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Abstract: The parameters of the constitutive models used in the design of rockfill dams are associated
with a high degree of uncertainty. This occurs because rockfill dams are comprised of numerous
zones, each with different soil materials, and it is not feasible to extract materials from such structures
to accurately ascertain their behavior or their respective parameters. The general approach involves
laboratory tests using small material samples or empirical data from the literature. However, such
measures lack an accurate representation of the actual scenario, resulting in uncertainties. This
limits the suitability of the model in the design process. Inverse analysis provides an option to
better understand dam behavior. This procedure involves the use of real monitored data, such as
deformations and stresses, from the dam structure via installed instruments. Fundamentally, it
is a non-destructive approach that considers optimization methods and actual performance data
to determine the values of the parameters by minimizing the differences between simulated and
observed results. This paper considers data from an actual rockfill dam and proposes a surrogate
assisted non-deterministic framework for its inverse analysis. A suitable error/objective function
that measures the differences between the actual and simulated displacement values is defined
first. Non-deterministic algorithms are used as the optimization technique, as they can avoid local
optima and are more robust when compared to the conventional deterministic methods. Three
such approaches, the genetic algorithm, differential evolution, and particle swarm optimization are
evaluated to identify the best strategy in solving problems of this nature. A surrogate model in the
form of a polynomial regression is studied and recommended in place of the actual numerical model
of the dam to reduce computation cost. Finally, this paper presents the relevant dam parameters
estimated by the analysis and provides insights into the performance of the three procedures to solve
the inverse problem.

Keywords: genetic algorithm; differential evolution; particle swarm optimization; rockfill dams;
surrogate modeling

1. Introduction

The design of Rockfill dams presents significant challenges to geotechnical engineers
because of the uncertainties and the complex structural and material characteristics in-
volved [1]. Computational methods have played an important role in addressing the
associated difficulties. These methods have been successful in providing better dam
designs that are more reliable and have helped in reducing the cost and time of dam
construction. Such approaches usually involve the development of numerical models, and
the application of the finite element method (FEM) in this discipline has become the norm.
This successful use of the FEM could be attributed to its ability to provide a high degree of
accuracy and to effectively deal with complex geometries and boundary conditions as well
as material (rock/soil) nonlinearities [2,3]. However, the formulation of numerical models
involves the approximation and simplification of the physical problem. In addition, the
lack of information pertaining to material properties, external factors such as weather, and
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shortcomings in the applied constitutive law limits such models in the precise representa-
tion of actual dam behavior. In such a scenario, inverse analysis procedures can help to
estimate associated parameters that are reliable and thereby improve the design of the dam
under consideration.

Inverse analysis in essence is an optimization process. The approach involves two
major components: an optimization algorithm that attempts to minimize an error/objective
function, and a numerical model/solver. Instrumentation data, which may include the
deformations, stresses, seepage, and other performance measurements of a dam, are used
to define the error function. The optimization algorithm, together with the numerical
solver, searches for optimum parameter values in order to minimize the objective function.
Earlier, methods such as the conjugate gradient, steepest descent, and trust region were
commonly used for these problems as optimization/search approaches [4]. However, soil
and rocks present highly nonlinear behavior, and such methods are not always adequate to
deal with them. Those methods may lead to the solution being trapped in local optima, or
even fail to converge. To avoid such scenarios, non-deterministic techniques, also known
as stochastic methods, are preferred [5].

Non-deterministic approaches are robust in nature and can avoid the pitfalls of non-
convergence and local optima. The advent of powerful computer hardware and sophisti-
cated software have mitigated several of the bottlenecks associated with non-deterministic
methods, and they now find widespread use. A major drawback of using such an algo-
rithm in an inverse analysis is the large number of function evaluations required, as this
causes multiple calls to the FEM-based numerical solver, which significantly increases
the computational cost. An ingenious approach to address this issue involves the use of
regression models also known as Surrogate models, which are used as a “lookup table” in
place of the actual numerical model.

This paper performs an inverse analysis for the real-world scenario of the Romaine-2
rockfill dam (recently constructed in the province of Quebec, Canada) [6]. Five soil parame-
ters: shear modulus (G), Poisson coefficient (ν), friction angle (ϕ), cohesion (c), and specific
weight (γ), are identified using the displacement values recorded near the core of the dam
(from a vertical inclinometer). An appropriate error function between the measured and
simulated values is prescribed to calculate these five parameters. A framework involving a
surrogate-assisted non-deterministic approach for the optimization/search segment cou-
pled with the commercially available PLAXIS package as the solver is proposed [7]. The
surrogate-aided non-deterministic strategy is implemented using open-source tools such
as Python, OpenTURNS [8], Scikit-learn, Pandas, NumPy, and Matplotlib. In the scientific
community, there are numerous variants of non-deterministic approaches. However, the
performance of such algorithms is problem-dependent, and they may even provide un-
satisfactory results. This work analyzes three non-deterministic techniques—the genetic
algorithm, particle swarm optimization, and differential evolution—in the context of an
inverse analysis for rockfill dams. The efficiency and effectiveness of the three methods in
solving inverse problems are compared and the most suitable algorithm is identified. A
detailed description of the procedure involving the use of polynomial regression is also
provided, along with the advantages of building a surrogate model. Finally, the estimated
soil parameters for a specific zone of the Romaine-2 dam is presented.

2. Problem Description

Figure 1 depicts a two-dimensional cross section of the Romaine-2 dam using Plaxis.
The height of the dam is 112 m, and it has an asphalt core with a grouted rock foundation.
Crushed stones that act as supports with a maximum size of 80 mm surround the core.
Next to the support region lies the transition zone (N) composed of crushed stones that
have a maximum size of 200 m. The internal shell zone (O) is comprised of particles with a
maximum size of 0.6 m, and the external shell zone (P) is made of materials that reach a
size of 1.2 m [6]. This investigation only considers the variations that occur in zone P, the
section that covers the maximum portion of the Romaine-2 dam. Data from the vertical
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inclinometer INV01 located upstream (4.6 m to the left of the central axis) was used to
construct the error function. The INV01 measurements used in this study represent the
displacements during construction without the impoundment effects.
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Constitutive laws relate external factors to the responses of a rockfill material governed
by its internal constitution. Fundamentally, they describe the stress–strain characteristics
of the soil. Mohr-Coulomb, Duncan-Chang, and Hardening soil are some of the main
constitutive models applied in rockfill scenarios. The Mohr-Coulomb approach in general
considers seven soil properties, whereas the Duncan-Chang and Hardening soil models
involve 10 and 12 parameters, respectively. Numerous studies indicate that the Hardening
soil method can accurately represent a wider set of geotechnical problems compared to the
other two [9]. However, this study considers the Mohr-Coulomb approach because of its
small number of required parameters. Nonetheless, it is possible to achieve a satisfactory
level of accuracy with the Mohr-Coulomb with which to model the present scenario, and
thus avoid the use of more complex methods [10].

The differences between the measured displacement values and those predicted by
the numerical model in Plaxis are considered as errors. A simple error/objective function
that incorporates this idea could be defined using the least squares method, and in the
matrix form it is given by

Eobj =
[
xmeas − xcalc

]T[
xmeas − xcalc

]
(1)

where xmeas is a measured vector composed of measurements performed at different
locations of the dam, and xcalc is a calculated vector that contains simulated displacement
values at locations identical to those of the measured ones. An alternate generalized version
of the above equation that considers an additional weighted term is given by

Eobj =
[
xmeas − xcalc

]T
W
[
xmeas − xcalc

]
(2)

Various strategies could be applied to define the weighted term W (diagonal matrix) in
Equation (2), depending upon the type of error. The effects due to a fault in the instrument
or because of human factors, such as an error introduced by the procedure applied for
extracting measurements, are two examples of error types. These aspects could be included
in the function through W. In order to estimate such discrepancies between the measured
and the simulated values, the maximum likelihood approach is a preferred choice [11].
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The following equation describes the maximum likelihood method, which has a structure
similar to that of Equation (2).

Eobj =
[
xmeas − xcalc

]T
C−1

x

[
xmeas − xcalc

]
(3)

Cx is usually referred to as the covariance matrix, where the error structure of the
instrument, or any prior information pertaining to the measurements, is plugged into the
error/objective function. As observed in Figure 2, the measured plot indicates a significant
amount of fluctuations, leading to a zigzag pattern. These fluctuations could be attributed to
numerous factors that affect the inclinometers, including external temperature, calibration
issues, and the manner in which they are handled and installed. To reduce the oscillations
and obtain a smoother measurement curve, this work defines Cx in Equation (3) as:

Cx = δ2

 K · · · 0
...

. . .
...

0 · · · K

; K = 1 ∼ 3 (4)

where δ = |x
measActual−xmeasMean|

σmeas
.
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Figure 2. Measurements recorded by INV01 prior to the start of impoundment, denoted by the
dotted line. These denote horizontal movements; a negative value indicates upstream movement.

In the above equation, xmeasMean is the mean of the measured value, xmeasActual is the
value recorded at a specific location by the inclinometer, and σmeas represents the standard
deviation observed in the measured values. K is an integer constant in the range 1–3.

3. Review of Evolutionary and Population-Based Methods

Traditional deterministic algorithms such as the quasi-Newton methods [4] are favored
when a function is differentiable and convex. This ensures rapid convergence towards the
optimum (minimum) solution. However, in many real-world engineering problems, there
is no prior information about the overall system behavior. In addition, the requirement of
gradient computation, and in some cases the need for a Hessian matrix, further complicates
the application of such approaches. In the event when an objective function lacks continuity,
the algorithms may even fail to converge. Under such circumstances, evolutionary and
population-based strategies, also known as non-deterministic methods, are a preferred
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choice because the requirement of continuity in the objective function is not essential.
Evolutionary/population-based methods are zeroth order techniques that use function
values to perform their estimates. They offer additional benefits, including the ability
to overcome local minima and seek a global optimum, the ability to deal with multiple
objective functions, and their treatment of constraints is simple. The approach applied
by non-deterministic methods involves the automatic discovery of regularities or unique
features in the search space. These discoveries are further exploited in the form of a
decomposition of the problem through the combination of pieces of the promising solutions
found and by slightly perturbing these solutions. A downside to these algorithms is the
high number of function evaluations associated with them. The following discussions
highlight three non-deterministic strategies used in this work to perform the inverse
analysis. Figure 3 presents the steps involved in the three algorithms.
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3.1. Genetic Algorithm

Genetic algorithm (GA) is an adaptive heuristic search algorithm first proposed by
John Holland [12]. The GA mimics Darwinian evolution [13]. As in the natural selection
of the evolution process, a GA simulates the survival of the fittest phenomenon, where
the fittest individuals are selected to produce offspring for the next generation. A GA
presents a robust mechanism that exploits a random search to solve optimization problems.
The fundamental steps associated with a GA are: (1) initialization of the population in
the search space; (2) selection; (3) a crossover operation; and (4) a mutation operation. A
population of Np with a dimension d (the number of parameters) is generated randomly
by considering the specified bounds of each parameter. This serves as the first generation.
Subsequently, each chromosome (individual) is evaluated using an objective function
and ranked; a lower functional value implies a higher rank. Based on the ranks, parent
chromosomes for the next set of operations in the GA are selected. The crossover method
then swaps a sequence of two chosen chromosomes (two individuals) from the population
based on a crossover probability to create two offspring. The idea here is to emulate what
occurs in nature, where the good parts of old chromosomes (parents/old individuals) are
passed onto new chromosomes (offspring/new individuals) with the hope that the latter
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could be better. In the present scenario, a single point midsection crossover approach is
applied, in which the swap occurs only at the midpoint of each participating chromosome;
the crossover probability is defined as 0.7. Mutation randomly flips (alters) individual parts
of a chromosome; the rate at which it is applied is dependent on the mutation probability,
defined here as 0.1. The purpose of mutation is to prevent the algorithm from getting
stuck at a local optimum. Once all the offspring have been generated or when the second
generation is ready, the chromosomes are evaluated again using the objective function
and the cycle is repeated, as shown in Figures 3a and 4. References [14–16] provide recent
advances in this area.
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3.2. Particle Swarm Optimization

Eberhart and Kennedy introduced the particle swarm optimization (PSO) algorithm
in the mid-nineties [17]. The PSO is a population-based search algorithm inspired by the
social behaviors of animals or insects, for instance, the case of bird flocking. The main
difference between PSO and the evolutionary strategies is in how each possible solution
or particle in the population (swarm) is manipulated [18]. Evolutionary operators such
as crossover and mutation are not considered in this approach. Instead, the position of
a particle (individual) in a PSO is modified based on the particle’s velocity, its previous
best position identified individually thus far, and the previous best positions observed
by the remaining particles. Here, velocity and position are the attributes of each particle.
This method attempts to replicate the simple behavior of an individual imitating its own
success, as well as that of neighboring individuals. When considered in a collective manner
comprising all the particles, such behavior leads to the discovery of optimal regions in
search spaces with high dimension. Figures 3b and 5 illustrate the steps involved in this
strategy, and the updates in the velocity and position of the particles are described in
Equations (5) and (6), respectively.

vi(n + 1) = ω vi(n) + C1 Rand1(n)(Pi − xi) + C2Rand2(n)(PN − xi) (5)

xi(n + 1) = xi(n) + vi(n + 1) (6)

with xi(0) ~ U(xmin, xmax).
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vi(n) is the velocity of particle i at iteration number n, similarly, xi(n) represents
the position of particle i at n; C1 and C2 denote positive constants usually referred to as
cognitive and social factors, respectively, and Rand1() and Rand2() are random values in the
range [0,1]. U() signifies the bounds of the particles. The best position of particle i since the
first iteration and the best position discovered by any of the particles so far are expressed by
Pi and PN, respectively. Ω is a relaxation factor that helps in convergence, assigned a value
of 0.8. C1 in the present context is set to 1.50 and C2 also has a value of 1.50. In the PSO, the
population (swarm) is initialized randomly (within specified bounds), and subsequently
each particle is evaluated using an objective function and the particle position to determine
the best individual position and the global best position. Once the termination criterion
has been verified and if no further iterations are required, the velocities and positions of all
the particles are updated using the above relations.

3.3. Differential Evolution

Differential evolution (DE) is similar to the GA, as it also belongs to the family of evo-
lutionary algorithms and it applies mutation and crossover operators [19–21]. Developed
by Kenneth Price and Rainer Storn, DE involves vector-based operations. Figures 3c and 6
present the procedures applied in this strategy. Unlike the GA, the manipulations here
do not occur at a specific section or an individual part of a chromosome. Instead, in DE
all the vectors (individuals) are considered. For instance, Equation (7) explains the case
of mutation where three distinct vectors are first randomly sampled from the population.
Subsequently, the difference between the two vectors (from the set of three) is scaled using
F to perturb the third vector in order to create a mutant vector (Pν,G). Similarly, for the
crossover shown in Equation (8), either the mutant or the parent vector (Xν,G) is picked
as a trial vector (Uν,G) based on the crossover rate (Cr), and no swapping of a section
of the vector is involved as prevalent in GA. Finally, in the selection process, the parent
vector is replaced if the trial vector delivers an objective function value that is less than
that obtained by the parent vector; otherwise, the former is retained. The population size
remains constant after each generation.

Pν, G = Xrν1 ,G + F × (Xrν2 ,G − Xrν3 ,G) (7)

Uν,G =

{
Pν,G, if rand(0, 1) ≤ Cr

Xν,G , otherwise
(8)

Xν,G+1 =
Uν,G if obj(Uν,G) < obj(Xν,G)
Xν,G if obj(Uν,G) ≥ obj(Xν,G)

(9)
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Figure 6. Pseudocode of differential evolution algorithm.

In the above relations, G denotes the generation, the index r represents different
vectors (individuals) from the population, obj is the objective function, and ν indicates
distinct base vectors. The control parameters F and Cr are assigned the values of 0.9 and
0.5, respectively. Recent trends in DE are provided in [16,22,23].

4. The Surrogate-Assisted Non-Deterministic Algorithm

Compared to the classical approaches, non-deterministic methods are more robust
and can better deal with the moderate noise and multi-modality present in a search
space. However, the large number of function calls associated with non-deterministic
techniques combined with finite element evaluations at every call can significantly increase
the computational cost. Surrogate modeling is an effective mechanism to address this
issue, as expensive simulations can be replaced with inexpensive surrogate models [24].
Polynomial regression, neural networks, Kriging, radial basis function, and support vector
machines are the main examples that have widely been applied to generate surrogates. This
work restricts itself to the polynomial regression approach because the procedure is both
simple and sufficient to address a problem involving five parameters. Figure 7 shows the
coupling between a surrogate model and a non-deterministic optimizer; the cycle begins
with population initialization and evaluation using the error function. The following
subsections describe the polynomial regression fundamentals, present the implementation
of the surrogate model for the Romaine-2 dam, and explain how the model was integrated
with non-deterministic algorithms.
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4.1. Polynomial Regression Model

A regression model identifies the relationship between a dependent and one or more
independent variables [25]. In this investigation, the estimated displacements along the
INV01 inclinometer are the dependent variables, and the set of five parameters: the shear
modulus (G), Poisson coefficient (ν), friction angle (ϕ), cohesion (c), and specific weight
(γ) of the material/soil represent the independent variables. Assuming that the true
displacement at a point in the dam (over INV01) due to the influence of vector X composed
of the set of independent variables is y, the relationship between the two is defined as:

y = f(X) + ε (10)

where ε is an error term and f(X)denotes the response. In the real world, f(), in a search
space, is unknown, and this necessitates the use of some form of approximation. A
simple approach that performs this task is linear regression, which can be expressed in the
following manner:

ỹ = β0 +
m

∑
i=1
βixi (11)

where β0 and βi are the coefficients, m is the dimension (five in the present scenario), and xi
implies the individual parameters. The regression coefficients are calculated by minimizing

the residual sum of squares
n
∑

k=1
(yk − ỹk)

2, where n is the number of observations. In

situations where there is nonlinearity involved in the design space, linear regression
models may not give satisfactory results. Polynomial regression can be a suitable option
in such scenarios; it succeeds by extending the ideas applied to fitting a linear regression
model. Instead of combining input variables linearly, they are combined by raising them to
degrees greater than one, as shown below.

ỹ = β0 +
m

∑
i=1
βixi +

m

∑
i=1

m

∑
j=1, i≤j

βijxixj (12)

Equation (12) depicts the case of a second-order polynomial model with β0, βi and βij
denoting the coefficients; the input variables are represented by xi and xj. The number of
coefficients to be estimated increases as the order of the polynomial increases, which in
turn requires more sample points and adds to the complexity. Instabilities and unwanted
fluctuations may also arise, all of which are major drawbacks of polynomial regression.
This work does not delve further into the limitations; however, neural networks have
proven to be an effective approach for problems that contain a large number of input
variables and display highly nonlinear behavior. [26] provide a good insight into model
approximation methods, and try to relate the experimental design, choice of model, number
of dimensions and sample points using different examples. Scikit-learn, an open-source
machine-learning library in Python, has been used to implement the polynomial-based
surrogate model.

4.2. Surrogate Model of Rockfill Dams

The execution of computer codes is time-consuming, hence identifying the inputs that
have the potential to influence results the most is important. The design of experiments
attempts to address this aspect by providing a sampling plan for relevant inputs in the
design space. This phase forms the first stage of the surrogate modeling process, as
shown in Figure 8. This work uses the open-source library OpenTURNS to perform
sampling. Special techniques are considered to ensure that the input points are spread
evenly throughout the design space without sacrificing efficiency, including the Monte
Carlo (MC) method, the Hammersley, Halton, Faure, and Sobol sequences (family of low-
discrepancy sequences), and Latin hypercube sampling (LHS) [27].
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Figure 8. Steps involved in generating a surrogate model of a rockfill dam. Thirty two evenly
distributed locations along the inclinometer were considered for the analysis. A set of five parameters
was used to generate the 300 input points. These inputs were used to create the regression models for
the 32 locations using the Sckit-learn package and the actual displacement values at these locations.

Over the years, MC methods have become a standard approach for computer-based
simulations, and they have been applied successfully in a wide range of problems. How-
ever, such techniques are based on random sampling, which may lead to the clustering of
sample (input) points, resulting in extraneous and expensive computational runs. Clus-
tering occurs because the points generated randomly lack uniformity and do not always
occupy the spaces between already-sampled points. Quasi Monte Carlo (QMC) techniques,
also known as low-discrepancy sequences (LDSs) and LHS, are better equipped to generate
uniform point distribution. The variance reduction LHS method has been effective in
numerous examples, specifically involving lower dimensions (n < 20). Depending on the
problem, modified designs of LHS, using optimal space-filling criteria such as the minimax,
maxmin approach and the minimum spanning tree strategy, may show some improvement
in LHS efficiency. QMC involves deterministic sequences with no random components; the
points are generated in a manner that rigorously imposes the concept of uniform coverage
of the sampling space. Among the sequences in this category, Sobol LDSs are the most
effective, and this work considers them to generate the input parameters for zone P, as
shown in Table 1. In a relatively low dimension, studies have demonstrated that the QMC
method displays lower discrepancy and higher efficiency when compared with the MC and
standard LHS methods [28]. Our investigations in [29] highlight the standard deviation
patterns involving different sample sizes using Sobol and LHS for the Romaine-2 problem.
The table below presents the different parameter bounds for zone P. Zones O and N have
the constant values as specified; for more details refer to [6,10]. These estimates provided a
good approximation of the dam’s behavior.

In order to create the surrogate model, 300 sample sets (in Zone P) were generated,
where an individual set is comprised of five parameters, each having a value that lies
within the specified bounds. The study in [29] indicated that 300 samples are adequate to
provide a good representation of the dam’s response (a portion of this sample is provided in
Appendix A). Every sample for zone P, along with the parameters for zones O and N, were
then used to simulate and solve the Romaine-2 problem in Plaxis, and the corresponding
displacements along the coordinates of INV01 were recorded. Figure 9 provides the surface
plots of the simulated displacement values displaying the troughs and crescents. The
top, middle, and bottom sections are situated at altitudes of 242 m, 190 m, and 144 m,
respectively. For additional details, refer to Section 2 and Figure 1.
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Table 1. Parameter values in different dam zones.

P N O

Parameters Upper Limit Lower Limit Units

Shear Modulus 35,000 25,000 170,000 110,000 kN/m2

Friction Angle 45.15 40.85 47 45 Degree

Cohesion 0 0 0 0 kN/m2

Poisson Coefficient 0.3465 0.234 0.33 0.22

Sp. Material Weight 23.625 21.375 23.7 22.5 kN/m3
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Figure 9. Displacements at different sections of the dam along INV01. Specific weight, shear modulus, and Poisson
coefficient were considered to plot the results. Surface plot representation at different elevations here provide an insight
into the nature of the optimization problem at hand.

Using the set of 300 input data and the corresponding displacement values at
32 locations along INV01 (refer to Figure 8), a polynomial regression model was cre-
ated with the help of the Sckit-learn library. An analysis was also performed to ascertain
the polynomial order that provides the most accurate results. Table 2 presents a com-
parative chart of the polynomial order used and the observed root mean squared error.
Obviously, the model of order three provides results that most closely resemble the dis-
placement behavior of the Romaine-2 dam. This model was then used in conjunction with
the non-deterministic algorithms to perform the inverse analysis.
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Table 2. The polynomial order used in the regression model and the corresponding root mean
squared error.

Order RMSE

1 0.001597

2 0.000166

3 0.00018

4 0.000152

5 0.000205

5. Simulation Results

This section presents the inverse analysis outcomes for the Romaine-2 dam problem,
using particle swarm optimization (PSO), a genetic algorithm (GA), and differential evolu-
tion (DE) approaches. Section 4 described the simulation flow involving these algorithms
and the surrogate model, and Section 3 presented the various parameters associated with
the algorithms. A trial-and-error approach was performed initially, to estimate the param-
eters for the algorithms. In order to evaluate the three methods in the present scenario,
the population size and the iteration count were varied to analyze the individual conver-
gences. Once they were ascertained, the iteration/generation count was fixed at 80, and
the population size for PSO and DE was set to 50, whereas for the GA it was 200. The
rationale here is to have an iteration count beyond which no substantial improvement in the
convergence is observed in the three cases, and to have a population that achieves this goal
without sacrificing efficiency or accuracy. With these objectives, the respective computer
programs were executed 10 times (using a 32 GB RAM, Intel-i7 processor compute machine)
for each algorithm to determine if there was any significant deviation from the expected
convergence behavior and the results. The simulations did not display any major shift from
the general trend; the following plots and Table 3 present the observed convergences and
the analysis results (the average of all runs), respectively. Figure 10 shows the convergence
trend in the three algorithms.

Table 3. Values obtained using three different algorithms for the parameters in zone P using the
inverse analysis procedure. The fitness value is the error function calculated for the entire population.

Algorithm G(kN/m2) γ(kN/m3) ϕ v c Fitness
Value

DE 3.500 × 104 2.138 × 101 4.515 × 101 3.146 × 10−1 0.000 0.001

GA 3.345 × 104 2.143 × 101 4.193 × 101 3.206 × 10−1 2.442 × 10−6 0.003

PSO 3.500 × 104 2.138 × 101 4.515 × 101 3.147 × 10−1 0.000 0.001
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From the above details, it is evident that the PSO and DE provide better fitness values
compared to the GA, and that the same two algorithms render similar results. In addi-
tion, the GA requires a larger population size compared to the PSO and DE to perform
the same analysis. In terms of convergence rate, the GA and the PSO require fewer it-
erations to reach the optimum fitness value compared to DE. However, there are more
parameters to tune in the PSO, whereas there are only two in the GA and in DE. Figure 11
presents a comparison between the simulated displacement using the optimal values found
with DE and the displacement recorded by the inclinometer at INV01 (refer to Section 2
for the location of INV01). The significant differences between the results in the higher
elevations could be attributed to errors that arise due to extreme variation in tempera-
tures (weather/environment effects) encountered by the inclinometers. Furthermore, the
instruments are not always calibrated accurately, which introduces additional sources
of errors.
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6. Conclusions

The presence of uncertainties has always posed a challenge in the design of rockfill
dams, and traditional approaches are not very effective in resolving them. Recent advances
in computing power and in the ability of modern instruments to collect data (often in
real-time) from rockfill dams have made techniques based on optimization and statistical
methods much more attractive. These procedures provide a more realistic picture of a
system. The purpose of this research was to present a framework involving optimization
and statistical techniques that could be applied to rockfill dams. In the process, this paper
investigated the potential of different non-deterministic algorithms, defined a suitable error
function (objective function), prescribed a simple approach to construct a surrogate model
to reduce the computation cost and a sampling technique to generate such a model. The
ideas discussed here can easily be extended to any rockfill dam with known specifications
and where displacement data are available.

To demonstrate the effectiveness of the framework, a real-world example was consid-
ered, the Romaine-2 dam with its multiple zones carrying different materials. Displacement
measurements derived from a vertical inclinometer situated close to the dam core were
used to define the error function. In addition, to reduce the oscillations observed in the
instrument readings, a correction factor that smooths them was used in the error function.
A low-discrepancy sequence in the form of a Sobol procedure was applied to generate
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uniformly distributed parameter samples. The use of polynomial regression to develop
the surrogate model in the present case was recommended, and an analysis that identifies
the appropriate order was presented. In order to perform the inverse analysis, three non-
deterministic algorithms—the PSO, the GA, and DE—were developed and coupled with
the surrogate model. A detailed study was performed to determine the various parameters
associated with the three methods, as well as the most suitable population size for each case.
This investigation provides a comparison of the three algorithms in the inverse analysis
process. The results indicate that in the present scenario, the PSO and DE outperform the
GA. Tables 1 and 3 present an interesting insight: the estimated shear modulus and friction
angle values are closer to the assigned upper limits in P, whereas the specific weight is
close to the assigned lower limit. The Poisson coefficient estimate is closer to the average of
the two bounds.

For future work, an investigation that considers all the zones would help to provide a
better understanding of dam behavior. In addition, an analysis that incorporates complex
constitutive models, such as the Duncan-Chang and Hardening soil, could be useful.
This study is limited to the inclinometer situated in section PM560; analyses involving
inclinometers located in other regions of the dam could also provide valuable information.
The framework presented here can also be extended to other dams.
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Appendix A. Zone P Parameter Set

Figure A1 provides only a section of the parameter set generated for zone P. The
Sobol LDS procedure was used to generate all the sample points; more details are given
in Section 4 and Table 1. As highlighted earlier, 300 samples were produced for the five
parameters within the defined ranges.



Appl. Sci. 2021, 11, 3699 15 of 16Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 16 
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