friried applied
b sciences

Article

Adversarial Optimization-Based Knowledge Transfer
of Layer-Wise Dense Flow for Image Classification

Doyeob Yeo 10, Min-Suk Kim %*

check for

updates
Citation: Yeo, D.; Kim, M.-S,;
Bae, J.-H. Adversarial
Optimization-Based Knowledge
Transfer of Layer-Wise Dense Flow
for Image Classification. Appl. Sci.
2021, 11, 3720. https://doi.org/
10.3390/app11083720

Academic Editor: Myo-Taeg Lim
Received: 21 March 2021

Accepted: 19 April 2021
Published: 20 April 2021

Publisher’s Note: MDPI stays neutral
with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.
Licensee MDPI, Basel, Switzerland.
This article is an open access article
distributed under the terms and
conditions of the Creative Commons
Attribution (CC BY) license (https://

creativecommons.org/licenses /by /
4.0/).

and Ji-Hoon Bae ¥*

KSB Convergence Research Department, Electronics and Telecommunications Research Institute,

Daejeon 34129, Korea; yeody@etri.re.kr

Department of Human Intelligence and Robot Engineering, Sangmyung University, Cheonan 03016, Korea
Department of Al and Big Data Engineering, Daegu Catholic University, Gyeongsan-si 38430, Korea

*  Correspondence: minsuk. kim@smu.ac.kr (M.-S.K.); jihbae@cu.ac.kr (J.-H.B.)

Abstract: A deep-learning technology for knowledge transfer is necessary to advance and optimize
efficient knowledge distillation. Here, we aim to develop a new adversarial optimization-based
knowledge transfer method involved with a layer-wise dense flow that is distilled from a pre-trained
deep neural network (DNN). Knowledge distillation transferred to another target DNN based on
adversarial loss functions has multiple flow-based knowledge items that are densely extracted by
overlapping them from a pre-trained DNN to enhance the existing knowledge. We propose a semi-
supervised learning-based knowledge transfer with multiple items of dense flow-based knowledge
extracted from the pre-trained DNN. The proposed loss function would comprise a supervised
cross-entropy loss for a typical classification, an adversarial training loss for the target DNN and
discriminators, and Euclidean distance-based loss in terms of dense flow. For both pre-trained and
target DNNs considered in this study, we adopt a residual network (ResNet) architecture. We propose
methods of (1) the adversarial-based knowledge optimization, (2) the extended and flow-based
knowledge transfer scheme, and (3) the combined layer-wise dense flow in an adversarial network.
The results show that it provides higher accuracy performance in the improved target ResNet
compared to the prior knowledge transfer methods.

Keywords: adversarial optimization; layer-wise dense flow; knowledge transfer; image classification

1. Introduction

In the past few years, as deep-learning technology has advanced dramatically, state-of-
the-art deep neural network (DNN) models find applications in several fields, ranging from
computer vision to natural language processing [1-10]. Modern DNNSs are based on the
convolutional neural network (CNN) structure [11], such as AlexNet [12], GoogleNet [13],
VGGNet [14], the residual network (ResNet) [15,16], a densely connected convolutional
network (DenseNet) [17], and EfficientNet [18], that has achieved increased accuracy by
expanding more layers. Therefore, generally, top-performing DNNs have deep and wide
neural network architectures with enormous parameters, significantly increasing the train-
ing time at high computational costs. Moreover, it is challenging to achieve global or local
optimization for a complex DNN with an extended dataset, such as ImageNet data [19],
used for training from scratch. Transfer learning [20] can be a reasonable candidate to
address this limitation. This is because it leverages the knowledge gained from solving
a task when applied to other similar tasks. When the wide and deep DNNs are success-
fully trained, they usually contain a wealth of knowledge within the learning parameters.
Therefore, well-known transfer learning based on CNN structures [21,22] directly reuses
most pre-trained convolutional layers that automatically learn hierarchical feature rep-
resentations for knowledge formation. Notably, CNN-based transfer learning allows us
to quickly and easily build some of the accurate network models by taking advantage
of the previous learning without beginning from scratch. In addition, although transfer
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learning provides a generalized network model with high performance, the training data
are insufficient for a new domain. However, notably, the DNN trained from the existing
CNN-based transfer learning becomes a complex neural network structure with numerous
parameters because it reuses the entire pre-trained convolution-based structure. This com-
plex structure can lead to high memory demands and increased inference time, which is
not well suited for applications with limited computing resources, such as the “Internet of
Things” (IoT) environment [23-25]. Therefore, more efficient knowledge distillation (KD)
and knowledge transfer techniques in transfer learning are essentially extended to the
application of DNNs for improved accuracy, fast inference time, including training time,
and lightweight network structures suitable for restricted computing environments.

To achieve these requirements, in this study, we consider a knowledge transfer frame-
work (KTF)-based training approach using a pre-trained DNN (as the source network
model) and target DNN need to be trained using pre-trained knowledge. The concept of
the KTF was first introduced in [26] by minimizing the Kullback-Leibler (KL) divergence
of the output distribution between the pre-trained and target network models. Based
on [26], Hinton et al. [27] proposed KD terminology from the KTF by considering the
relaxed output distribution of the pre-trained DNN as distilled knowledge. According
to [27], softening the output layer’s neural response in the pre-trained DNN provided
more information to the target DNN during training. Therefore, the main feature of KD can
define the best knowledge that represents the useful information of the pre-trained DNN.
Research on KD has been further extended by introducing an intermediate representation
of the pre-trained DNN [28] and the flow of the solution procedure (FSP) [29] for knowl-
edge expression. While Ref. [28] used the intermediate hidden information in the middle
layer of the pre-trained DNN, the flow across two different layers in [29] was devised
to represent the direction between the features of the two layers. Compared with [28],
FSP-based distilled knowledge [29] provided better performance in classification accuracy
over several benchmark datasets. Notably, the aforementioned methods are adopted by the
Euclidean distance-based similarity measure to calculate the cost function of transferring
distilled knowledge. There have been other studies in terms of knowledge transfer [30,31],
attempting to transfer knowledge extracted by the pre-trained DNN to other target DNNs
using a network structure similar to the generative adversarial network (GAN) [32,33].
In their studies, a target DNN was modeled as a generator, and a discriminator tried to
distinguish the output results created by the pre-trained DNN from the result provided
by the target DNN. The aforementioned knowledge transfer methods adopting the GAN
structure experimentally showed that the target DNN using the adversarial optimization-
based approach would be better captured into the pre-trained knowledge distributions
than the [2-norm-based knowledge transfer methods, as mentioned above. Therefore, it is
crucial to extract useful knowledge from the pre-trained DNN and efficiently transfer the
extracted knowledge to the target DNN.

In this study, we propose a layer-wise dense flow (LDF)-based knowledge transfer
technique coupled with an adversarial network to generate low complexity DNN models
with high accuracy performance that can be adaptively applied to target domains with
limited computing resources. First, the proposed method introduces densely overlapped
flow using FSP matrices as distilled knowledge of the pre-trained DNN. To rephrase, the
multiple-overlapped flow-based knowledge is densely distilled, such that each piece of
flow-based knowledge extracted between two different corresponding layers is superim-
posed. Second, KTF using the adversarial network transfers densely extracted knowledge
with layer-wise concurrent training between the pre-trained and target DNNSs. In this
stage, we designed multiple independent discriminators for adversarial optimization-
based knowledge transfer using multiple pairs of dense flows, where each discriminator is
assigned to compare a pair of flow-based features between the pre-trained and target DNNS.
Owing to the proposed LDF and its concurrent transfer for the adversarial optimization
process, the target DNN can efficiently and accurately learn a plethora of information from
the pre-trained DNN.
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In contrast to previous work on the dense flow-based knowledge transfer [34], there
are major differences between [34] and the proposed method. First, flow-based knowledge
in [34] is transferred based on /2-norm-based training when the dense flow extracted from
layers is transferred and trained to another target model. However, knowledge in our study
is transferred in the GAN structure-based adversarial optimization manner. Second, the
densely extracted flow-based knowledge in [34] is sequentially transferred step-by-step to
a target model, but this study deals with layer-wise concurrent training when transferring
the dense flow.

2. Related Works
2.1. Generative Adversarial Networks

The GAN, comprising generator and discriminator, was proposed in [32] to capture
the given data distributions. The role of the generator is to generate newly synthesized
images or fake data, and that of the discriminator is to determine whether an input sample
is the given real data or fake data from the generator. These two are designed to compete
in an adversarial optimization manner such that the generator captures the distributions of
the given data, and the discriminator makes the right decision as to whether the sample
is real or fake. Let G and D be the sets of weights of the generator and discriminator,
respectively. Then, the min-max optimization problem to train G and D can be defined
as follows:

min max Lcan(G, D) (1)
In (1), LgaN is defined as
Lean(G, D)= E [logD(x)]+ E [1-1logD(G(z))], 2
x~Pyata (¥) z~Py(2)

where Py, and P, denote the distributions of the real data and input noise of the generator,
respectively. To derive a well-optimized solution using the GAN, (1) is usually solved
with min-max optimization iteratively. However, it is challenging to find the optimal so-
lution for (1) because of some of the undesired saddle point problems. Therefore, several
existing studies have been conducted to stabilize the convergence of the GAN algorithm,
such as unrolled GANs [35], Wasserstein GANSs [36], and least-squares GANSs [37]. In
addition, to improve the convergence and robustness for learning optimization of (1),
heuristic techniques such as feature matching, minibatch discrimination, and one-sided
label smoothing were introduced in [38]. Another type of prior advanced GAN architec-
ture, robust deep convolutional generative adversarial networks (DCGANSs) [39], have
been successfully applied to image processing tasks such as object removal and vector
arithmetic [39], super-resolution [40,41], and denoising [42,43].

2.2. Output-Distribution-Based Knowledge Transfer Using Adversarial Networks

Based on the general GAN-based architecture, an adversarial network-based knowl-
edge transfer approach adopted by the KTF was first introduced in [30]. The relaxed output
probability of neural networks described in [27] was used as the pre-trained knowledge
in their method. GAN-based previous work in [30] considered couple of different opti-
mization procedures for knowledge transfer method such as solving a discriminator’s
maximization problem and solving a minimization problem for a target DNN model. To
update the discriminator and target DNN for adversarial training in the KTF. First, the
discriminator’s goal is required to distinguish whether a relaxed output distribution is
provided by a pre-trained DNN or target DNN. In contrast, the target DNN, which plays
the same role as the generator of the original GAN-based structure [32], is adversarially
trained, similar to the relaxed output probability of the pre-trained DNN. Therefore, the
knowledge transmitted from the discriminator leads the target DNN to provide the prob-
ability result of the output layer, similar to the pre-trained DNN. In addition, according
to [27], the cross-entropy loss for the supervised training approach is considered in the
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KTE. Experimentally, their method proved that the adversarial network-based approach
could effectively transfer output-distribution-based knowledge from the pre-trained DNN
to the target DNN, compared to the /2-norm-based knowledge transfer [27] without using
adversarial training loss. However, the optimized target DNN using [30] is usually inferior
to the pre-trained original DNN, especially when considering wider and deeper neural
networks as a source DNN.

2.3. FSP-Based Knowledge Transfer Using Adversarial Network

An adversarial network-based KTF technique using FSP-based knowledge distillation
was proposed in [31] to improve the performance of the traditional adversarial network-
based KTF using relaxed output distribution-based knowledge distillation [30]. For distilled
knowledge, three flow-based items of source knowledge in the pre-trained DNN are
extracted in the form of FSP matrices based on the input and output of the residual block
in the ResNet structure. In [29], the FSP matrix was mathematically devised for flow-based
knowledge distillation across two layers. Let F(x; W) € R"*@*" and H(x; W) € Rixwxn
be two different feature maps with an input x and weights W in a ResNet. Then, the FSP
matrix GV (x; W) = (gl[;") € R™*" between F and H is defined by

gzl;\] = ﬁu%,:,h H:,:,j>F (3)
where F..; and H. . ; denote i-th  x w matrices of F and H, respectively, and (-, -)r denotes
the Frobenius inner product between two matrices of the same size.

Next, for knowledge transfer, multiple flow-based source knowledge is transferred
using the adversarial optimization procedure between the target ResNet and the three
discriminators. The target ResNet was trained to build its FSP matrices to deceive the
discriminators. Simultaneously, the discriminators were trained to distinguish FSP matrices
created by the pre-trained ResNet from those created by the target ResNet. Therefore, the
adversarial optimization-based KTF approach [31] was implemented in semi-supervised
learning such that the target ResNet can (i) capture the distribution of the FSP-based source
knowledge and (ii) simultaneously use a known dataset with true labels. According to the
results of [31], the classification accuracy of the target ResNet trained using [31] is better
than the existing adversarial optimization-based knowledge transfer method [30] because
of the FSP-based rich source knowledge. In addition, a target ResNet using [31] can accu-
rately capture better knowledge from the original pre-trained knowledge distribution than
the I>-norm-based knowledge transfer method using FSP-based distilled knowledge [29].

3. Proposed Method

The proposed method is an adversarial training scheme using densely distilled flow-
based knowledge based on the pre-trained DNN approach, which can efficiently optimize
the KTF network for image classification tasks. The pre-trained information for dense
flow is fully generated by converting the detailed features from the lower layers into
abstracted features in the higher layers. This process requires efficient transmission of
dense flow-based information to the target DNN module through multiple discriminators
to optimize the proposed distilled-knowledge transfer. In this section, we present the
proposed methods involving the main concepts to improve the classification performance
over the prior KTF methods in terms of the knowledge transfer scheme.

3.1. Adversarial-Based Knowledge Optimization

Figure 1 shows the adversarial-based KTF architecture, where flow-based knowledge
is extracted from a pre-trained network. This knowledge can be transferred to target and
discriminator networks for updating them in an adversarial-optimization manner. The
flow-based knowledge considered in this study is represented as an FSP matrix [29] based
on the direction between the input and output results of the residual module of a pre-
trained ResNet. Specifically, the adversarial-based KTF, as shown in Figure 1, describes
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how the target network can be trained and built to deceive the discriminator network
in its flow-based result. In addition, the discriminator network is required to optimize
and distinguish the flow-based knowledge created by the pre-trained network from the
flow-based result of the target network.

Pre-trained Network

}nowled e
9 Discriminator

AN
(Pre-trained/Target)
- 2 v

[I Adversarial Loss
Target Network (Ledv)

Knowledge

N
Input x @ @ m
@ Classification
aL

1
Loss (L°%) m) Forward Propagation

90r L= Ladv | pcis Label y <+« Backward Propagation

Figure 1. Adversarial-based knowledge transfer framework architecture.

As shown in Figure 1, mathematical notations for the adversarial-based knowledge
optimization can be represented and derived as follows: Let T, R, and D be the weights of
each target, pre-trained, and discriminator networks, respectively. Let GT and GR denote
the flow-based FSP matrices of the target and pre-trained networks, respectively. D(-)
represents the output of probability between zero and one by the discriminator, and the
input of D(-) is assumed to be the FSP matrix of the target or pre-trained networks. When
the value of D(-) is one, it implies that the input is an FSP matrix created by the pre-
trained network, and, conversely, zero implies that the target network generates an FSP
matrix rather than a pre-trained network. Then, the loss function of the adversarial-based
knowledge optimization for positive parameters &, B, and -y is given below:

L(T,D) = a{ﬁadV(T, D)+ 7£FSP(T)} + BLIS(T), )
where

LT, D)= E [logD(GR(x;R)ﬂ—i— E [log(l—D(GT(x;T)»}, )

xNPdata(x) xNPdata(x)
LTy =~ [logPT(y| )], (©)
Y~Paata (y]x)
and
1) = B [IGRwR) =G ()3 )
x~Pyata (%)
Here, || - ||r denotes the Frobenius norm of the matrix. Then, an adversarial-based

optimization problem for knowledge transfer is given as

min max L(T,D). 8)

To address the optimization problem of (8) with respect to the mini-batch B =
{(xi,yi)}ﬁl of size N, we reconstruct (8) as (9):

m];nm[e)lxﬁ(B; T,D). )
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According to (9), (5) and (6) can be represented as (10) and (11) below, respectively:

1 N 1 N
adv ( 12. _ = Ry, = _ T(..
L2%(B;T,D) = nglogD@ (xl,R))—l—Ni:leog(l D(G (xl,T))). (10)
and
1 N 1N
ECIS(B,' T)=—-—— Zlog PT(yi | ;) = —— Zyi -log T(x;), (11)
Ni=1 N i=1

where T(-) denotes the output probability of the target network. For a mini-batch size of N,
(7) can be rewritten as

1

N IGR (xi; R) = GT (xi; T) - (12)
i

™M=

LFP(B;T) =
1

Regarding (12), we consider adopting the /2-norm-based loss term representing a
blurring effect [31] of constructing the adversarial optimization-based loss function of (4).
It is anticipated to provide more information about pre-trained source knowledge to the
target network than flow-based knowledge without softening.

Based on the aforementioned loss functions, we can fully and simultaneously train
both numerous discriminators and the target DNN of the adversarial network-based KTF
to optimize the densely distilled knowledge transfer.

3.2. Knowledge Transfer Scheme for Densely Distilled Flow-Based Knowledge

In our previous work [34], we introduced a dense flow-based knowledge transfer
learning scheme with a deep neural network, where flow-based knowledge was densely
overlapped and extracted from a pre-trained ResNet. Compared to the original flow-
based knowledge [29], the target ResNet obtained using dense flow-based training yielded
higher performance owing to the rich information of the extended flow-based features
for dense learning. Notably, when training a target ResNet in [34], the densely extracted
knowledge was sequentially delivered step-by-step to the target ResNet. In this regard,
the knowledge transfer of dense flow is performed using the /2-norm-based loss function
between a pre-trained and target ResNets. According to [34], concurrent flow-based
training yielded inferior accuracy to the bottom-up sequential training scheme when
transferring the densely extracted pre-trained knowledge in a KTF. Therefore, there is a
limitation in simultaneously transmitting several densely extracted information using the
traditional /?-distance-based similarity measure.

Applying an adversarial network-based architecture that uses discriminator networks
rather than the /2-norm-based training approach to knowledge transfer of dense flow can be
an effective solution to address this limitation. This explains why a typical target network
using the adversarial-based training method can more accurately capture the distribution
of pre-trained knowledge than the transfer learning method using the />-norm that usually
produces blurriness in image restoration. Therefore, even considering densely extracted
knowledge items, the adversarial training method can handle concurrent transference of
the densely distilled knowledge, whereas the traditional /2-norm-based method cannot.

Figure 2 shows the proposed adversarial network-based structure for concurrent
knowledge transfer of the densely distilled flow-based knowledge when considering the
popular ResNet model with three residual blocks in a KTF. To rephrase, six FSP matrices GIR]
(i=0,1,2and j = 1,2, 3) from the pre-trained ResNet are extracted from a dense overlap,
and, similarly, the same number of FSP matrices GZT] from the target ResNet are generated.
Then, the target ResNet is trained using the same number of discriminators D;; (i=0,1,2
and j = 1,2,3) such that the target ResNet’s flow-based features are formed as close as
possible to the actual features of the pre-trained ResNet by deceiving the discriminators.
Meanwhile, the discriminators are trained to distinguish FSP matrices extracted by the pre-
trained ResNet from those generated by the target ResNet. Notably, a single discriminator



Appl. Sci. 2021, 11, 3720

7 of 16

is assigned to compare a pair of FSP matrices between the pre-trained and target ResNets.
In discriminator’s architecture, a multi-layer perceptron (MLP)-based discriminator with
M linear units [31] rather than the popular CNN-based discriminator [39] was adopted in
this study, considering computational bottleneck for the LDF-based knowledge transfer
scheme. Here, a single linear unit comprises a fully connected layer, a batch normalization
layer, and a leak rectified linear unit [31]. Thus, the flow-based ResNet layers are densely
trained, as more enhanced information can be transmitted to the target ResNet fully
and simultaneously using the overlapping flow-based features and densely designed
discriminators.

Image Image

Trainable Variables

3x3 Conv, 16 / 3x3 Conv, 16

Residual Block | GR ' D GT |« Residual Block | :
3x3 Conv, 16 oLy il 0.1 3x3 Conv, 16 '
| — | ;
— ! 1 :

Residual Block II H Residual Block II :
i R || T H H

3x3 Convy, 32 [l G],z ' D12 L Gl,z ¢ 3x3 Convy, 32 H
Residual Block Il Ly : Residual Block Il ,
3x3 Conv, 64 = G§3 | Das G£3 =l 3x3 Conv, 64 .

Avg. pooling : Avg. pooling :

Y \ Y

FC FC

Pre-trained Network Target Network

Figure 2. Adversarial concurrent knowledge transfer structure using the layer-wise dense flow. In
this figure, GIR]-, GiT]-, and Di,]- refer to the FSP matrix of pre-trained ResNet, the FSP matrix of target
ResNet, and the discriminator, respectively. Only the variables in the dotted box marked “Trainable

Variables” are used for training.

3.3. Adversarial-Based Loss Functions for Knowledge Transfer Using Layer-Wise Dense Flow

In Section 3.1, we present the loss functions of the adversarial-based optimization
for distilled-knowledge-based transfer. Furthermore, dense flow-based feature extraction
can enhance the original flow-based knowledge distillation, as described in Section 3.2.
Therefore, by applying LDF-based knowledge transfer to the adversarial-based knowledge
optimization, the proposed loss functions for the dense flow can be derived as follows:
First, the adversarial loss function consists of M residual blocks of the pre-trained and
target ResNets. Let GZT] and GIR] be the FSP matrix between the input feature of the (i 4 1)-th
residual block and the output feature of the j-th residual block in the target and pre-
trained ResNets, respectively, and let D;; be a discriminator for GIT] and ij, where i =
0,1,---,M—1andj =1,2,---,M such that i < j. Then, we define Cf‘f" and EEJSP for
i=01---,M—1landj=1,2,---,M as follows:

,C?,?V(T, D,‘,j) = E {10g Di,j (GII,{](X, R))} + E {log(l — Di,]‘(GZj(x} T)))} . (13)

xNPdata(x) xNPdata(x)
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and
M= ® [lIckxR) -6l I (14)
x~Pata (x )
Then, together with the supervised cross-entropy loss function with true labels, we
define a final loss function £'PF of the LDF-based KTF for semi-supervised knowledge
transfer as follows:

LYPF(T, D) = BLIS(T) + Z Z (zxﬁadv (T, Dij) + ay L55° (T )), (15)
i=0 j=i+1

where a, B, and v denote positive control parameters for the adversarial-based knowledge
optimization.

First, for the optimization of densely designed discriminators, we set the variables T
and D according to the well-known Gaussian distribution-based weight initialization. Then,
we simultaneously update the discriminators with D by maximizing the adversarial loss
of (15) while freezing the variables of T in the target ResNet. In this stage, each discriminator
makes an optimal binary decision of whether the flow-based feature is generated by the
target ResNet or the pre-trained ResNet.

Next, we update the target ResNet with T by applying a stochastic gradient descent
to (15) with respect to T for fixed variables of D. The target ResNet tries to generate
LDF-based features similar to the real LDF-based features of the pre-trained ResNet. Si-
multaneously, the target ResNet is trained to perform an ordinary classification task using
real labels.

Therefore, adversarial-based knowledge transfer using dense flow is implemented al-
ternatively to update D and T until the number of iterations reaches a predefined threshold.
The entire learning procedure for the proposed method is summarized in Algorithm 1.

Algorithm 1 Adversarial-based knowledge transfer procedure with LDF

Load the weights of a pre-trained network R
Initialize the variables of a target network T
Initialize the variables of a discriminator network D
while does not converge do
Choose a minibatch 5 in a given dataset
For fixed D, update T by descending its stochastic gradient: V1 £L"PF(B; T, D)
For fixed T, update D by descending its stochastic gradient: —Vp LXPF(B; T, D)
end while
return T

DR A L A A e

4. Experiments

In this section, we analyze the proposed method using reliable benchmark datasets:
CIFAR-10 and CIFAR-100 [44]. First, for CIFAR-10, we considered adapting a ResNet struc-
ture with three residual modules with {16,32,64} filters [29] for the pre-trained and target
DNNs in a KTFE. Second, for CIFAR-100, we used a wide ResNet structure with {64,128,256}
four times more than those in the CIFAR-10, considering the small number of training
images per class. In this experiment, there are six discriminators: Dy 1, Dg2, Do 3, D12, D13,
and D, 3. Each discriminator structure is based on multilayer perceptron [31]. Here, the
number of linear units with each discriminator of CIFAR-10 and CIFAR-100 is configured, as
shown in Table 1. When each discriminator structure of D; ; is designed with the number of
MLP-based linear units, the number is determined by the spatial size of the corresponding
G; ;. For example, in CIFAR-10, sorting by the number of elements constituting the Gramian
matrix is as follows: Go1 < Ggo = G12 < Go3 = G13 < Gy 3. Notably, this is because the
dimensions of the Gramian matrices are represented as G € R1¢*16, Gy,, G, € R16%32,
Gogz, G133 € R16%64 ‘and Gy3 € R32%64, For this reason, we set the number of linear units of
the discriminators in the following order: Do = Dy, = D < Dg3 = D13 = D, 3. There-
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fore, based on several experiments, the final number of linear units of the discriminators is
determined in Table 1. Similar to CIFAR-10, in CIFAR-100, the number of linear units of
the discriminators was set experimentally, as shown in Table 1, according to the Gramian
matrix dimension.

The experimental conditions for the proposed method were as follows: The loss
function using (15) has @ and , as shown in Table 2. v was used in all experiments, 0.01.
Both optimizers for the target ResNet and the discriminator used the same RMSProp
optimization algorithm [45]. In addition, 64,000 iterations were performed, and a batch size
of 256 was used when one target ResNet was trained in the KTF. Notably, Irt and Irp have
an initial learning rate for training each target ResNet and discriminator. In our experiment,
both Irt and Irp were trained by applying variable learning rates, where the learning rate
changed 0.1 times after 32,000 iterations and 0.01 times after 48,000 iterations.

Table 1. The number of linear units in the discriminator.

Discriminators CIFAR-10 CIFAR-100
Dy, 6 14
Do, 6 14
Do 8 15
Do 6 14
D3 8 15
D3 8 15

4.1. Dense Flow-Based Knowledge Distribution

This section discusses the ability of the proposed method for delivering LDF-based
distilled knowledge in the KTF. To evaluate how well the target ResNet learned pre-trained
knowledge, we used the LDF-based knowledge distribution as a performance metric. In
Figure 3, the proposed method shows that the Gramian matrix distribution results in (i) the
pre-trained ResNet to transmit LDF-based knowledge and (ii) the target ResNet to receive
the transferred knowledge. In addition, to derive more specific results, we experimented
with simple Gramian distributions of the original ResNet without pre-trained knowledge.
In Figure 3, we used CIFAR-100 as the training dataset and adopted a 32-layer ResNet and
an 8-layer ResNet, respectively, as the pre-trained and target DNNs in the KTF.

We have observed that all Gramian matrix distributions of the original 8-layer ResNet,
which does not take knowledge transfer for the learning process, are significantly different
from the distributions of the pre-trained ResNet. However, using the proposed method,
the target ResNet can yield distributions with a higher learning performance, and it is
largely similar to the pre-trained ResNet. Furthermore, as shown in the distribution table in
Figure 3, the obtained knowledge involved with low-level features has significant training
results for the distributed information from the pre-trained ResNet. However, although the
distributions between the pre-trained and target ResNets are generally in agreement, the
knowledge based on high-level features, such as Gg 3, G1 3, and Gy 3, yields slightly lower
learning performance, compared to the distributions for Gg 1, Go2, and Gy .
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Figure 3. Distributions of FSP matrices for the 32-layer pre-trained, 8-layer target, and original 8-layer ResNets without
knowledge. In this figure, the blue, red, and yellow points denote the mean and variables of the FSP matrices for the
pre-trained, target, and original ResNets, respectively.

4.2. Evaluation of the Proposed Method for Dense Flow

In these experiments, we compare the performance of the proposed adversarial-
based method with that of the existing /?>-norm-based method from a knowledge transfer
perspective for the LDF-based distilled knowledge. The related parameters in (15) and
hyper-parameters related to learning rates are given in Table 2.
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Table 2. Hyper-parameters in experiments for training datasets and target networks.

CIFAR-10 8-layer 14-layer 20-layer
o 0.005 0.1 1.0
B 1.0 0.01 0.01
Irr 0.01 0.01 0.01
Irp 0.01 0.0125 0.001
CIFAR-100 8-layer 14-layer 20-layer
« 1.0 1.0 0.1
B 0.01 0.01 0.01
Irr 0.005 0.01 0.01
Irp 0.001 0.005 0.001

For the same pre-trained ResNet, Table 3 shows the training results based on the
CIFAR-10 dataset using a 14-layer target ResNet. In addition, Table 4 presents the training
results with the same dataset using a 20-layer target ResNet to solve a classification problem.
In addition, Table 5 shows the results of using a 32-layer pre-trained and a 14-layer target
ResNets for the CIFAR-100 dataset. In Table 3-5, we can observe that the proposed method
has better accuracy than the prior /2-norm-based methods [34] that follow both sequential
and concurrent training approaches mainly based on a dense flow-based scheme. Here, the
sequential training involves repetitive sequential knowledge transfer of dense flow from
bottom to top between pre-trained and target DNNs, whereas the concurrent approach
involves the simultaneous transmission of dense flow into a target DNN. Furthermore, we
compared the relative difference between the performance of the target and pre-trained
DNNSs owing to the difference in performance between the pre-trained DNN model used in
the experiment [34] and the pre-trained DNN model used in our experiment. The relative
difference is calculated as

AccT — AccP

5 x 100,

Relative difference =
Acc

where Acc” and Acc! denote the accuracies of the pre-trained and target DNNs, respec-
tively. In CIFAR-10, there was no significant difference in classification accuracy perfor-
mance between the 26-layer pre-trained ResNet adopted in [34] (Acc’=91.91%) and the pre-
trained ResNet used in our experiment (Acc’'=91.79%). In contrast, we can observe that the
32-layer pre-trained ResNet in [34] provides a lower performance for CIFAR-100 than the
32-layer pre-trained ResNet used in our experiment, although the two pre-trained ResNets
have the same number of layers. Notably, this is because the pre-trained ResNet model
used in [34] did not adopt any data pre-processing, resulting in Acc’=64.69%. To rephrase,
we adopted the pre-trained ResNet with data pre-processing in our experiment [15], re-
sulting in Acc?’=74.70%. According to [15], we used a random crop of size 32 x 32 after
4 x 4 padding with a pre-processing of random flip, and the same pre-processing method
was used for knowledge transfer. Tables 3-5 show that the relative difference using the
proposed adversarial training can produce better results compared to the previous /2-norm-
based training experiments [34]. In addition, it can be observed that more complex and
deeper ResNet structures can yield better accuracy in terms of knowledge transfer in the
proposed method.
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Table 3. Accuracy (%) of CIFAR-10 for the 26-layer pre-trained and 14-layer target ResNets.
Methods Pre-Trained Ist 2nd 3rd Average
Sequential dense
flow 91.8 91.35 91.61 91.58 (0.36% )
.. 2
training (1) [34] 91.91
Concurrent dense
flow 91.16 90.9 90.98 91.01 (0.98% )
training (1%) [34]
Adversarial-based
concurrent LDF 91.79 91.6 91.45 91.47 91.51 (0.31% )

training (ours)

Table 4. Accuracy (%) of CIFAR-10 for the 26-layer pre-trained and 20-layer target ResNets.

Methods Pre-Trained Ist 2nd 3rd Average
Sequential dense
flow 91.91 92.29 92.19 92.20 92.22 (0.34% 1)
training (1%) [34]
Adversarial-based
concurrent LDF 91.79 92.50 92.33 92.33 92.39 (0.65% 1)

training (ours)

Table 5. Accuracy (%) of CIFAR-100 for the 32-layer pre-trained and 14-layer target ResNets.

Methods Pre-Trained 1st 2nd 3rd Average
Sequential dense
flow 64.95 65.06 65.03 65.01 (0.49% 1)

training (1%) [34]

64.69
Concurrent dense
flow 63.46 63.98 64.15 63.86 (1.28% )
training (1%) [34]
Adversarial-based
concurrent LDF 74.70 75.92 75.85 75.89 75.89 (1.59% 1)

training (ours)

4.3. Comparison of Knowledge Transfer Performance

In addition, as shown in Tables 6 and 7, we compare the results between the exist-
ing knowledge transfer methods and the proposed method. In both existing methods,
flow-based knowledge was chosen as the distilled knowledge of the pre-trained DNNSs.
Conversely, the difference between these two techniques is the loss function design used
for knowledge transfer in a KTF. In essence, knowledge transfer using />-loss was pet-
formed in [3] to calculate the cost function of the flow-based distilled knowledge. In the
previous method [31], the adversarial loss was used in the cost function to transfer the flow-
based knowledge. In contrast to these two methods, we proposed an adversarial-based
knowledge transfer method coupled with the layer-wise overlapping dense flow.

The performance shown in Tables 6 and 7 is the average of the three high values
extracted from five experiments. The results indicate that both of the existing methods
of [3] and [31] have better classification accuracy than all original ResNets trained without
knowledge transfer approach. However, we can observe that the performance of the
obtained target ResNet using the proposed approach outperforms the two methods. As
mentioned in Section 4.2, a deeper and more complex network structure can obtain better
performance enhancement.
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In Table 8, the experimental results represent the total number of floating-point op-
erations (FLOPs) required to infer pre-trained and target ResNets. FLOPs ratio (T/R) in
Table 8 represents the ratio between the total number of FLOPs in the target ResNet and
that of FLOPs in the pre-trained ResNet. First, the CIFAR-10 results in Table 6 show
that the performance of the pre-trained and target DNNs in the KTF is largely similar to
each other when the target DNN is a 14-layer ResNet. However, the number of FLOPs
for inference is 50% or less as shown in Table 8. In addition, the 20-layer target ResNet
obtained using the proposed method is superior to the pre-trained 26-layer ResNet, which
has more layers and provides improved accuracy compared to the two existing knowledge
transfer methods. Subsequently, for CIFAR-100, as shown in Table 7 and 8, the 14-layer
target ResNet performs 1.2% higher than the 32-layer pre-trained ResNet but only 37.6%
of inference complexity. In particular, the classification accuracy of the 20-layer ResNet in
Table 7 is 77.32%, which is slightly higher or similar to 77.29% of the 1001-layer ResNet
performance [46].

Table 6. Averaged accuracy (%) of CIFAR-10.

Pre-Trained (26-Layer) 91.79
8-Layer 14-Layer 20-Layer
Original ResNet 88.06 90.22 91.06
FSP [3] 88.7 90.92 92.14
Adversarial KTF [31] 88.78 91.35 91.78

Adversarial-based concurrent

LDF training (ours) 89.19 91.51 92.39

Table 7. Averaged accuracy (%) of CIFAR-100.

Pre-Trained (32-Layer) 74.7
8-Layer 14-Layer 20-Layer
Original ResNet 69.02 73.16 73.54
FSP [3] 71.95 74.81 75.29
Adversarial KTF [31] 72 75.14 75.69

Adversarial-based concurrent

LDF training (ours) 73.35 75.89 77.32

Table 8. Comparison results of total number of FLOPs for inference in the proposed method on
CIFAR-10 and CIFAR-100 between the target networks and the pre-trained network.

26-layer

CIFAR-10 8-layer 14-layer 20-layer (Pre-trained)

# Inference

FLOPs 392,927 880,799 1,368,671 1,856,543
FLOPs ratio
21.16% 47.44% 73.72% 100.00%
(T/R)
CIFAR-100 8-layer 14-layer 20-layer 32-layer
Yy Yy Y (Pre-trained)
# Inference
FLOPs 6,263,951 14,021,519 21,779,087 37,294,223
FLOPs ratio
16.80% 37.60% 58.40% 100.00%
(T/R)

5. Conclusions

In this study, we proposed an adversarial-based knowledge transfer approach using
densely distilled layer-wise flow-based knowledge of a pre-trained deep neural network for
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image classification tasks. The proposed knowledge transfer framework was composed of
a pre-trained ResNet to extract LDF-based knowledge, a given target ResNet to receive ex-
tracted knowledge, and densely placed discriminators to transfer adversarial optimization-
based knowledge. In particular, to process LDF-based knowledge distilled from the pre-
trained ResNet, the proposed framework was implemented by a semi-supervised learning
technique using numerous discriminators for adversarial training and true labels for
conventional training. In addition, we designed several adversarial-based loss functions
suitable for densely distilled flow-based knowledge transfer. Regarding the loss functions,
the I? distance-based loss function using densely generated FSP matrices was considered
in the proposed framework to deliver more LDF-based feature information to a target
ResNet while maintaining stability through adversarial optimization-based knowledge
transfer. According to the devised loss functions and adversarial-based knowledge transfer
scheme, the proposed method can concurrently update the numerous discriminators and
target ResNet.

To validate the performance of the proposed method in terms of knowledge transfer
accuracy, we used reliable benchmark datasets such as CIFAR-10 and CIFAR-100 and
considered various ResNet architectures with different numbers of layers for a pre-trained
source and target models. For all LDF distributions, the results demonstrated that the
proposed approach more accurately transferred pre-trained rich information of dense flow
between low-level detailed and high-level abstract knowledge compared to the existing
I2-norm-based approach. Furthermore, the small target ResNet obtained from the proposed
layer-wise concurrent training yielded higher accuracy than the existing knowledge transfer
methods considered in this study or even the original complex pre-trained ResNet. In future
work, we plan to use more complicated CNN-based architectures to further analyze the
effect of knowledge distributions so that the parameters of the discriminators can be
dynamically optimized in the adversarial learning process for a flow-based feature that
has a two-dimensional image shape. We will also apply and analyze knowledge transfer
proposed in this study to other DNN models that have a different form from the ResNet in
future research.
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