 5C,D).

Binding mechanism of Compound 1 with FLT-3 kinase domain involved hydrogen
bond interaction with Cys694, π-π stacked binding with Tyr693, several π-alkyl interactions
with Leu616, Val624, Ala642, Lys644, Val675 and Leu818. One π-sulfur interaction was
observed with Cys828 (Figure 6A,B).
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4. Discussion

The structures of the synthesized Compounds 1 and 2 were confirmed using IR,
NMR (1H and 13C), mass spectral data and physical properties, and compared with those
reported values [5].

As reported [5], 2,6-dichloro Compound 1 exhibited excellent cytotoxicity
(IC50 = 1.51 ± 0.09 µM (Table 1, entry 1) against human breast adenocarcinoma (MCF7) cell
lines, which is two-fold more than the control anticancer drug doxorubicin
(IC50 = 3.10 ± 0.29 µM) (Table 1, entry doxorubicin) and 2-chloro,6-fluoro substituted
Compound 2 exhibited similar cytotoxicity (IC50 = 3.56 ± 0.31 µM) comparing to doxoru-
bicin. In addition, both compounds were exhibited good inhibitory activity against CDK2,
IC50 = 0.246 ± 0.05 µM and 0.301 ± 0.02 µM, respectively, which is half fold comparing to
the known kinase inhibitor imatinib (IC50 = 0.131 ± 0.24 µM). As we know, isatin moiety
containing compounds shows multiple protein kinase enzymes inhibitory activity and
numbers of drugs are already in the market (Figure 1). On the other hand, both of our
synthesized compounds (1 and 2) having isatin moiety in the structures. In addition,
considering their excellent cytotoxicity as well as CDK2 inhibitory activity, we, therefore,
assume that, Compounds 1 and 2 might show multiple protein kinase enzymes inhibitory
activity, this led us to do further multiple protein kinase enzymes (EGFR, VEGFR-2 and
FLT-3) inhibitory assay.

The IC50 values interpolated from dose–response data with five different concentra-
tions were 0, 0.01, 0.1, 1 and 10 µM for all the protein kinase enzymes, EGFR, VEGFR-
2 and FLT-3, respectively. Highest IC50 value was observed for Compound 1, which
showed IC50 = 1.51 ± 0.09 µM and it was twofold than the IC50 values of doxorubicin
(3.10 ± 0.29 µM). Compound 1 also showed strong enzyme inhibitory activities against
two protein kinases enzymes EGFR and VEGFR-2 with IC50 values of 0.269 (Figure S1)
and 0.232 µM, respectively, whereas CDK2 reported [5] value showed 0.246 µM. The con-
trol drug imatinib showed 0.131 µM, erlotinib showed 0.056 µM and sorafenib showed
0.091 µM, against CDK2, EGFR, VEGFR-2 enzymes, respectively. On the other hand, Com-
pound 2 also showed promising cytotoxicity and protein kinase inhibitory activities against
all the three proteins kinase evaluated. IC50 value of Compound 2 was 3.56 ± 0.31 µM,
which is similar to doxorubicin IC50 value 3.10 ± 0.29 µM [5], meanwhile its enzyme in-
hibitory activities against CDK2, EGFR, VEGFR-2 enzymes were 0.301, 0.369 and 0.266 µM,
respectively. In case of FLT-3, Compound 1 showed 1.535 µM against FLT-3, interestingly
Compound 2 showed better activity than Compound 1, which was 0.546 µM against first
FLT-3 inhibitor sunitinib (sunitinib was 0.262 µM), which prolonged haemotoxicity and
hand-foot syndrome caused by FLT-3 mutated acute myeloid leukaemia (AML) [70].

In our previous study [5] we have reported that, Compounds 1 and 2 inhibited CDK2
kinase in an ATP dependent manner and acted as type II inhibitor by lacking DFG motif
interaction in the activation loop. Interaction with DFG motif residues is crucial for an
inhibitor to define as active or inactive state kinase inhibition. Similarly, in this experiment,
the interaction of Compounds 1 and 2 with EGFR, VEGFR-2 and FLT-3 protein kinases was
evaluated by molecular docking analysis.

Since Compound 1 with EGFR kinase domain showed several important interactions
and involved hydrogen bonding interactions with ATP binding site and DFG motif residue,
thus, it can be said that, Compound 1 might act on active kinase by interacting with DFG
motif residues. It also formed several π-π stacked and π-π T shaped interactions with
Met766, Met790, Phe723, Leu747, Leu777, Leu788, Ile759, Leu858 and Leu861. Compound
2 with kinase domain of EGFR kinase formed hydrogen bond. Among the hydrogen bonds,
Asp855 and Phe856 involved in the ATP binding site and DFG motif, thus, Compound 2 can
act as type I inhibitor by active against EGFR kinase. The interactions of both compounds
(1 and 2) with EGFR kinase showed ATP competitive inhibition and thus support previous
experiments [71,72]. Compound 1 with VEGFR-2 kinase domain revealed two hydrogen
bond interactions with Cys919 and Glu917, π-π T shaped interactions with many residues,
as well as van dar Walls interaction, therefore, it was clear from the analysis that, Compound
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1 can interact with the DFG motif residue Phe1047 of the ATP binding site Cys919 of the
hinge region which also act as a gate keeper residue. Compound 2 similarly made two
hydrogen bond interactions with the gate keeper residue, and additionally, it formed
several π-alkyl interactions as Compound 1 with the similar residues except Lys868. The
interactions of Compounds 1 and 2 with the kinase domain is consistent with the previous
docking results which showed similar interaction of the synthesized compounds [73,74].
Therefore, the docking result of Compounds 1 and 2 with the kinase domain of VEGFR-
2 showed similar fashion of interactions involving both DFG motif and hinge region
(which comprise the ATP binding site) interaction could possibly make them type I ATP
competitive inhibitor (DFG motif interaction implies active state of kinase) against VEGFR-
2 kinase. The interactions of Compound 1 and Flt-3 kinase domain involve hydrogen
bond. Previously published co-crystal structure of FLT-3 with Quizartinib showed that,
interactions with Phe830 in the DFG motif and Phe691 in the hinge region would be crucial
for inhibition of the active kinase [75]. However, Compound 1 lacked these interactions.
The interactions between Compound 2 and Flt-3 kinase domain lack active state kinase
residues. However, it showed several hydrogen and ionic bond interactions similar to
Compound 1 except Glu692. It lacked interaction with Tyr693 compared to Compound 1.
Finally, from the docking result of Compounds 1 and 2 with FLT-3 kinase domain it can be
concluded that both compounds lacked active state kinase domain interactions and lacked
interactions with hinge region of the ATP binding site and can be considered as type II
inhibitor in case of FLT-3 kinase but not as ATP competitive inhibitor.

5. Conclusions

In conclusion, isatin hydrazones 1 and 2 exhibited excellent inhibitory activity against
EGFR, VEGFR-2 and FLT-3 protein kinases. Binding mechanism analysis by molecular
docking study of 1 and 2 revealed that, both compounds acted as type I ATP competitive
inhibitor against EGFR and VEGFR-2 kinase by interacting with DFG motif and hinge
region of ATP binding site. However, they lacked important interactions with ATP binding
site residues of FLT-3 kinase thus might act as type II ATP non-competitive inhibitor.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
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Compounds 1 and 2.
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