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Abstract: The growing competitiveness in the automotive industry and the strict standards to which
it is subject, require high quality standards. For this, quality tools such as the failure mode and effects
analysis (FMEA) are applied to quantify the risk of potential failure modes. However, for qualitative
defects with subjectivity and associated uncertainty, and the lack of specialized technicians, it revealed
the inefficiency of the visual inspection process, as well as the limitations of the FMEA that is applied
to it. The fuzzy set theory allows dealing with the uncertainty and subjectivity of linguistic terms and,
together with the expert systems, allows modeling of the knowledge involved in tasks that require
human expertise. In response to the limitations of FMEA, a fuzzy FMEA system was proposed.
Integrated in the design, measure, analyze, improve and control (DMAIC) cycle, the proposed system
allows the representation of expert knowledge and improves the analysis of subjective failures, hardly
detected by visual inspection, compared to FMEA. The fuzzy FMEA system was tested in a real case
study at an industrial manufacturing unit. The identified potential failure modes were analyzed and
a fuzzy risk priority number (RPN) resulted, which was compared with the classic RPN. The main
results revealed several differences between both. The main differences between fuzzy FMEA and
classical FMEA come from the non-linear relationship between the variables and in the attribution of
an RPN classification that assigns linguistic terms to the results, thus allowing a strengthening of the
decision-making regarding the mitigation actions of the most “important” failure modes.

Keywords: FMEA; DMAIC; potential failure; fuzzy FMEA; automotive industry

1. Introduction

In recent years, automotive manufacturing companies have faced an increasingly
competitive environment. The increase in the number of competitors in the market forces
companies to constantly improve their processes and forces them to adopt innovative
strategies for expanding their product range and offer more and more personalized prod-
ucts [1]. Coupled with the increase in the level of demand from customers, quality is
particularly relevant. The automotive industry is subject to a high level of requirements
regarding prices, safety, respect for environmental standards, and, significantly, brand
image. In this respect, quality constitutes an important lever for competitiveness, since
it has a real impact on production costs and has a high contribution to better meeting
customer expectations [2]. This is a factor of great impact on differentiation, proving to be
increasingly valued. It is, therefore, necessary for operational tasks and decisions to take
into account the expectations and needs of customers and, as well as trying to exceed them,
to satisfy the requirements in their entirety [3].

In the automotive industry, which represents an environment where product errors
and failures can be fatal, quality and reliability are paramount. It is essential to reduce
these risks both at the product development level and at the operational level, only in this
way will the good performance of the final product be guaranteed and problems that can
lead to unnecessary non-compliance costs, as well as waste, are avoided [4].
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Risk management is a fundamental part of the organizations’ strategy, in which they
address the risks associated with the processes in order to achieve sustainable benefits
within the activities they incorporate. The main objective of risk management is to add
maximum sustainable value to all of its activities, by increasing the likelihood of their
success and reducing the likelihood of failures and uncertainties in relation to the fulfillment
or not of the objectives. One of the main tools used for this purpose, in risk management,
is the FMEA [5].

FMEA is a methodology used to identify and analyze the potential failure modes of a
product or process [6,7]. It is a risk management methodology widely used in situations in
which the simple quantification of risk is insufficient and the identification of root causes
as well as means of mitigation is essential. It is an essential preventive technique, which
aims to align risks as much as possible with their source. It is an engineering methodology
that performs a bottom-up analysis, that is, from the bottom upwards [8]. This allows the
determination of the root cause of the risk and allows the selection of means to detect the
occurrence of a specific failure and/or find options to avoid it, or to mitigate its effects. It
can be used as a stand-alone tool or as part of a general quality management system [9].

The fuzzy set theory, proposed by Zadeh in 1965, provides a flexible and meaningful
way to assess the risk associated with component failure modes. Classical FMEA requires
a thorough knowledge of the subject under study. It is necessary to deal with associated
ambiguous information, in a consistent and logical manner [10]. It is often difficult to
accurately assess the indicators, probability of the event occurring (P), severity (S), and
detection (D). In FMEA, these parameters require clear numerical assignments, causing
many possible values to be ignored. On the other hand, conventional FMEA does not
have enough flexibility to reflect the opinion of experts [11]. Human beings are better
at evaluating processes using linguistic expressions than using clear numerical scores,
hence the use of fuzzy logic, in which the RPN is calculated using linguistic terms. It
provides mathematical tools to convert linguistic variables into numeric values. Thus, the
assessment of criticality based on fuzzy logic allows assessment of the risk associated with
failure modes in a natural and easy way [12–14].

This study aims to contribute to a deeper understanding of fuzzy logic as an asset in
the modeling of fuzzy inference systems that seek to model risk management, concretely
associated with the failure modes detected by visual inspection. In this study, the limitations
of FMEA for the failures identified by visual inspection are addressed, resorting to the
implementation of a fuzzy inference system (FIS) with the parameters collected from the
FMEA analysis. With the use of this tool, it will be possible to create mathematical models
that contemplate problems that present a great degree of uncertainty and that do not
disregard aspects that are sometimes ignored in the application of traditional logic. For
this purpose, it is intended to have the contribution of specialists in the area of quality, to
assist in the interpretation of data, and in the definition of some parameters to estimate the
risk associated with each failure mode. To structure the proposed approach, fuzzy FMEA
will be integrated into the define, measure, analyze, improve, and control (DMAIC) cycle—
specifically in the analyze phase. In view of the constant concern of the automotive industry
for the continuous improvement of its processes, the integration of DMAIC contributes so
that this approach does not neglect the Six Sigma philosophy, so valued for improving the
reliability of products.

This paper is organized as follows. In Section 2 the state of the art of fuzzy FMEA is
addressed. The fuzzy FMEA system and how it is shaped can be found in Section 3. In
Section 4, the case study and application of the DMAIC cycle is given. Finally, conclusions
are given in Section 5.

2. Fuzzy FMEA

Although the present work falls within the scope of visual inspections in the auto-
motive industry, the use of fuzzy FMEA is present in the most varied sectors of activity.
The fuzzy FMEA, an improvement over classical FMEA, is a general method that can be
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employed to fuzzify the risk indexed parameters S, O, and D with suitable membership
functions. Several studies proposed the implementation of an FIS to improve the efficiency
of FMEA and to overcome its limitations [12–17]. In most applications, the results achieved
revealed the advantages of this methodology to deal with the risk associated with failure
modes. In particular, they proved beneficial for the problems indicated in [10,18].

As a way to prioritize the problems associated with healthcare, in [18] was imple-
mented a fuzzy FMEA inference system. He applied FMEA with linguistic variables and
fuzzy inference rules, “IF-THEN”. Inputs S and O were defined according to five linguis-
tic terms and exclusively trapezoidal membership functions. Input D and output RPN
were defined by six linguistic terms and trapezoidal and triangular functions. Taking into
account the vast modes of failure that can occur in health care institutions, their prioriti-
zation is of great importance. FMEA is efficient for this purpose, allowing identification
of the causes and effects of potential failures. However, the implemented fuzzy FMEA
analysis proved to be a more flexible alternative of assessment, providing the capture of
the uncertainty associated with the variables.

In [19] addresses an extended FMEA approach by employing fuzzy best–worst method
and multi-objective optimization by ratio analysis based on the Z-number theory (Z-
MOORA) method. These methods in the proposed approach are utilized to surmount
several traditional RPN shortcomings. This approach was applied in the automotive
spare parts industry, and the results have shown a full prioritization of the failures when
compared with other traditional methods. While in [10] applied the fuzzy FMEA inference
system to the hydraulic system of a paper mill. Specifically, the system was applied to
the supply structure due to the high levels of saturation and the increase in the number
of maintenance interventions, as a result of constant breakdowns. The FIS was applied to
prioritize the causes associated with malfunctions. Causes that previously were not of high
importance, showed, through the fuzzy FMEA analysis, to be critical to the problem. Thus,
thanks to the contribution of fuzzy logic, it was possible to improve the understanding of
the dynamics of complex problems, characterized by inaccurate and subjective information.

Fuzzy FMEA has been applied to many distinct industries and for different applica-
tions. A risk-based fuzzy evidential approach is proposed in [20] by employing interval-
valued Dempster–Shafer theory and fuzzy axiomatic design in order to assess the risk
of failure modes with fuzzy belief structures. The efficiency of the proposed model was
researched through an example and the results were compared with riskless evaluations.
An FMEA risk management approach is proposed in [16] through fuzzy rule based inter-
face system with the intention of mitigating the failures of a load, haul, dump machine
(LHD). The risk assessment in a green supply chain using the fuzzy approach to FMEA
was addressed in [21] and was applied in an Indian plastic industrial unit. In other areas of
application in knowledge management failure factors were evaluated in [22] through an
intuitionistic fuzzy environment as a case study in an Iranian oil and gas company. The
results of this study have shown that the lack of leadership and management commitment
was the most significant factor that affected the failure of knowledge management in the
company. In [11] a fuzzy numerical method for FMEA was proposed that addresses the
drawbacks of crisp FMEA and fuzzy rule based FMEA approaches. In this study, a distinct
methodology was developed that integrates the concepts of similarity value measure of
fuzzy numbers and possibility theory.

What all these studies have shown, is that causes that previously were not of extraor-
dinary importance, by employing fuzzy FMEA analysis, were found to be critical. Thus,
due to the contribution of fuzzy logic, it was possible to improve the understanding of the
dynamics of complex problems, characterized by inaccurate and subjective information.
That said, this approach has not only solved FMEA’s limitations to a problem but has also
made it possible to accurately analyze risk.
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3. Proposed Method

The developed fuzzy FMEA system follows a basic architecture of the fuzzy FMEA
inference system consists of three main modules: input interface module (fuzzification),
knowledge base module (rules base), and output interface model (defuzzification), as
shown in Figure 1, adapted from [10].
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Figure 1. Fuzzy inference system (adapted from [10]).

As it can be observed in Figure 1, the input variables correspond to the parameters S, P,
and D that are used in FMEA [23], whereas the output variable corresponds to the RPN. S,
P, and D are fuzzified using membership functions to determine the degree of membership
in each input class. The resulting fuzzy inputs are evaluated on the FIS, which uses a
well-defined rule base. These rules are of the “IF-THEN” type and together with fuzzy
logic operations are used to determine the level of risk of failure. The fuzzy conclusion is
then defuzzified to obtain the RPN (output). The higher the value of the RPN, the greater
the risk and vice versa.

In the proposed methodology the fuzzy FMEA system is implemented in the DMAIC
cycle. Figure 2 summarizes the main aspects of the methodology.
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DMAIC methodology is employed for problem solving, being used in Six Sigma
projects to improve the quality of manufacturing processes. The objective is to identify
and solve the different root causes that cause defects through stages already defined. The
name DMAIC comes from the initials of each stage, define, measure, analyze, improve, and
control, and that each phase is essential for the Six Sigma project to be a success [24–26]. In
order to correct a specific quality problem, DMAIC cycle was applied in this study.

In the next section we explain the application of the proposed fuzzy FMEA system
according to each DMAIC stage.

3.1. Define

The purpose of this step is to know the business of the project, the current state, define
the production process, and identify the types of defects in the automotive industry. Thus,
the target is chosen, i.e., the assembly line, the product to perform the analysis, as well
as the failure modes of this product that need to be investigated. This identification is
done using the analysis of historical data and based on interviews and discussions with
the engineers responsible for the management of the respective processes. At the end of
this step, it is possible to identify the line chosen for analysis, the product, and the failure
modes determined. Thus, once these principles are established, the second stage of the
cycle, measure, follows.

3.2. Measure

The measure step is of particular importance since it represents the project’s reference
point. At this stage, data is collected to accurately mirror the current state of the system.
By defining metrics, it is possible to measure progress and set goals. For this system is
suggested the quantification of the number of failures that occurred in the defined period
for each failure mode considered.

3.3. Analyze

The analyze stage is carried out in order to examine the current state of the system.
In this phase, an FMEA table is analyzed and the causes of the failure modes are iden-
tified [23]. Subsequently, as a way to obtain an expert view of the risk of failure modes,
compared to what is possible to obtain with the traditional FMEA, the fuzzy FMEA system
is implemented. The system was developed in four stages:

1. Fuzzification of inputs (S, P, and D) and output (RPN).
2. Fuzzy rules definition.
3. Fuzzified inputs and rule consequence combination—fuzzy inference process.
4. Defuzzification of the output.

3.3.1. Fuzzification of Inputs and Outputs

In the fuzzification process, the variables S, P, and D were converted into linguistic
terms and membership functions [27]. Various experts with varying degrees of competence
are used to build the membership functions [10]. In this case, S, P, and D were firstly
converted to linguistic terms, based on [23] FMEA’s scales. In FMEA, S, O, and D are
assigned in values from 1 to 10. RPN is computed by the equation:

RPN = S × O × D (1)

According to the mathematical expression (1), the minimum and maximum value that
can be computed for RPN is 1 and 1000, respectively. Since the input for the fuzzy FMEA
is based on traditional FMEA data, we adopted the same values to define the universe of
discourse for each variable. Hence, it was considered a universe of discourse of values
from 1 to 10 for S, O and D; and from 1 to 1000 for RPN.
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Then, membership functions were designed according to the weight of each FMEA
classification. Tables 1–4 present the linguistic variables and membership functions of S, P,
D, and RPN, respectively.

Table 1. Linguistic variables and membership functions for severity (S).

Input None Low Average High Dangerous

Severity (S) [0, 2, 3] [2, 3, 4, 5] [4, 5, 6.5, 7.5] [6, 7.5, 9] [7.5, 9, 10]

Table 2. Linguistic variables and membership functions for Probability of the event occurring (P).

Input Nearly Impossible Low Average High Almost Certain

Probability (O) [0, 1.5, 2.5] [1.5, 3, 4.5] [3.5, 4.5, 5.5, 6.5] [5.5, 7, 8.5] [7.5, 8.5, 10]

Table 3. Linguistic variables and membership functions for Detection (D).

Input Almost Certain High Average Low Nearly Impossible

Detection (D) [0, 1.5, 2.5] [1.5, 3, 4.5] [3, 4.5, 6] [4.5, 5.5, 7, 8] [7, 8, 10]

Table 4. Linguistic variables and membership functions for RPN.

Input No Importance Very Few
Importance

Few
Importance

Average
Importance Important Very Important

RPN [0, 100, 200] [150, 250, 400] [300, 450, 600] [400, 550, 700] [600, 750, 900] [800, 900, 1000]

The criterion for the definition of the functions of variable S came from the little
importance that the lowest values of S have for the process, and this was the reason why
trapezoidal functions with large belonging intervals were used. For values above the
average, we tried to refine the criterion by using a triangular function for the term “High”.
Thus, a greater variability is obtained for the terms with greater importance.

The variable O was represented with a set of symmetric functions, highlighting the
terms “Low” and “High”, in order to define them more precisely. This decision reflects the
context in which the model is applied, since it was understood that the greatest variability
should exist in the intervals that both terms represent.

The variable D deserved particular emphasis for the “High” and “Average” terms,
through the assignment of triangular functions. This is because it is in the value range that
encompasses these two functions that most of the observations are concentrated, hence it
deserves to be more clearly defined.

For the output variable two trapezoidal and four triangular membership functions
were selected. The range for the output variable is defined by the interval set [0, 1000], thus
allowing, in a more advanced phase, to compare the output obtained by the implementation
of this model (fuzzy RPN) with the one obtained by the classical FMEA (RPN).

Analogously to variable O, the output variable is represented by symmetric functions,
with greater emphasis on the intermediate terms. It is in the value range that encom-
passes the “Low Importance” and “Average Importance” terms that there is a need for
differentiation, hence the union between these two functions.

3.3.2. Fuzzy Rules

Fuzzy rules provide a natural platform for inferring information based on expert
judgment and engineering knowledge. The purpose of building the rule base (knowledge
base), is the codification of the knowledge of experts so that the proposed system is able to
reproduce the capabilities of human reasoning in solving complex systems [28]. For the
construction of a valuable model, a rule base with quality is fundamental. This is a process
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that implies time and a full understanding of the various sources of risk, activities, and
processes. As such, to understand the process as much as necessary, personal industry
experience was combined with knowledge gleaned from experts in the field, based on
interviews and informal discussions held.

To combine inputs and outputs, 125 fuzzy inference rules were obtained. In Figure 3
we present a partial view of the rules configurations in MATLAB 2017. The combination
of inputs was obtained using minimum and maximum operators for “AND” and “OR”
operators, respectively.
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3.3.3. Fuzzy Inference Process

For the fuzzy inference process, the Mamdani inference model is adequate to repre-
sent human knowledge [29,30]. There are two variants frequently used to determine the
conclusions of the rules, (min-max and prod-max). Based on the literature review carried
out, Mamdani’s min-max inference method is the one that best represents the system’s
characteristics. That said, the min operator is used for the conjunction of rules and for
implication operations [31]. The result of this assessment is a set of fuzzy conclusions
that reflect the effects of all rules whose true value is greater than zero [27]. The outputs,
represented by the fuzzy set, are aggregated using the max operator [32–34].

Finally, the aggregated output is defuzzified in order to obtain a clear classification of
the set of fuzzy conclusions, so that corrective actions can be prioritized according to the
need [35]. This process creates a ranking of fuzzy conclusions, which express the level of
risk/criticality of the failure. Defuzzification is also necessary because it resolves conflicts
between different results that may have arisen during the evaluation of the rule [27].

There are many methods of defuzzification available in the literature [36–38]. The
criteria that should be used to select the appropriate defuzzification method are disam-
biguation (result in a single value), plausibility (located approximately in the middle of the
area), and computational simplicity [35].

There is no defuzzification method that is the best for all applications, however, the
opinion of most authors is consensual, and the most employed method is the center of
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gravity (COG), due to the several advantages over other methods. The consistency, balance,
sensitivity to the length and width of the total fuzzy region, and the smooth variances in
the final expected value for the output value, are some of the characteristics [39–41]. COG
is calculated using the weighted average of the fuzzy region that defines the output and
corresponds to the point on the x-axis that divides the fuzzy region into two equal subareas,
as follows (2):

COG =
∑ µi(x)× µi

∑ µi(x)
(2)

where: xi = support value where the membership function reaches the maximum value,
and µi(x) = degree of membership of the function.

In Figure 4 we present the partial view of the fuzzy inference process for the fuzzy
FMEA. On the left, the inputs S, O, and D are represented in Portuguese by “Gravidade”,
“Ocorrência”, and “Deteção”. Based on the inputs, RPN is computed using the above
explained combination operations. The final value for RPN is obtained using COG.
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3.4. Improve

One of the purposes of this methodology is to formulate solutions to counteract
process failures. For each of the priority failure modes identified in the previous phase,
measures are generated to minimize or eliminate their causes and, thus, allow for process
improvement. Since the failure modes that will be analyzed correspond to the most
complicated, subjective, and uncertain defects to detect in the visual inspection stations,
the proposed improvement measures aim to act in two ways:

- Minimizing the root-causes—by finding solutions and intervening directly on the
causes, which are usually mentioned in the FMEA tables.

- Improving the visual inspection process—in the event that the measure applied to the
causes of the failure modes does not fulfill the intended purpose, by also acting at the
visual inspection stations, the failure is prevented from spreading along the line. This
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method consists of providing the inspection teams with sufficient capacity to identify
the most critical defects.

Improvement solutions should be chosen based on the probability of success, execu-
tion time, impact on resources, and also the associated costs.

3.5. Control

In the fifth and last phase of the cycle, after the improvements have been implemented,
they are monitored. During the experimental period of the proposed measures, it becomes
necessary to perform constant verifications of their effectiveness. For this, the metric used
in the measure phase to measure the initial state of the system should be used again each
time a possible improvement is implemented. The metric determined at the beginning
of the project is compared with the metric calculated after the implementation of the
improvement, to verify, or not, the effectiveness of the improvement. Once this step is
concluded, the DMAIC cycle is considered closed.

4. The Case Study

The study made in this paper addressed a production line from a multinational
automotive industrial unit and is part of the production process of 10 injection coils
member of the family of products and are intended for one of the largest customers of the
factory. The line currently supports a production order of approximately 12,000 injection
coils per day. It was decided to study this specific production line since it is the most
representative of the factory, with the highest volume of business for the company and,
consequently, the one that requires more concerns. Of the 10 models, only one of them was
analyzed in detail. Throughout the work, it is referred to as injection coil 1.

The selection of this model, injection coil 1, is due to the fact that it represents the
largest volume of production from this line, as well as the entire factory, with approximately
seven thousand injection coils produced daily. Since many of the production machines
in the line are shared between models, when analyzing injection coil 1, faults and defects
that are common to all will be covered. Figure 5 shows the schematic of the injection coil 1
production line.
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4.1. DMAIC Cycle
4.1.1. Define

At the define stage of the cycle, during visual inspection stations, operators follow
the typical defect detection procedure, so that defective parts do not proceed to the next
steps in the process and are properly routed to a component recovery station. All kinds
of defects are identified. Most detections correspond to defects where the analysis is
straightforward. For example, lack of bushing (or any other component), bad winding,
among others. For this type of defect, no human decision is necessary. Once the criteria are
well defined, human participation is not crucial for decision making. The defects that lack
human participation for decision-making are those with a high degree of subjectivity. Only
the most experienced operators, with greater knowledge of the defects and classification
criteria, correctly identify the defects and make the right decision as to the destination
of the part. That said, it is about the subjective defects identified in the injection coil 1
assembly lines, which this study focuses on.

The analysis carried out went through analyzing all potential failure modes. About
270 potential failure modes have been identified. Together with the line quality engineer,
these failure modes were analyzed and those with a subjective component of interest for
the proposed approach were selected. Obvious defects were excluded from the list, whose
analysis involves answering “YES/NO” to the failure mode and the defects detected by
the machine. Finally, 47 failure modes with the desired characteristics remained.

4.1.2. Measure

Subsequently, the number of occurrences of each failure mode was counted. For
accounting purposes, product failure records were analyzed for the total number of occur-
rences between January 2018 and June 2018. The data were then processed and modeled
to obtain the values of interest. The analysis was conducted for the 47 potential failure
modes and was measured in the number of occurrences detected per million inspected
parts (ppm). This was the performance indicator (KPI), used to measure the progress of
the process.

However, when measuring occurrences, it was found that for some failure modes,
no occurrences were detected in the period under analysis. As such, these were excluded
from the approach. Then, these data were cross-checked with the criteria defined in a
procedure report for the visual inspections of each station. With this crossing, other failure
modes with less interest were eliminated. Finally, also in order not to overload the analysis,
10 failure modes remained. Table 5 shows the potential final failure modes considered for
the study, as well as the visual inspection station in which they are detected.

Table 5. Number of occurrences of potential failure modes with a subjective character in the visual inspection process.

Feature Detected Flaws
(in units)

Entirety of Inspected
Pieces (in units)

Detected
Pieces in ppm

Secondary
Conical winding 3409 1,793,947 1900

Lost Thread 301 1,793,947 168
Unreadable, incomplete or double marking 1194 1,793,947 666

Primary
Unreadable 2D code 182 716,292 463

Assembly
Poorly inserted core 332 716,292 463
Damaged crossbar 180 716,292 251

Casting
High Shot 2788 1,039,030 2683

Uneven shot 948 1,039,030 912
Contamination in the epoxy 880 1,039,030 847

Bubbles in epoxy 78 1,039,030 75
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4.1.3. Analyze

In the analyze phase the proposed fuzzy FMEA system was implemented. After
developing an FMEA table with all the failure modes, effects, occurrence, and respective
indexes, the indices were fed into the fuzzy FMEA system and a fuzzy RPN index was
generated for each set. Table 6 contains the comparative study between the RPN values of
the two methodologies, classic FMEA and fuzzy FMEA. By observing Table 6, it is possible
to verify that the difference in the results of the models is not significant. However, given
the small differences, it is important to distinguish the approach of the proposed model.
One of the main limitations of the classic FMEA corresponds to the tie that occurs in the
RPN value for failure modes with different values of S, P, and D. In the classic FMEA (see
column “RPN” in Table 6) the failure modes “Lost thread (6)”, “High shot (7)” and “High
shot (8)” have a total RPN value of 72, despite differences in the risk implications of the
three failure modes. With the fuzzy FMEA analysis, the draws referred to did not happen.
On the contrary, the fuzzy RPN values are relatively dispersed from one another. The
classic FMEA proves to be insensitive in the tiebreaker criterion since events with different
parameters are given the same priority. Consequently, it can imply a waste of resources in
mitigation actions, or even cause an event with a high degree of risk to go unnoticed.

On the other hand, the classification of failure modes according to their priority has
undergone some changes, as shown in Table 7. The most critical failure modes remain the
same, however, with a different prioritization. This change in the prioritization of failure
modes, although not very significant, demonstrates FMEA’s inconsistencies in the face of
the specialists’ real desire. Therefore, classic FMEA can result in preventive and corrective
actions in failure modes with less implicit risk, contrary to the desire to act on those who
really represent a greater risk for the process.
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Table 6. Comparison between classic RPN and fuzzy RPN.

Component # Failure Mode Cause S P D RPN FMEA
Ranking Fuzzy RPN Fuzzy FMEA

Ranking
Fuzzy RPN

Classification

Cast transformer 1 Bubbles in epoxy C1, C2 & C3 9 6 4 216 1st 665 2nd Important
Secondary 2 Conical spool C1, C2 & C3 9 5 4 180 2nd 673 1st Important

Cast transformer
3 Epoxy contamination C3 7 6 4 168 3rd 591 4th Average

Importance

4 Epoxy contamination C2 7 2 8 112 4th 648 3rd Average
Importance

Primary 5 Unreadable D2 code C2 & C3 5 5 3 75 5th 450 6th Low Importance

Secondary 6 Lost thread C1,C2 & C3 9 2 4 72 6th 513 5th Average
Importance

Cast transformer

7 High shot C1 & C2 6 6 2 72 6th 382 8th Low Importance
8 High shot C4 6 4 3 72 6th 366 9th Low Importance
9 Shot uneven C2 6 5 2 60 7th 334 10th Very Low Importance

10 Shot uneven C3 6 5 2 60 7th 335 10th Very Low Importance
11 Epoxy contamination C1 6 2 4 48 8th 382 8th Low Importance

Secondary 12 Unreadable marking C1 & C2 5 3 3 45 9th 250 12th Very Low Importance
Primary 13 Unreadable D2 code C1 6 2 3 36 10th 426 7th Low Importance

Cast transformer
14 Shot uneven C2 6 2 3 36 10th 426 7th Low Importance
15 High shot C3 6 2 2 24 11th 303 11th Very Low Importance

Assembled
transformer

16 Poorly inserted core C1 & C2 3 1 3 9 12th 75.2 13th Not Important
17 Damaged crossbar C3 5 1 1 5 13th 75.2 13th Not Important
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Table 7. Prioritization obtained by classic FMEA and fuzzy FMEA.

Classification Classic FMEA Fuzzy FMEA

1st Bubbles in epoxy (1) Conical winding (2)
2nd Conical spool (2) Bubbles in epoxy (1)
3rd Epoxy contamination (3) Epoxy contamination (4)
4th Epoxy contamination (4) Epoxy contamination (3)

Figure 6 shows the fault mode rule viewer, “Conical winding (2)”. The parameters
S = 9, O = 5, and D = 4 generated a fuzzy RPN = 673, which resulted in the highest priority
being assigned to this failure mode. However, according to FMEA, the RPN value was 180,
the second most critical failure mode, as shown in Table 6. Through FMEA, the assigned
parameters represent the failure mode with S = “Critical”, O = “Low” and D = “Moderately
High”. According to the fuzzy FMEA analysis, the evaluation was not so linear.
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4.1.4. Improve

For the four failure modes identified as priority in the fuzzy FMEA analysis of the
previous step, the measures presented in Table 8 were suggested. The suggestions for
improvement are proposed for the root causes of the potential failure modes “Conical
spool (2)”, “Bubbles in epoxy (1)”, “Contaminations in epoxy (4)” and “Contaminations
in epoxy (3)”, but also for the visual inspection stations of the components to which the
failure modes correspond, “Secondary” and “Cast transformer”.
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Table 8. Improvement measures for priority failure modes.

Component Failure Mode Cause Proposed Improvement
for Root Causes

Proposed Improvement
for Visual Inspection

Secondary Conical spool

C1: Wire wound
incorrectly on the

stretcher

Winder equipped with
wire tension control sensor

Inspection station
equipped with specialized
equipment for measuring
the transformer voltage
with each batch of parts

C2: Faulty machine
configuration

Any changes to the
machine configuration

must be approved by the
coordinator or technician

in charge

Specific operator training
for overwinding detection

C3: Operator did not
change transition

program

Reformulating work
instructions with

perceptible real examples

Cast transformer

Bubbles in epoxy

C1: Too much
temperature in the
preparation drum

Machine temperature
limits well established by
the technicians in charge

Inspection station
equipped with specialized
equipment for measuring
the homogeneity of epoxy
with each batch of partsC2: Mixer malfunction

Any change in temperature
must be approved by the
coordinator or technician

in charge

C3: Material too long in
preparation vessel

Reduced time between
overhaul and maintenance

of mixing equipment

Specific operator training
for air bubble detection in

epoxy

Controlled environment
for epoxy mixing

Rewriting the work
instructions with

perceptible real-life
examples

Periodic review of epoxy
quality

Epoxy contamination

C2:
Mixer/accumulators/

injectors dirty

Cleaning the equipment
after each batch of castings

Inspection station
equipped with specialized

equipment for
quantification of the purity

of epoxy

Configuring the machines
to issue an alert if the

installed equipment does
not match the product to

be leaked

Specific operator training
for oil and metal

contamination detection

C3: Lubrication cup
leakage

Regular maintenance of the
potter configuration

Rewriting the work
instructions with

perceptible real-life
examples

4.1.5. Control

In the fifth and last phase of the DMAIC cycle, after the improvements are imple-
mented, they are monitored. During the experimental period of the proposed measures, it
is necessary to carry out constant checks on their effectiveness. For this, the metric used in
the measure phase to measure the initial state of the system must be used again each time
a possible improvement is implemented. For this case, the PPM metric determined at the
beginning of the project is compared with the one calculated after the implementation of
the possible improvement, in order to prove, or not, the effectiveness of the same. Despite
the eventual success of the proposed measures, they had not been implemented or tested
by the time this study was completed, so it was not possible to verify whether they would
actually result in process improvement.



Appl. Sci. 2021, 11, 3726 15 of 17

5. Conclusions

FMEA is a well established methodology for problem solving in Quality based on
the analysis of failure modes and the determination of risks associated with each of them.
Nevertheless, despite remaining a standard and robust method to address numerous
quality issues and risks, the shortcomings of the traditional FMEA are explored by several
authors (e.g., [12–17]). In the case of qualitative defects in visual inspection, traditional
FMEA proved inefficient and fuzzy FMEA is a way to enhance its applicability in this
setting [42]. In virtue, in this research paper was proposed a modification of the classic
FMEA using fuzzy logic, to solve the problems associated with the calculation of the classic
RPN when applied in subjective and vague contexts. It was proposed to evaluate how
the integration of a fuzzy FMEA inference system in the DMAIC cycle, could improve the
analysis made to potential failure modes with a subjective character, identified in the visual
inspection stations of the automotive industry.

In this paper, a fuzzy FMEA system and a method based on the DMAIC cycle to assess
risks in the visual inspection process of defects of automobile parts were proposed. The
fuzzy FMEA system was proposed to deal with subjectivity and uncertainty inherent to the
visual inspection process of qualitative defects. The fuzzy system permits increased detail
when determining the risk associated with each type of failure. While FMEA allows the
computing of RPN in a direct manner (multiplying S, O and D), it is not possible to match
RPN values with evaluation criteria of the traditional RPN. Through the proposed fuzzy
FMEA model, it is possible to classify the potential failure modes, with linguistic terms
of the variable RPN fuzzy. Fuzzy FMEA allows the assignation of fuzzy sets of values to
each level of S, O, and D; and, the combination of those sets is made through knowledge
rules that enhance the scale of RPN in a systematic manner. As such, the value of the fuzzy
FMEA model comes from the way that specialists are able to express their needs and obtain
a response according to what they actually have as a priority.

To deploy the fuzzy system, a method based on the DMAIC cycle was also suggested.
The method permits structuring the problem-solving process, enhancing the identification
of failures to thoroughly solving them by measuring the current process, assessing risks
through fuzzy RPN computation, improving and solving causes of failure, and controlling
the process in the future through continuous improvement. In the define and measure
steps, it was possible, in an organized way, to identify the process, the failure modes that
were relevant to the study, as well as the quantification of their occurrences according
to the metric/KPI ppm. This concept proved to be a great asset, not only in the way of
structuring the project but also in interpreting and replicating it. In the analyze phase, after
the implementation and obtaining of results by the fuzzy FMEA system, these same results
were compared for the failure modes under study, namely the classic RPN index with the
fuzzy RPN.

The proposed fuzzy FMEA system and DMAIC method were implemented in a case
study performed in an automotive supplier production of injection coils. The inclusion of
the fuzzy FMEA system in the DMAIC cycle allowed adequate identification of production
problems in the define and measure stages. By measuring the ppm metric along the
production process, it was possible to early prioritize failure modes that were used to
apply the fuzzy FMEA. In the analyze stage, the fuzzy FMEA system was implemented.
The fuzzy system allowed the computing of a more detailed version of RPN. In Table 6, a
comparison between traditional and fuzzy FMEA was made. The fuzzy RPN enhanced
the risk scale to better classify failures and root causes. Comparing traditional and fuzzy
RPN, components 6, 7, and 8 were classified with the same value of RPN (72). When
implementing the fuzzy system, the classification was enhanced, and components 6, 7,
and 8 were assigned an RPN of 513, 382, and 366, respectively. Hence, with the fuzzy
FMEA system was possible to better classify causes of failure in a more detailed fashion.
Moreover, it was also possible to classify fuzzy RPN values according to the RPN linguistic
variables, whereas component 6 was classified as “average importance” and components 7
and 8 were classified as “low importance”. In conclusion, was possible to determine that
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the main causes of failure that should be solved are the “conical winding (2)”, “bubbles in
epoxy (1)”, “epoxy contamination (4)” and “epoxy contamination (3)”.

In the improve phase of the cycle, the proposed improvements were presented to act
on the root causes of potential priority failure modes, but also on the way they are detected
in the visual inspection stations of the components they represent. Thus, for situations in
which it is not possible to eliminate the cause, it will always be likely to be detected. Once
again, the preponderance of the DMAIC cycle was revealed. However, due to a lack of
useful time, the proposed measures were not implemented in the case study, and it is not
possible to prove whether they would actually result in improvements. This stage of the
process corresponds to the last phase of the DMAIC cycle, control phase, which, because
it was not carried out, did not allow the closing of the cycle. Thus, it was not possible to
prove the validity of the model presented in its entirety.
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