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Abstract: Path planning research plays a vital role in terms of safety and comfort in autonomous
driving systems. This paper focuses on safe driving and comfort riding through path planning
in autonomous driving applications and proposes autonomous driving path planning through an
optimal controller integrating obstacle-dependent Gaussian (ODG) and model prediction control
(MPC). The ODG algorithm integrates the information from the sensors and calculates the risk factors
in the driving environment. The MPC function finds vehicle control signals close to the objective
function under limited conditions, such as the structural shape of the vehicle and road driving
conditions. The proposed method provides safe control and minimizes vehicle shaking due to the
tendency to respond to avoid obstacles quickly. We conducted an experiment using mobile robots,
similar to an actual vehicle, to verify the proposed algorithm performance. The experimental results
show that the average safety metric is 72.34%, a higher ISO-2631 comport score than others, while
the average processing time is approximately 14.2 ms/frame.

Keywords: path planning; model predictive control; obstacle avoidance; vehicle dynamics; comfort
level

1. Introduction

Autonomous driving refers to a technology that determines the driving situation
through sensors and drives to the destination without driver intervention. Autonomous
driving in the future is expected to increase traffic efficiency and driver convenience, and
enhance traffic safety. Most traffic accidents and fatalities occur during lane changes
and overtaking [1]. Such accidents greatly injure human life, and autonomous driving
remains an important task for full commercialization in the current technology regarding
path planning safety. Adaptive cruise control [2], lane-keeping assist [3], and automated
emergency braking [4] of advanced driver assistance systems (ADAS) technologies have
positive effects on driving safety [5]. Recently, Advanced driver assistance systems (ADAS)
use advanced detection sensors, global positioning systems (GPS), and video equipment
to recognize situations while driving, judge the situation, and control the car. Therefore,
companies, such as Google and Tesla, are working on fully autonomous driving without
human intervention [6]. However, it is still difficult to research the technology of fully
autonomous driving. Therefore, this paper suggests determining how a vehicle should
behave concerning surrounding vehicles as an obstacle avoidance path planning problem.

Path planning is a technology that enables mobile robots or vehicles to move au-
tonomously. With the advancement of technology, research on avoiding obstacles without
human intervention has been actively conducted in the field of autonomous driving [7].
The path planning research area is divided into global path planning, which generates a
path using the information from the entire map, and local path planning, which generates
a path using sensors. Global path planning is a low-resolution high-level planning that
determines the map information before the vehicle runs, creates a path, and then operates.
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Frequently used global path planning algorithms include sampling-based approaches [8],
search-based approaches [9], continuous geometric curve-based methods [10], and artificial
dislocation field approaches [11].

The sampling-based approach is a method that quickly searches the space by selecting
a random point in each sample and creating a path continuously by extending it in the
random point direction. Because the algorithm relaxes the completeness requirement, it has
the advantage of being able to relatively quickly find a path that is possible from the start
to the target point, even with a high-dimensional state space. Therefore, the destination
can be reached safely without problems at a local minimum based on probability. The
Rapidly exploring Random Tree (RRT) and RRT* algorithms [8] are typical examples of the
sampling-based approach method. However, the sampling-based approach methods have
a limitation in finding the best path: the disadvantage of unnecessary costs in computation
and inefficiency.

The second method is the search-based approach method. The biggest feature of this
algorithm is searching for a heuristic-based search as the graph-based method. After the
graph is generated, the path is searched from the start to the target point at the minimum
cost. The optimum path can be found faster using the correct heuristic function. Examples
include the Dijkstra algorithm and A* algorithm [9]. However, the computation amount
is limited due to the large graph and complexity of the environment. If the environment
changes after determining the shortest path, it is difficult to respond quickly. Therefore, the
algorithm works well in low-speed applications but has a limitation in high-speed driving.

The third method, the continuous geometry curve-based method, is an optimized path
planning algorithm that uses the spline function used in various mobile robot fields. The
search and sample methods described above do not include vehicle dynamics; thus, optimal
path planning cannot be performed. However, this method is based on vehicle dynamics
and many studies on path smooth algorithms [12]. For example, the continuous geometry
curve-based method can be performed using spline curves [13], bezier curves [14], and
polynomial curves [15]. However, these methods also have a limitation because they do
not perform optimal path planning in terms of relative speed.

The fourth method is the risk-based approach, which consists of repulsive forces to
avoid collision and attractive forces to reach the goal. Therefore, when accurate information
on the roads and surrounding obstacles is available to recognize, it is an effective method to
generate a trajectory without causing an obstacle collision. Because the risk-based approach
method does not contain vehicle dynamics, it cannot guarantee experimentation in real
vehicles. Examples include the artificial potential field (APF) [11], which updates the
peripheral information in the driving conditions of the expressway; then, the algorithm
works. There are also attempts to imitate a way of the person as a way of defining risk,
such as Driver’s Risk Field [16] and humans motor response [17]. While theses approaches
to path planning through obstacle avoidance provide good results in many applications,
there are some major drawbacks to the trade-off between essential computational resources
and solution optimization. Many of the commonly used path planning methods rely
heavily on extensive simulation testing because there is no formal stability analysis and
verification methodology.

Therefore, it is desirable to formalize the path planning problem as a low complexity
problem. In the Model Predictive Control (MPC) path planning, a path is found to solve a
constrained optimal control problem over a finite time horizon. A cost function is mini-
mized subject to constraints, including vehicle dynamics, design and physical constraints,
and additional constraints introduced to avoid collision with surrounding vehicles. The
constrained optimal control problem is solved in the receding horizon, i.e., at every time
step, the problem is formulated over a shifted time horizon based on newly available
sensor measurement information. The main advantage of resorting to such a formulation is
that collision avoidance is guaranteed, provided that the optimization problem is feasible.
However, collision avoidance constraints for trajectory planning are generally non-convex,
limiting the feasibility and uniqueness of the solution to the optimization problem. Re-
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searchers rely on techniques such as piecewise-linear model [18], Gaussian process-based
approach [19], convexification [20], and machine learning [21–23] to address the issue.

Local path planning is a high-resolution low-level planning that operates by generat-
ing a path using a limited time and space boundary [24]. These algorithms make a finite set
of trajectories that follow a waypoint provided by a global path planner, avoiding obstacles
detected by the sensor. The discrete scheme of this trajectory is optimized by the integration
of differential equations in vehicle dynamics [25]. Typically, the bug algorithm, a local
path planning algorithm, works based on sensors without information on the map [26].
These algorithms make a straight line in the direction of the target point provided by the
global path planner and then move along the line and encounter an obstacle. The algorithm
detects the obstacle and moves around it. After moving around it, the algorithm finds the
nearest point to the target point and moves back to the target point.

Another example of local path planning is the tentacle method [27]. This method
creates a path by selecting only one of several vehicle trajectories depending on the obstacle
location and uses the local path planning method for global path planning. Because
this method does not consider moving people or moving vehicles, it is currently used as
path smoothing.

The aforementioned global path planning method limits the information from the
entire map in the outdoor case where the map information is needed. The concept of local
path planning is required to compensate for the limitations of global path planning [24].
In most autonomous driving currently under research, maps are created through sensors.
Then, path planning is conducted without information on the entire map. Many current
path planning studies have used global path planning as local path planning [28–31].
Therefore, this paper focuses on the local path planning method of autonomous vehicles
based on a predefined global path.

Autonomous driving requires the ability to maintain lanes and speed while over-
taking front vehicles. In the driving environment, lanes are divided into solid lines and
dotted lines, as shown in Figure 1. The Ego vehicle E must be controlled to avoid a dan-
gerous collision with the surrounding vehicle Sk(k = 1, · · · , q), where q is the number of
surrounding vehicles.

Figure 1. Autonomous driving environment.

The APF algorithm [32] described in Section 1 explains the results of effectively
conducting path planning with attractive and repulsive forces differently from other
algorithms. However, due to the many parameters used for control, it is difficult to
determine the optimal control. Thus, Cho et al. [33] experimented using the ODG potential
field (PF), the improved version of the APF algorithm. The ODG PF algorithm uses the
Obstacle-Dependent Gaussian (ODG) model, which expresses the presence of an obstacle
measured by the sensor as a risk using a Gaussian function [33]. It is confirmed that path
planning is more stable than APF through the experiment while having fewer parameters.
However, as the ODG PF does not contain vehicle dynamics, the experimental results show
unstable control, which is limited in real vehicle models.
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We propose a risk model-generalized ODG model to create a path that incorporates
the vehicle risk rather than removing the MPC constraints on collision avoidance. The
proposed algorithm calculates the optimal path using MPC, and in this process, the cost
function includes the proposed risk model that expresses the risk information of the obstacle
detected by the sensor. Due to the characteristics of the proposed algorithm, it tends to
react quickly to obstacle information detected by the sensor and avoid the obstacle. As a
result, stable driving is possible with a quick response to an obstacle vehicle, and a quick
response creates a low lateral acceleration. Therefore, we propose an optimal controller
that integrates the proposed risk model and MPC to solve the computational problem and
enable stable obstacle avoidance path planning. The main contributions of this paper are
as follows:

(1) We proposed a general ODG-based risk model to apply for vehicles and lanes to
define the risk of driving.

(2) We combined the general ODG-based risk model and MPC, and the proposed
algorithm responds to avoid obstacles quickly. Due to this tendency, the proposed
method provides safe control and minimizes vehicle shake.

(3) The proposed method can control the vehicle for the obstacle avoidance process in
real-time, and it has been confirmed through experiments.

This paper is organized as follows. Section 2 discusses related work, introducing
the ODG model and the MPC function. Section 3 defines the proposed method using
the proposed risk model and MPC. Section 4 presents an experiment using mobile robots
similar to vehicle dynamics and the experimental results of propose method. Section 5
summarizes and concludes. In addition, the nomenclature and variable definition are given
in Nomenclature, respectively.

2. Related Work

Before describing the proposed algorithm, this section briefly reviews the fundamental
theories associated with the proposed algorithm. We first describe the ODG PF algorithm
and the MPC function. Section 2.1 describes the ODG PF algorithm, and Section 2.2
describes the MPC function.

2.1. Obstacle-Dependent Gaussian Potential Field Algorithm

This section describes a risk-based algorithm, ODG PF. Cho et al. [33] found that the
laser range finder (LRF) sensor data measured in the LRF sensor are used to determine
obstacles and measure the risk using the Gaussian function at the measured value. Using
the measured risk, move the yaw angle of the vehicle through the inertial measurement
unit sensor to a place with low risk.

The received data are measured in Figure 2, and the measured data are listed in
Figure 3. As a result, the measured data determine the obstacle [33]. Figure 4 stands for the
enlargement of the angle occupied by the obstacle after considering the vehicle width. The
ODG PF algorithm measures the width for the determined obstacle, as depicted in Figure 4,
and calculates the repulsive field for the measured obstacle. Thus, for θ measured for each
obstacle in the sensor, as presented in (1), the Gaussian function is calculated to produce a
reactive field:

frep(θi) =
n

∑
k=1

krep exp(− (θk − θi)
2

2σ2
k

). (1)

krep = (dmax − dk) exp(
1
2
), (2)

where θk is a center angle of each obstacle, dmax is the maximum detection range, σk denotes
half of the angle occupied by the kth obstacle, and n is the number of obstacles. In θi, ith
indicates the data contract of the sensor data (i = 1, ..., 361), and it means the sequence
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number of the approach angle. The coefficient krep is set up for each obstacle to embrace
the Gaussian likelihood for each obstacle fully.

fatt(θi) = katt

∣∣∣θgoal − θi

∣∣∣, (3)

ftotal(θi) = frep(θi) + fatt(θi), (4)

where katt is the weight parameter for an attractive field. The attractive field is calculated
to follow the direction of the goal point (θgoal), as shown in (3). Thus, the total fields are
available, as presented in (4). When the total field is obtained, the vehicle is moved by the
θ of the minimum point, as depicted in Figure 5.

Figure 2. Illustration with vehicle and obstacles of the laser range finder (LRF) sensor.

Figure 3. Sensor data and threshold distance.

Figure 4. Enlarging the angle occupied by obstacles.
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Figure 5. Result of obstacle-dependent Gaussian (ODG) potential field (PF).

2.2. Model Predictive Control

This section describes the MPC function, as described in [29,30]. The MPC algorithm
finds the optimal control to minimize the cost function that satisfies the constraints consist-
ing of the predicted horizon and system model [29,30]. Therefore, as depicted in Figure 6,
the MPC algorithm is a way to predict status variables or outputs using models of control
targets. This method can provide optimized control using appropriate cost functions
and constraints.

Figure 6. Generalized model predictive control architecture.

The MPC method [29,30] has the advantage that it can control a set of target points
in the constrained system. If the target’s steady state is not admissible, Limon et al. [29]
induced the system into an acceptable safe state. The rest of this section describes how to
implement the MPC algorithm.

The discrete-time LTI system is given by (5). Moreover, x ∈ IRnx denotes the state, and
u ∈ IRnu denotes the input vector. The variable A indicates the system matrix, and B is the
input matrix:

x(k + 1) = Ax(k) + Bu(k), (5)

where A ∈ IRnx×nx and B ∈ IRnx×nu . The constraints are expressed in (6):

z = (xT, uT)T ∈ Z ∆
= {z ∈ IRnx+nu : Azz ≤ bz}, (6)

where Z is a nonempty compact convex polyhedron set containing the origin in its interior,
and Az ∈ IRnz×(nx+nu), bz ∈ IRnz , nz denotes the number of constraints. The inputs of
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the system in (5) and the subspace of the steady states have a linear representation in the
following form:

zss = Mθθ, (7)

where zT
ss = (xT

ss, uT
ss) is the stack of the steady-state solution of (5), and xss is obtained by

applying the control action uss to the system in (5). In addition, θ ∈ IRnθ is the parameter
vector, and Mθ is a matrix of suitable dimensions. In accordance with the works in [29,30],
the objective is to find a control of the form u = fN(x(k), x̂) such that it minimizes the
cost function subject to the system constraints. Equation (5) is controlled to the target state
while fulfilling the constraints in (6). Furthermore, with N being the prediction horizon,
the function map u = FN(x(k), x̂) can be calculated by solving the following optimization
problems parameterized in x and x̂. The optimization problem of (8) can be solved by
expressing it as a quadratic programming problem [29,30].

min
ui ,θ

JN(u, θ, x, x̂)

subject to
x0 = x(0),
x(i + 1) = Ax(i) + Bu(i), i = 0, 1, ..., N − 1
(xT

ss, uT
ss)

T = Mθθ,
(xN

T, θT)T ∈ Xg
f ,

(8)

where the terminal set Xg
f is chosen as follows:

Xg
f =

{
(xT, θT)T ∈ IRnx+nθ : (x, Kx + Lθ) ∈ Z, Mθθ ∈ Z

}
, (9)

with K ∈ IRnu×nx being a constant matrix such that the eigenvalues of A + BK lie within
the unit circle [29,30]. Therefore, the cost function JN(u, θ, x, x̂) is chosen as follows:

JN(u, θ, x, x̂) =
N

∑
i=0

[‖x(i)− xss‖2
Q + ‖u(i)− uss‖2

R] + ‖x(N)− xss‖2
P + ‖xss − x̂‖2

T , (10)

where u and θ are division variables that solve the optimization problem of (8), and
Q = QT > 0, R = RT > 0, T = TT > 0, P = PT > 0, which define the appropriate
dimensions. The optimal control action is applied using the required horizon strategy
fN(x, x̂) = u∗(0), where u∗(0) indicates the first element of the optimal sequence. There-
fore, we can control the vehicle to approach the desired state by defining MPC, and we
confirmed that the path could be found using the Gaussian function for obstacles in the
ODG PF algorithm and that the vehicle could follow the path using the MPC algorithm.

3. Real-Time Obstacle-Dependent Gaussian Model Prediction Control Algorithm

In this section, we explain the ODG MPC algorithm. As illustrated in Figure 7, we
designated a path to avoid obstacles using the ODG MPC algorithm and vehicle model.
The proposed autonomous driving system consists of a controller, perception, estimation,
and a vehicle. First, the camera data are integrated to obtain information on the vehicle
location, vehicle speed, and roadway obstacle information. The control signal is sent to
the vehicle for stable movement using an algorithm incorporating the ODG and MPC
algorithm through the information obtained from the perception from the ODG MPC
algorithm and the vehicle states via the estimation.

The ODG MPC algorithm includes three basic elements, which we detail in this section:

1. vehicle dynamic modeling,
2. ODG algorithm, and
3. path planning.
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Figure 7. Obstacle-dependent Gaussian model prediction control architecture.

3.1. Vehicle Dynamic Modeling

We mark the notation with the bicycle model, as illustrated in Figure 8. The MPC
models of host vehicles can be expressed in a state-space equation. As in [34], we used the
2-degrees of freedom (DOF) bicycle model for the MPC bicycle system. The lateral velocity
of the vehicle is assumed to be constant and the slip angle is assumed to be zero. As this
paper aims to develop an obstacle avoidance path planning in real-time, the vehicle model
was constructed as a linearized model. The nonlinearized model approximately doubled
the computational cost of the linearized model, but there was no significant difference in
the generated path. However, this condition is only complete when the vehicle speed is
lower than 10 m/s. When vehicle speed exceed the limit, the linearized model does not
follow the nonlinear model [35].

Figure 8. Vehicle bicycle model for path planning.

The model of the host vehicle is expressed by the state space equation according to
the velocity and the position shown in (11) and (12):

ẋ = Ax + Bu, (11)
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x = [pX , vX , pY , vY ]
T , u = [aX , aY ]

T , (12)

where x is the state of the vehicle vector, and u is the acceleration vector. The controlled
system is usually modeled on the basis of a discrete state-space model of MPC [36]. Because
the Ego vehicle model must predict the physical longitude of the next step, the continuous
time model was converted into the discrete-time model with the sampling time Ts [37].

The dynamic discrete-time model of the operation point of the vehicle can be described
as the state space, and the shape of the operation point of the vehicle can be linearized as
follows:

x(k + 1) = Adx(k) + Bdu(k), (13)

y(k) = Cdx(k), (14)

Ad =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1

, Bd =


1
2 T2

s 0
0 Ts

1
2 T2

s 0
0 Ts

, Cd =

[
1 0 0 0
0 0 1 0

]
, (15)

y(k) = [pX , pY ]
T , (16)

where Ad is a system matrix, Bd is an input matrix, and Cd is an output matrix. In addition,
x(k) is the kth vehicle state, and y(k) denotes the latitude and longitude position.

3.2. Obstacle-Dependent Gaussian Algorithm

The ODG determines the driving environment risk level. Therefore, a driving path is
created safely in a low-risk place. Figure 9 illustrates how the ODG algorithm represents
risk using the Gaussian in (17):

Orisk(pY ) = ω exp(−
(pSY

− pY )
2

σ2 ), (17)

where ω is the risk at the obstacle location, pSY
is the lateral position of obstacle, and pY is

the lateral road position. Finally, σ is the variance of obstacle movement.

Figure 9. Obstacle-dependent Gaussian concept (ω = 1 and σ2 = 0.2).

Cho et al. [33] experimented by applying the ODG to avoid static and dynamic obsta-
cles. Therefore, the ODG function can be generalized for driving environment obstacles,
such as lanes and vehicles.

The maximum risk to the center of a different target depending on the target state
and the Ego vehicle state, E, is defined as Ak, and the risk of each situation is determined
using the maximum collision risk. Let σk specify the extent to which the obstacle affects
the boundary based on the width of Sk(WSk ) and E(WE) and the obstacle displacement.
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The reliability R (confidence interval level) is the extent to which the obstacle affects the
surrounding environment (i.e., the extent to which the obstacle size and space move during
the sample time may be within the range). This probability is calculated as a ratio of the
ODG integration to the total size. Therefore, σk is required to calculate the R value in the
Gaussian error function (ERF) in (20).

σk = Ak/ERF−1(R), (18)

Ak =
WE
2

+
WSk

2
+ ∆pSy

, (19)

ERF(x) =
1√
π

∫ x

−x
exp(−t2)dt, (20)

where ∆pSy
is lateral displacement of Sk in the sampling time.

The ODG is defined for the line markers to prevent the vehicle from straying out of its
solid and dotted lines (Ol) and is defined for the vehicles (Ov). Moreover, ODGTotal is the
sum of the ODGs:

ODGTotal(pY ) =
Nl

∑
i

Ol +
Nv

∑
i

Ov,k, (21)

where Nl is number of lines on the road, Nv is the number of surrounding vehicles, pY is
the lateral road position, and Ov,k is the mean ODG of the kth surrounding vehicle.

3.2.1. Obstacle-Dependent Gaussian Line Model

Lines on the road separate lanes for vehicle safety. Vehicles cannot move past solid
lines because there is a risk of collision, and thus they can only move through the dotted
line. Therefore, the ODG for the line model is expressed by applying the ODG for solid
(Ol_s) and dotted lines (Ol_d):

Ol(pY ) = Ol_s(pY ) + Ol_d(pY ). (22)

In South Korea, the radius of curvature (CR) of the road depends on the specified road
cruising speed, Vinit. Therefore, the lateral line displacement is determined to account for
the design criteria of the curve section:

σl_s = (
WE
2

+
WL
2

+ ∆p(l_s)Y
)/ERF−1(R), (23)

∆p(l_s)Y
= CR × {1− cos(

Ts ×Vinit
CR

)}, (24)

where WL is the line width. As a result, the ODG for a solid line is represented in (25):

Ol_s(pY ) = ω exp(−
(p

(l_s)Y
− pY )

2

σ2
l_s

), (25)

where the solid line of the ODG is the risk corresponding to the lateral position of the line
and p

(l_s)Y
is the lateral position of the line. The results of the solid line of the ODG are

expressed as the sum of the solid line for ODG for each line. The ODG uses the results of
the solid line to keep the vehicle in the middle of the lane.

The dotted line risk is determined using the ratio of the solid line risk and the ODG of
the dotted line, where WR is the road width:

Ol_d(pY ) = ωd ×ω exp(−
(p

(l_s)Y
− pY )

2

σ2
l_d

), (26)
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σ2
l_d =

W2
Rσ2

l_s

W2
R + 4 ln(ω)

. (27)

As presented in Figure 10, the lane center is minimized by the ODG variance. The
center of the lane is low risk. Therefore, the dotted line is calculated so that the risk is lower
than that of the solid line, which helps move the vehicle to the lane center with low risk.
Overall, the result of the ODG for the line is presented in Figure 11.

Figure 10. Obstacle-dependent Gaussian (ODG) for solid and dotted lines.
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Figure 11. Line obstacle-dependent Gaussian (ODG) with model prediction control (MPC) longitudi-
nal position.

3.2.2. Obstacle-Dependent Gaussian Vehicle Model

Dynamic and static obstacles can be identified through sensors in driving situations,
and obstacles must be avoided. The ODG algorithm can be applied to obstacles. Deter-
mining whether the obstacle, Sk, poses a danger to E, is moving slowly in front of E, or
is quickly moving behind E, is essential to apply the ODG algorithm to an obstacle. The
ODG is calculated for obstacles that are considered dangerous in the sensor detection area.

The obstacle distance and relative speed determine the risk of collision in the ODG
against an obstacle. Because the ODG algorithm is inversely proportional to the collision
time, TC, the risk is significantly increased to TC → 0, making it dangerous. Therefore, the
ODG algorithm calculates the time TC to the collision.

The way to avoid collisions is by changing lanes or slowing down by maintaining
the current lane. For this purpose, the time required for avoidance, TA, is used to define
the ratio of TC to TA. This definition increases the risk in the event of a collision with the
vehicle, which affects the ODG risk. Combining the longitudinal and lateral information
determines whether the vehicle should change the lane or reduce speed in the current



Appl. Sci. 2021, 11, 3703 12 of 31

lane. In the opposite case, it reduces the risk of collision. TA is a user-defined variable that
depends on E performance. If the TA value is large, a sufficient distance from the obstacle
vehicle is ensured, but a robot freezing problem may occur. The ODG algorithm for the
obstacle vehicle is expressed through (28)–(30):

Ov,k(pY ) = ω

∣∣∣∣TA
TC

∣∣∣∣ exp

− (p
(S_k)Y

− pY )
2

σ2
k

, (28)

σk =

(
WE
2

+
WSk

2
+ Ts × v

(S_k)Y

)
/ERF−1(R), (29)

TC =
p
(S_k)X

− pEX

v
(S_k)X

− vEX

, (30)

where p
(S_k)Y

is the lateral position of the kth surrounding vehicle, WSk is the width of kth
surrounding vehicle, and v

(S_k)Y
is lateral velocity of the kth surrounding vehicle. pEX

and
vEX

are the longitudinal positions and speeds of E, respectively. In addition, p
(S_k)X

and
v
(S_k)X

are the longitudinal positions and speeds of the kth surrounding vehicle, respectively.
The value with the minimum risk from the ODG value in the lateral direction along

the longitudinal direction is set as a safe position. In this process, the minimum value of
the ODG value is calculated based on the lane, and a lateral position having a low risk
is searched for in each lane. In order to utilize the reference position information of the
MPC, the reference positions have the same size of the horizon in MPC, and are decided by
lateral position with minimum ODG value for the lane. In the case of a road departure, it
must pass through the dotted line, and in this process there is a further risk of crossing the
dotted line. Therefore, for the lanes other than the currently maintained lane, the risk of
crossing the dotted line is additionally added. The sum of the minimum ODG values at
each horizontal step indicates the risk to the lane as follows:

ODGi = min
pY (1,··· ,NP)

Np

∑
h=1

[ODGTotal(pY (h))] + Oi,c, (31)

where ODGi is total ODG value of i-th lane, Np is the size of prediction horizon in MPC,
ODGTotal(pY (h)) is minimum ODG value in the i-th lane boundary, and Oi,c is risk of cross
the dotted line that is integration of Ol_d.

Oi,c = |i− ire f |ωdω
√

π, (32)

where ire f is the reference lane to drive. This expression can be applied to a form in which
the type of the lane changes while driving. The choice of driving lane is determined by
comparing the ODG value of the lane (ODGi).

From (18), the ODG variance (σk) is calculated. The ODG results for obstacles in one
lane are displayed in Figure 12. The ODG algorithm calculates the lanes and obstacles in
the front and displays the obstacles and lane hazards, as illustrated in Figure 13.



Appl. Sci. 2021, 11, 3703 13 of 31

0

30

20

Horizon step(time)

5
10

Lateral Position of Road(m)

0

0
-5

O
D

G
 V

a
lu

e

50

Figure 12. Vehicle obstacle-dependent Gaussian (ODG) with model prediction control longitudi-
nal position.

Figure 13. Total obstacle-dependent Gaussian (ODG) with model prediction control longitudinal
position.

3.3. Path Planning

This section describes the optimal controller using modeling (Section 3.1), the ODG
algorithm (Section 3.2), and MPC (Section 2.2). The cost function consists of ODG, the
tracking of the target path, and input control. The cost function is set to the weight value of
α, and the weight matrices of β, γ, and ζ are set for ODG, the tracking of the target path,
and input control, respectively, as in (33). Optimal control is computed using QP for the
cost function:

min J = α min
Np

∑
h=1

[ODGTotal(pY (h))] +
∥∥∥pY (h)− pYre f

(h)
∥∥∥2

β

+
∥∥∥vX (h)− vXre f

(h)
∥∥∥2

γ
+ ‖u(h)‖2

ζ ,
(33)

where pYre f
indicates the position of the lane selection when the vehicle is driving. As the

vehicle speeds up, the risk associated with the vehicle increases. Therefore, increasing the
vehicle speed in high-risk situations creates additional risks. We adjust the speed as shown
in (34) to reduce the driving speed as the danger increases. In conclusion, the average value
of the ODG is compared with the risk of the initial set of obstacles. If the average value of
the ODG is close to zero, the vehicle drives at the default speed, and if the average value
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increases, the vehicle decelerates. If it is equal to the ω, the target speed is zero, and the
vehicle stops.

vre f = vinit

1−

Np

∑
h=1

ODGTotal(pY (h))

Np ×ω

. (34)

We must consider the speed, acceleration, lane, and so on for the vehicle. However,
the advantage of MPC is that the vehicle can be controlled by multiple constraints for
complex vehicle states. The vehicle should not violate the maximum and minimum speed
requirements of road regulations. Therefore, as shown in (35), various vehicle restrictions
may be applied, such as maximum acceleration, maximum speed, or minimum acceleration,
minimum speed, when decelerating:

umin ≤ uk ≤ umax, and ∆umin ≤ ∆uk ≤ ∆umax, (35)

respectively, depending on the actual driving situation.

4. Experiment

In this section, the obstacle avoidance path planning algorithm is experimented with
the mobile robot. We conducted an experiment using the parameter value of the ODG
MPC algorithm as the value that obtains the best experimental result in the paper [38].
Section 4.1 describes the three main evaluation indicators for the experimental results. The
first is the average computational time evaluation metrics. The second is the safety metric,
and the third is an indicator related to comfort. Section 4.2 describes the configuration of
the experimental environment. Section 4.3 reveals the results of the actual experiment. The
ODG MPC algorithm was optimized using the MATLAB optimization routine quadprog.

4.1. Evaluation Metrics

We assessed three evaluation metrics and confirmed the experimental results:

1. computation time evaluation metric,
2. safety metric, and
3. comfort level quantification metric

The computational time evaluation metric is the evaluation of whether or not the
operation is performed quickly.

Safety (ST) [39] evaluates the path for a narrow road and is expressed by (36)–(38):

FR =

N−1
∑

i=1
|θi − θV |

(N − 1)180◦
, (36)

DR =
N

∑
i=1

Di
N × DV

, (37)

ST = (1− FR)× DR, (38)

where N indicates the number of points in the created path, and FR is the angular difference
between the generated and road centerlines (i.e., the fluctuation ratio). In addition, DR
is the ratio of the distance from the nearest obstacle path to the road centerline (i.e., the
deviation rate). Further, θi is the ith angle change of the path, and θV is the angular road
change (θV = 0 for a straight road). Moreover, Di is the closest distance from the obstacle
to the ith line vertex, and DV is the nearest distance from the obstacle to the midpoint of
the path corresponding to the ith line’s vertex. Figure 14 lists the physical meaning for
each variable. The closer ST ≈ 1, implies a more stable path. Therefore, through Scenario 1,
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we verified the driving stability of how close the test mobile robot drives to the centerline
during each algorithm’s driving evaluation.

Figure 14. Safety (ST) metric.

According to ISO 2631-1, the comfort level has measured a method of quantifying
whole-body vibration related to human comfort. Based on this, we measured the comfort
level using ISO 2631-1, which uses the weighted root mean square (RMS) acceleration (ak)
of the k-axis:

a2
wk =

1
T

T∫
0

a2
k(t)dt, (39)

where T is the measurement time.

aw =
√

W2
d a2

wx + W2
d a2

wy + W2
k a2

wz, (40)

where aw is the frequency weighted acceleration time; awx, awy, and awz are the weighted
RMS acceleration frequency weightings; Wd (x- and y-directions) and Wk (z-direction)
relate to comfort; and Wd is a constant. We use the weighted RMS acceleration used
in [40,41], as in the following (41):

x axis : Wd = 1.4,
y axis : Wd = 1.4,
z axis : Wk = 1.

(41)

Table 1 lists the comfort levels corresponding to various aw to indicate the possibility
of the driver’s response to the vibration during driving according to ISO 2631-1 [42].

Table 1. Comfort level based on ISO 2631-1.

Overall Acceleration (m/s2) Perception

aw < 0.315 Comfortable

0.315 < aw < 0.63 A little uncomfortable

0.8 < aw < 1 Fairly uncomfortable

0.8 < aw < 1.6 Uncomfortable

1.25 < aw < 2.5 Very uncomfortable

2.5 < aw Extremely uncomfortable

Kim et al. [41] scored ISO 2631 for the comfort level. We scored it as displayed in
Table 2 to indicate the comfort level. Through Scenarios 2 and 3, we compared the comfort
level of the experimental results using each algorithm.
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Table 2. Comfort level based on ISO 2631-1 quantification.

Overall Acceleration (m/s2) Perception Score

aw < 0.315 Comfortable 10

0.315 < aw < 0.63 A little uncomfortable 8

0.8 < aw < 1 Fairly uncomfortable 6

0.8 < aw < 1.6 Uncomfortable 4

1.25 < aw < 2.5 Very uncomfortable 2

2.5 < aw Extremely uncomfortable 0

4.2. Experimental Environment

An experiment was conducted to compare the proposed algorithms with the PF and
PF MPC algorithms using an actual mobile robot. We made the experimental environment
similar to in [43]. The controller parameters are displayed in Table 3.

Table 3. Controller parameters.

Parameter Value Parameter Value

m 4.025 kg IZ 0.13 kg·m2

l f 0.144 m lr 0.119 m

N 10 ω 100

ωd 25% WL 0.002 m

WE = WS 0.152 m WR 0.200 m

R 95% TA 3 s

Sensing range 1 m Lateral resolution 0.1 m

vymax 4 m/s vymin −4 m/s

vxmax 4 m/s vxmin −4 m/s

axmax 3 m/s2 axmin −3 m/s2

aymax 3 m/s2 aymin −3 m/s2

∆axmax 1 m/s2 ∆axmin −1 m/s2

∆aymax 1 m/s2 ∆aymin −1 m/s2

α 1 β [0.25, 0.25]

γ [0.25, 0.25] ζ [0.25, 0.25]

In [43], information is collected from the server and controlled through algorithms
by integrating information on the location and line of the mobile robot measured using
the camera. We experimented with the experimental environment as shown in Figure 15.
The mobile robot is positioned in the picture and is 22 cm wide and 40 cm long. We
experimented with two mobile robots, as illustrated in Figure 16.

The experiment consists of three scenarios: Scenario 1 verifies that driving is done
in the places shown in Figure 17a that are similar to the actual reference path. Scenario 2
drives on the path illustrated in Figure 17b and identifies how the algorithm moves when
the Ego mobile robot, E, overtakes an obstacle mobile robot, Sk, and measures the comfort
level to determine how efficiently it moves. Scenario 3 conducts overtaking experiments in
a complex situation for two obstacles, as illustrated in Figure 17c. Because the width of
the mobile test robot is 22 cm, the width of the test road was between 45 cm and 50 cm to
match the ratio of the width of the mobile robot to the width of the road in Korea.
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Figure 15. Experimental environment.

Figure 16. Mobile Robots 1 and 2 on experimental platforms.

(a) Map1 (b) Map2 (c) Map3

Figure 17. Scenario map.

4.3. Experimental Results
4.3.1. Experimental Scenario 1

The results of the ODG MPC, PF, and PF MPC algorithms are displayed in Figure 18.
The computation time is listed in Table 4, and the safety metric measurement result is
presented in Table 5.
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Figure 18. Results of the path for Scenario 1.

Table 4. Results of the computation time.

Algorithm Computation Time (ms)

ODG MPC 14.2

PF 10.1

PF MPC 15.3

Table 5. Results of the safety metric (ST).

Experiment
Algorithm

ODG MPC PF PF MPC

No. 1 0.7669 0.6427 0.7058

No. 2 0.6899 0.5677 0.5738

No. 3 0.6785 0.6309 0.6699

No. 4 0.7295 0.6066 0.5979

No. 5 0.7425 0.6262 0.5995

No. 6 0.7409 0.5825 0.5993

No. 7 0.7330 0.6064 0.5472

No. 8 0.6899 0.5677 0.5738

No. 9 0.7203 0.6259 0.6214

No. 10 0.7427 0.5935 0.6147

Average Value 0.7234 0.6050 0.6103

For the computation time, although the PF is the fastest in computation time, PF
algorithms have low safety metrics because PF algorithms do not have a dynamic model.
The ODG MPC algorithm is slower than the PF but faster than the PF MPC algorithm,
which has the same dynamic model as shown in Table 4. Furthermore, ST exhibited
an 18.53% improvement over the PF MPC algorithm as shown in Table 5. Due to the
characteristic of the Gaussian function, the ODG risk of lane affects further than the effect
of PF. As so, the vehicle tends to go to the middle of the lane. Although the operation speed
is slower than that for the PF, the results demonstrate that the ODG MPC algorithm moves
closest to the reference path.
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4.3.2. Experiment Scenario 2

The experiment in Scenario 2 is divided into two parts. The first is when the obstacle
is a static obstacle, and the second evaluates a dynamic obstacle that moves more slowly
than the Ego mobile robot. The experiment was conducted 10 times.

(1) Static Obstacle

This scenario compares algorithms for overtaking mobile robots as illustrated in
Figure 19.
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Figure 19. Results of the path from Scenario 2 for a static obstacle.

The Ego mobile robot has a speed of 2 m/s, and the obstacle mobile robot is stationary.
The static obstacle is located at pX = 257 and pY = 440. In Figure 19, the path of ODGMPC
tends to respond faster than the comparison algorithm. This trend can also be seen in
acceleration (Figure 20). Because the acceleration graph tends to increase after the vehicle
has changed lanes, a significant increase in the acceleration graph corresponds to a lane
change. The proposed ODG MPC algorithm changes lanes at approximately 1.2 s, and
PFMPC algorithm changes lanes at approximately 1.4 s. The slower the lane changes, the
greater the acceleration increases, resulting in a lower Comfort score. The acceleration
graph reveals that the ODG MPC algorithm acceleration value bounces less than the PF
and PF MPC algorithm (Figure 20). Table 6 demonstrates that the ODG MPC algorithm
has a higher comfort level score than the other algorithms. Therefore, the ODG MPC
algorithm operates more safely and faster against obstacles than other algorithms. Figure 21
represents the distance from the obstacle at each time. The minimum distance between
obstacles is listed in Table 7, which shows the minimum distance from the obstacle mobile
robot, showing farther safety than other algorithms in Figure 21. The result reveals an
18.56% improvement over the PF and a 14.89% improvement over the PF MPC algorithm.
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Figure 20. Results of the acceleration from Scenario 2 for a static obstacle.
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Figure 21. Results of the obstacle distance from Scenario 2 for a static obstacle.

Table 6. Average result scores for 10 experiments in Scenario 2 for a static obstacle.

Comfort Level (Score) ODGMPC PF PFMPC

Comfortable (10) 18.67% 10.13% 14.83%

A little uncomfortable (8) 14.10% 8.10% 14.83%

Fairly uncomfortable (6) 17.84% 10.81% 16.52%

Uncomfortable (4) 22.40% 17.90% 22.45%

Very uncomfortable (2) 12.86% 23.98% 18.64%

Extremely uncomfortable (0) 14.10% 29.05% 12.71%

Average Comfort Level Score 5.21 3.50 4.90
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Table 7. Results for the minimum distance from Scenario 2 for a static obstacle.

Experiment
Algorithm

ODG MPC (cm) PF (cm) PF MPC (cm)

No. 1 4.034 4.191 3.757

No. 2 4.506 2.604 4.043

No. 3 4.462 4.001 3.143

No. 4 4.534 3.480 3.945

No. 5 4.103 3.599 3.648

No. 6 4.213 3.362 3.710

No. 7 4.122 3.303 3.593

No. 8 4.019 3.569 3.722

No. 9 4.082 3.930 3.516

No. 10 4.109 3.541 3.635

Average Value 4.218 3.558 3.671

(2) Dynamic Obstacle

The Ego mobile robot path planning experiment for moving obstacles was conducted.
The dynamic obstacles move at 1.5 m/s, and the Ego mobile robot moves at 2 m/s.

The experimental results were similar to the experiment for the static obstacles in Figure 22.
Moreover, as a result of calculating the comfort level using the acceleration graph in
Figure 23, the experimental results for the ODG MPC algorithm are better than those of
other algorithms and those of the static obstacles listed inTable 8. In Figure 24, the minimum
distance to the moving obstacle was confirmed in Table 9, where the experiment using the
ODG MPC algorithm demonstrated a longer distance with an 18.56% improvement over
the PF and a 14.8% improvement over the PF MPC algorithm. Therefore, we confirmed
that the ODG MPC algorithm is better than the other algorithms in terms of stability and
ride comfort, even with moving obstacles.
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Figure 22. Results of the path from Scenario 2 for a dynamic obstacle.
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Figure 23. Results of the acceleration from Scenario 2 for a dynamic obstacle.
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Figure 24. Results of the obstacle distance from Scenario 2 for a dynamic obstacle.

Table 8. Average result scores for 10 experiments in Scenario 2 for a dynamic obstacle.

Comfort Level (Score) ODGMPC PF PFMPC

Comfortable (10) 19.86% 8.25% 7.33%

A little uncomfortable (8) 18.83% 9.17% 8.10%

Fairly uncomfortable (6) 14.04% 7.95% 15.05%

Uncomfortable (4) 22.60% 18.96% 12.74%

Very uncomfortable (2) 16.78% 22.01% 23.55%

Extremely uncomfortable (0) 7.87% 33.63% 33.20%

Average Comfort Level Score 5.57 3.23 3.26
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Table 9. Results of the minimum distance from Scenario 2 for a dynamic obstacle.

Experiment
Algorithm

ODG MPC (cm) PF (cm) PF MPC (cm)

No. 1 4.973 1.613 1.748

No. 2 4.138 3.907 2.435

No. 3 4.264 2.845 2.600

No. 4 4.147 3.601 4.075

No. 5 4.309 4.291 4.987

No. 6 4.309 2.759 4.190

No. 7 5.189 2.788 2.261

No. 8 4.339 3.550 4.417

No. 9 4.207 3.257 3.622

No. 10 2.620 2.411 2.579

Average Value 4.249 3.102 3.291

4.3.3. Experiment Scenario 3

Scenario 3 is an experiment in a complex environment. This experiment demonstrates
the test results of an Ego mobile robot path planning operation in a situation with two ob-
stacle mobile robots. It is divided into two experiments. The first experiment is conducted
with both obstacles stopped. The second experiment consists of dynamic obstacles and
static obstacles. The experiment was conducted 10 times.

(1) Two Static Obstacles

The two obstacles are at pX = 220 and pY = 383 and at pX = 530 and pY = 335. The
Ego mobile robot moves at a speed of 2.5 m/s. The experimental results are displayed in
Figure 25.

Table 10 presents the acceleration in Figures 26 using comfort indicators. The re-
sults demonstrate that the ODG MPC works more comfortably than the PF and PF MPC
algorithms.

Regarding the distance to the obstacle, Figures 27 and 28, and Table 11, demonstrate
that the ODG MPC works more stably around obstacles than the other algorithms. At the
first obstacle, the obstacle avoidance operation operates 26.6% farther than the PF algorithm
and 8.42% farther than the PF MPC algorithm. The results indicate that the second obstacle
is operated by avoiding obstacles 11.9% farther than the PF algorithm and 26.7% farther
than the PF MPC algorithm.
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Figure 25. Results of the path from Scenario 3 for two static obstacles.
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Figure 26. Results of the acceleration from Scenario 3 for two static obstacles.

Table 10. Average result scores for 10 experiments with two static obstacles.

Comfort Level (Score) ODGMPC PF PFMPC

Comfortable (10) 10.85% 8.06% 9.04%

A little uncomfortable (8) 11.04% 6.47% 7.61%

Fairly uncomfortable (6) 11.95% 9.81% 8.58%

Uncomfortable (4) 23.57% 16.28% 12.76%

Very uncomfortable (2) 26.81% 16.07% 22.56%

Extremely uncomfortable (0) 15.78% 43.31% 39.46%

Average Comfort Level Score 4.16 2.88 2.99
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Figure 27. Results of the obstacle distance from Scenario 3 for static Obstacle 1.
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Figure 28. Results of the obstacle distance from Scenario 3 for static Obstacle 2.

Table 11. Results of the minimum distance from Scenario 3 for two static obstacles.

Distance (cm) Obstacle 1 (S1) Obstacle 2 (S2)

Experiment ODG MPC PF PF MPC ODG MPC PF PF MPC

No. 1 4.391 2.989 2.940 4.986 3.924 3.790

No. 2 4.403 3.265 3.297 4.672 4.573 2.076

No. 3 3.998 3.587 3.030 5.231 4.325 4.249

No. 4 3.536 3.050 4.329 4.839 4.229 4.407

No. 5 4.082 3.223 3.399 4.932 4.263 3.631

No. 6 3.682 3.512 4.472 5.022 4.132 4.334

No. 7 3.670 2.907 4.003 4.316 4.430 4.072

No. 8 4.940 3.013 4.522 5.334 4.612 4.118

No. 9 3.895 3.360 3.395 4.677 4.678 3.775

No. 10 4.047 3.198 4.098 4.837 4.463 4.07

Average Value 4.064 3.210 3.749 4.885 4.363 3.853
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(2) One Dynamic Obstacle and One Static Obstacle

The Ego mobile robot moves at a speed of 2.5 m/s, and the first obstacle moves at
a speed of 1.5 m/s at pX = 220 and pY = 383. The second hurdle lies at pX = 530 and
pY = 335. The experimental results are displayed in Figure 29.

Regarding the acceleration, Table 12 was constructed with a comfort level using
Figure 30 of acceleration. Table 12 confirms that the ODG MPC works more comfortably.

The experimental results are more unstable than the two static obstacles. However,
in Figures 31 and 32, and Table 13, the results show that ODG MPC works farther from
obstacles than other algorithms. At the first obstacle, the obstacle avoidance operation
operates 12.3% farther than the PF algorithm and 16.7% farther than the PF MPC algorithm.
The second obstacle is operated by avoiding obstacles 42.3% farther than the PF algorithm
and 31.6% farther than the PF MPC algorithm.
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Figure 29. Results of the path from Scenario 3 for one dynamic obstacle and one static obstacle.
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Figure 30. Results of the acceleration from Scenario 3 for one dynamic obstacle and one static obstacle.
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Table 12. Average result scores for 10 experiments with one dynamic and one static obstacle.

Comfort Level (Score) ODGMPC PF PFMPC

Comfortable (10) 10.06% 6.44% 5.01%

A little uncomfortable (8) 10.21% 6.59% 7.06%

Fairly uncomfortable (6) 12.79% 9.54% 9.83%

Uncomfortable (4) 20.99% 13.91% 11.34%

Very uncomfortable (2) 23.43% 14.96% 16.77%

Extremely uncomfortable (0) 22.52% 48.56% 49.99%

Average Comfort Level Score 3.90 2.60 2.44
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Figure 31. Results of the obstacle distance from Scenario 3 for a dynamic obstacle.
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Figure 32. Results of the obstacle distance from Scenario 3 for a static obstacle.
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Table 13. Results of the minimum distance from Scenario 3 for one dynamic obstacle and one
static obstacle.

Distance (cm) Obstacle 1 (S1) Obstacle 2 (S2)

Experiment ODG MPC PF PF MPC ODG MPC PF PF MPC

No. 1 4.667 4.150 4.521 5.338 4.358 4.431

No. 2 3.575 3.492 3.129 4.068 2.530 4.039

No. 3 4.719 4.468 4.940 4.534 3.896 3.067

No. 4 3.619 3.264 3.162 5.051 3.403 3.920

No. 5 4.286 4.272 3.883 5.030 3.840 3.864

No. 6 3.959 3.378 3.145 5.567 2.966 3.980

No. 7 4.564 4.370 4.208 5.418 3.868 3.465

No. 8 4.731 3.321 3.154 5.055 3.185 3.950

No. 9 5.198 4.321 4.046 4.620 3.854 3.665

No. 10 4.232 3.721 3.510 5.224 3.453 3.836

Average Value 4.355 3.875 3.729 5.031 3.535 3.822

5. Discussion and Conclusions

This paper proposed an optimal control path plan that enables safe driving and com-
fort, while ensuring low computational operation for autonomous driving by integrating
the ODG and MPC. The ODG algorithm expresses the surrounding environment as a risk-
based path using the information on lanes and the obstacle mobile robot. Optimal control
is performed using QP to control the desired target direction under the constraints defined
through the expressed information and vehicle modeling. The proposed method provides
risk information in the form of ODG to the cost function of MPC to quickly respond to
obstacle avoidance control by controlling the vehicle in a direction with low obstacle risk.
The proposed method has been tested on mobile robots under many overtaking scenarios,
such as a static obstacle in front, a low-speed vehicle in front, and a low-speed vehicle in
front with an oncoming vehicle from the rear. The proposed method showed superior-
ity when compared with the existing algorithm about safety and comfortability. In the
proposed method, the average of the shortest distance to an obstacle is larger than others,
and the comfort level, which is directly related to safety, also shows a higher score than
others. Experimental results show that the average safety metric is 72.34%, and the average
processing time is approximately 14.2 ms/frame, which allows real-time computation. The
experiment confirmed that the proposed method operates in the direction of a low-risk path
in the space measured by the sensor and path planning is more stable with less computa-
tional cost than the comparison algorithms. As a result, the proposed algorithm safely and
quickly performs path planning to avoid surrounding mobile robots. The data results using
the ISO 2631-1 comfort level indicators confirmed that the proposed algorithm operates
more comfortably. Especially in dynamic obstacles, the comfort score had been improved
by more than 70% compared to PFMPC. The assumptions in this proposed method are
limited to areas where the vehicle’s motion model has similar linear and nonlinear results.
We also evaluated the algorithms at low speed due to the limitations of the experimental
environment, which leads to restrictions in applying the actual vehicle. In future works, we
will focus on using reinforcement learning instead of optimal control, which may reduce
the amount of computation. Furthermore, we plan to apply the proposed algorithm in an
outdoor environment using an actual vehicle.
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Nomenclature

Acronym Full Name
ODG Obstacle-Dependent Gaussian
MPC Model Prediction Control
ADAS Advanced Driver Assistance Systems
GPS Global Positioning Systems
RRT Rapidly exploring Random Tree
APF Artificial Potential Field
PF Potential Field
LRF Laser Range Finder
ERF ERror Function
ST SafeTy
ISO International Organization for Standardization
RMS Root Mean Square
Variable Definition
dmax The maximum detection range of sensor
l f Distance from C.G to front
lr Distance from C.G to rear
E Ego vehicle state
Sk Surrounding vehicle state
WE Ego vehicle width
WSk Surrounding vehicle width
WR Road width
WL Line width
x State of the vehicle vector
u Acceleration and steering vector
Ad Discrete system matrix
Bd Discrete input matrix
Cd Discrete output matrix
Ts Sampling time
pEX

Longitudinal position of ego vehicle
vEY

Longitudinal velocity of ego vehicle
pSX

Longitudinal position of obstacle
vSX

Longitudinal velocity of obstacle
pSY

Lateral position of obstacle
vSY

Lateral velocity of obstacle
∆pSy

Lateral displacement of Sk in the sampling time
ω Risk at the obstacle location
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σ Variance of obstacle movement
CR Radius of curvature of road
Vinit Specified road cruising speed
TC Time to collision
TA Time required for avoidance
pre f Position of the lane selection when the vehicle is driving
ire f Reference lane to drive
Nl Number of lines on the road
Nv Number of surrounding vehicles
Np Number of prediction horizon in MPC
Ol_s ODG risk of the solid lane
Ol_d ODG risk of the dot lane
Ov,k Mean ODG of the kth surrounding vehicle
Ol ODG risk of the lane
Oi,c ODG risk of cross the dotted line
N Number of points in the created path
FR Angular difference between the generated and road centerlines
DR Ratio of the distance from the nearest obstacle path to the road centerline
θi ith angle change of the path
θV Angular road change
Di Closest distance from the obstacle to the ith line vertex
DV Nearest distance from the obstacle to the midpoint of the path
T Measurement time
aw Frequency weighted acceleration time
awx, awy, and awz Weighted RMS acceleration frequency weightings

References
1. Broek, S.M.; Nunen, E.V.; Zwijnenberg, H. Definition of necessary vehicle and infrastructure systems for automated driving.

Retrieved January 2011, 3, 2017.
2. Moser, D.; Schmied, R.; Waschl, H.; Re, L.D. Flexible spacing adaptive cruise control using stochastic model predictive control.

IEEE Trans. Control. Syst. Technol. 2018, 26, 114–127. [CrossRef]
3. Liu, C.; Carvalho, A.; Schildbach, G.; Hedrick, J.K. Stochastic predictive control for lane keeping assistance system using a linear

time varying model. In Proceedings of the American Control Conference (ACC), Chicago, IL, USA, 1–3 July 2015; pp. 3355–3360.
4. Haran, T.; Chien, S. Infrared reflectivity of pedestrian mannequin for autonomous emergency braking testing. In Proceedings of

the IEEE 19th International Conference on Intelligent Transportation Systems(ITSC), Rio de Janeiro, Brazil, 1–4 November 2016;
pp. 2230–2235.

5. Neale, V.L.; Dingus, T.A.; Klauer, S.G.; Sudweeks, J.; Goodman, M. An overview of the 100-car naturalistic study and findings.
Natl. Highw. Traffic Saf. Adm. 2015, 5, 0400.

6. Elliott, D.; Keen, W.; Miao, L. Recent advances in connected and automated vehicles. J. Traffic Transp. Eng. 2019, 6, 109–131.
[CrossRef]

7. Wang, H.; Huang, Y.; Khajepour, A.; Zhang, Y.; Rasekhipour, Y.; Cao, D. Crash mitigation in motion planning for autonomous
vehicles. IEEE Trans. Intell. Transp. Syst. 2019, 20, 3313–3323. [CrossRef]

8. Karaman, S.; Frazzoli, E. Sampling-based algorithms for optimal motion planning. Int. J. Robot. Res. 2011, 30, 846–895. [CrossRef]
9. Abhishek, G.; Prateek, M.; Rishabh, L.; Neeti, S. Path finding: A* or Dijkstra’s. Int. J. IT Eng. 2014, 2, 1–15.
10. Han, L.; Yashiro, H.; Nejad, H.T.N.; Do, Q.H.; Mita, S. Bézier curve based path planning for autonomous vehicle in urban

environment. In Proceedings of the IEEE Symposium on Intelligent Vehicle, La Jolla, CA, USA, 21–24 June 2010; pp. 1036–1042.
11. Barraquand, J.; Langlois, B.; Latombe, J.C. Numerical potential field techniques for robot path planning. In Proceedings of

the Fifth International Conference on Advanced Robotics ’Robots in Unstructured Environments, Pisa, Italy, 19–22 June 1991;
pp. 1012–1017.

12. Song, B.; Wang, Z.; Zou, L.; Xu, L.; Alsaadi, F. A new approach to smooth global path planning of mobile robots with kinematic
constraints. Int. J. Mach. Learn. Cybern. 2019, 10, 107–119. [CrossRef]

13. Piazzi, A.; Bianco, C.G.L.; Bertozzi, M.; Fascioli, A.; Broggi, A. Quintic G2-splines for the Iterative Steering of Vision-based
Autonomous Vehicles. IEEE Trans. Intell. Transp. Syst. 2002, 3, 22–36. [CrossRef]

14. Rastelli, J.P.; Lattarulo, R.; Nashashibi, F. Dynamic trajectory generation using continuous-curvature algorithms for door to door
assistance vehicles. In Proceedings of the 2014 IEEE Intelligent Vehicles Symposium Proceedings, Dearborn, MI, USA, 8–11 June
2014; pp. 510–515.

http://doi.org/10.1109/TCST.2017.2658193
http://dx.doi.org/10.1016/j.jtte.2018.09.005
http://dx.doi.org/10.1109/TITS.2018.2873921
http://dx.doi.org/10.1177/0278364911406761
http://dx.doi.org/10.1007/s13042-017-0703-7
http://dx.doi.org/10.1109/6979.994793


Appl. Sci. 2021, 11, 3703 31 of 31

15. Petrov, P.; Nashashibi, F. Modeling and Nonlinear Adaptive Control for Autonomous Vehicle Overtaking. IEEE Trans. Intell.
Transp. Syst. 2014, 15, 1643–1656. [CrossRef]

16. Kolekar, S.; de Winter, J.; Abbink, D. Human-like driving behaviour emerges from a risk-based driver model. Nat. Commun. 2020,
11, 1–13. [CrossRef] [PubMed]

17. Dunning, A.; Ghoreyshi, A.; Bertucco, M.; Sanger, T.D. The Tuning of Human Motor Response to Risk in a Dynamic Environment
Task. PLoS ONE 2015, 10, e0125461.

18. Borrelli, F.; Falcone, P.; Keviczky, T.; Asgari, J.; Hrovat, D. MPC-based approach to active steering for autonomous vehicle systems.
Int. J. Vehicle Auton. Syst. 2005, 3, 265–291. [CrossRef]

19. Hewing, L.; Kabzan, J.; Zeilinger, M.N. Cautious model predictive control using gaussian process regression. IEEE Trans. Control.
Syst. Technol. 2019, 29, 2736–2743. [CrossRef]

20. Franze, G.; Lucia, W. A receding horizon control strategy for autonomous vehicles in dynamic environments. IEEE Trans. Control.
Syst. Technol. 2016, 24, 695–702. [CrossRef]

21. Wischnewski, A.; Betz, J.; Lohmann, B. Real-Time Learning of Non-Gaussian Uncertainty Models for Autonomous Racing. In
Proceedings of the 2020 59th IEEE Conference on Decision and Control, Jeju, Korea, 14–18 December 2020; pp. 609–615.

22. Kabzan, J.; Hewing, L.; Liniger, A.; Zeilinger, M.N. Learning-Based Model Predictive Control for Autonomous Racing. IEEE
Robot. Autom. Lett. 2019, 4, 3363–3370. [CrossRef]

23. Rosolia, U.; Carvalho, A.; Borrelli, F. Autonomous Racing using Learning Model Predictive Control. In Proceedings of the 2017
Amerian Control Conference, Seattle, WA, USA, 24–26 May 2017; pp. 5115–5120.

24. Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving:
State-of-the-art and future research directions. Transp. Res. Emerg. Technol. 2015, 60, 416–442. [CrossRef]

25. Werling, M.; Ziegler, J.; Kammel, S.; Thrun, S. Optimal Trajectory Generation for Dynamic Street Scenarios in a Frent Frame.
In Proceedings of the 2021 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010;
pp. 987–993.

26. Buniyamin, N.; Ngah, W.A.J.W.; Sariff, N.; Mohamad, Z. A Simple Local Path Planning Algorithm for Autonomous Mobile
Robots. Int. J. Syst. Appl. Eng. Dev. 2011, 5, 151–159.

27. Alia, C.; Gilles, T.; Reine, T.; Ali, C. Local trajectory planning and tracking of autonomous vehicles, using clothoid tentacles
method. In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, Korea, 28 June–1 July 2015; pp. 674–679.

28. Dixit, S.; Montanaro, U.; Dianati, M.; Oxtoby, D.; Mizutani, T.; Mouzakitis, A.; Fallah, S. Trajectory Planning for Autonomous
High-Speed Overtaking in Structured Environments Using Robust MPC. IEEE Trans. Intell. Transp. Syst. 2020, 16, 2310–2323. [CrossRef]

29. Limon, D.; Alvorado, I.; Alamo, T.; Camacho, E.F. MPC for tracking piecewise constant references for constrained linear systems.
Automatica 2008, 44, 2382–2387. [CrossRef]

30. Dixit, S.; Montanaro, U.; Fallah, S.; Dianati, M.; Oxtoby, D.; Mizutani, T.; Mouzakitis, A. Trajectory planning for autonomous
high speed overtaking using mpc with terminal set constraints. In Proceedings of the International Conference on Intelligent
Transportation Systems (ITSC), Maui, HI, USA, 4–7 November 2018; pp. 1061–1068.

31. Rasekhipour, Y.; Khajepour, A.; Chen, S.K.; Litkouhi, B. A Potential Field-Based Model Predictive Path planning Controller for
Autonomous Road Vehicles. IEEE Trans. Intell. Transp. Syst. 2017, 18, 1255–1267. [CrossRef]

32. Kitazawa, S.; Kaneko, T. Control target algorithm for direction control of autonomous vehicles in consideration of mutual
accordance in mixed traffic conditions. In Proceedings of the International Symposium on Advanced Vehicle Control, Munich,
Germany, 13–16 September 2016; Volume 20.

33. Cho, J.H.; Pae, D.S.; Lim, M.T.; Kang, T.K. A real-time obstacle avoidance method for autonomous vehicles using an obstacle-
dependent Gaussian potential field. J. Adv. Transp. 2018, 2018, 5041401. [CrossRef]

34. Rajamani, R. Vehicle Dynamics and Control; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011; pp. 15–46.
35. Brennan, S.N. Modeling and Control Issues Associated with Scaled Vehicles. Master’s Thesis, University Illinois Urbana-

Champaign, Urbana, IL, USA, 1999.
36. Wang, L. Model Predictive Control System Design and Implementation Using MATLAB; Springer: Berlin/Heidelberg, Germany, 2009.
37. Astrom, K.J.; Wittenmark, B. Computer-Controlled Systems: Theory and Design; Prentice-Hall: Upper Saddle River, NJ, USA, 1984.
38. Pae, D.S. Novel Autonomous Driving Technoques and Their Applications to Unmanned Vehicles; Graduate School, Korea University:

Seoul, Korea, 2019.
39. Chen, Z.; Lin, M.; Li, S.; Liu, R. Evaluation on path planning with a view towards application. In Proceedings of the 3rd

International Conference on Control, Automation and Robotics (ICCAR), Nagoya, Japan, 24–26 April 2017; pp. 27–30.
40. ISO 2631-1. Mechanical Vibration and Shock—Evaluation of Human Exposure to Whole-body Vibration—Part 1: General Requirements;

International Organization for Standardization: Geneva, Switzerland, 1997.
41. Kim, J.C.; Pae, D.S.; Lim, M.T. Obstacle Avoidance Path Planning based on Output Constrained Model Predictive Control. Int. J.

Control. Autom. Syst. 2019, 17, 2850–2861. [CrossRef]
42. Zhao, X.; Schindler, C. Evaluation of whole-body vibration exposure experienced by operators of a compact wheel loader

according to ISO 2631-1:1997 and ISO 2631-5:2004. Int. J. Ind. Ergon. 2014, 44, 840–850. [CrossRef]
43. Kim, G.H.; Pae, D.S.; Ahn, W.J.; Ko, K.S.; Lim, M.T.; Kang, T.K. Vehicle Positioning System using V2X that Combines V2V and V2I

Communications. In Proceedings of the IOP Conference Series: Materials Science and Engineering, Rome, Italy, 22–24 July 2020;
Volume 922.

http://dx.doi.org/10.1109/TITS.2014.2303995
http://dx.doi.org/10.1038/s41467-020-18353-4
http://www.ncbi.nlm.nih.gov/pubmed/32994407
http://dx.doi.org/10.1504/IJVAS.2005.008237
http://dx.doi.org/10.1109/TCST.2019.2949757
http://dx.doi.org/10.1109/TCST.2015.2440999
http://dx.doi.org/10.1109/LRA.2019.2926677
http://dx.doi.org/10.1016/j.trc.2015.09.011
http://dx.doi.org/10.1109/TITS.2019.2916354
http://dx.doi.org/10.1016/j.automatica.2008.01.023
http://dx.doi.org/10.1109/TITS.2016.2604240
http://dx.doi.org/10.1155/2018/5041401
http://dx.doi.org/10.1007/s12555-019-9091-y
http://dx.doi.org/10.1016/j.ergon.2014.09.006

	Introduction
	Related Work
	Obstacle-Dependent Gaussian Potential Field Algorithm
	Model Predictive Control

	Real-Time Obstacle-Dependent Gaussian Model Prediction Control Algorithm
	Vehicle Dynamic Modeling
	Obstacle-Dependent Gaussian Algorithm
	Obstacle-Dependent Gaussian Line Model
	Obstacle-Dependent Gaussian Vehicle Model

	Path Planning

	Experiment
	Evaluation Metrics
	Experimental Environment
	Experimental Results
	Experimental Scenario 1
	Experiment Scenario 2
	Experiment Scenario 3


	Discussion and Conclusions
	References

