
applied
sciences

Article

Design and Implementation of an Autonomous Electric Vehicle
for Self-Driving Control under GNSS-Denied Environments

Ali Barzegar 1, Oualid Doukhi 1 and Deok-Jin Lee 2,*

����������
�������

Citation: Barzegar, A.; Doukhi, O.;

Lee, D.-J. Design and Implementation

of an Autonomous Electric Vehicle for

Self-Driving Control under

GNSS-Denied Environments. Appl.

Sci. 2021, 11, 3688. https://doi.org/

10.3390/app11083688

Academic Editor: Federico Cuesta

Received: 23 February 2021

Accepted: 14 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanical Engineering, Kunsan National University, Gunsan 54150, Korea;
ali.barzegar1988@kunsan.ac.kr (A.B.); doukhioualid@kunsan.ac.kr (O.D.)

2 Department of Mechanical Design Engineering, Jeonbuk National University, Jeonju 54896, Korea
* Correspondence: deokjlee@jbnu.ac.kr; Tel.: +82-63-270-4768

Abstract: In this study, the hardware and software design and implementation of an autonomous
electric vehicle are addressed. We aimed to develop an autonomous electric vehicle for path tracking.
Control and navigation algorithms are developed and implemented. The vehicle is able to perform
path-tracking maneuvers under environments in which the positioning signals from the Global
Navigation Satellite System (GNSS) are not accessible. The proposed control approach uses a modified
constrained input-output nonlinear model predictive controller (NMPC) for path-tracking control.
The proposed localization algorithm used in this study guarantees almost accurate position estimation
under GNSS-denied environments. We discuss the procedure for designing the vehicle hardware,
electronic drivers, communication architecture, localization algorithm, and controller architecture.
The system’s full state is estimated by fusing visual inertial odometry (VIO) measurements with
wheel odometry data using an extended Kalman filter (EKF). Simulation and real-time experiments
are performed. The obtained results demonstrate that our designed autonomous vehicle is capable of
performing path-tracking maneuvers without using Global Navigation Satellite System positioning
data. The designed vehicle can perform challenging path tracking maneuvers with a speed of up to
1 m per second.

Keywords: vehicle path following; NMPC; nonlinear model predictive control; longitudinal control;
direct multiple shooting method; vehicle MPC; visual inertial odometry

1. Introduction

Recently, developing electric autonomous cars has been in the spotlight. Path tracking
is the most important maneuver that an autonomous vehicle must be able to perform. In
order to do so, an autonomous vehicle needs to be equipped with some essential elements.

The controller is the first crucial element of the autonomous vehicle. In order to
perform challenging path-tracking maneuvers, an autonomous ground vehicle needs a
robust, fast, and stable controller. However, designing controllers for stabilizing such
vehicles is a challenging task due to the presence of non-holonomic constraints [1].

Secondly, the vehicle should be able to determine its position and orientation in the
environment with high accuracy. Sensors and state estimation algorithms must be able to
accurately estimate the position and orientation of the vehicle in different environments,
which might have a variety of different weather conditions. However, localization of
ground vehicles has always been a challenging process. The majority of existing vehicle
localization systems are equipped with receivers that are able to receive positioning and
timing signals from at least one of the elements in the Global Navigation Satellite System
(GNSS). Contrary to aerial vehicles that usually have a clear view of the sky and can
receive positioning signals from the GNSS elements easily, ground vehicles pass through
a variety of different environments including roads, tunnels, urban canyons, forest areas,
and roofed parking lots. The positioning signals from the GNSS are not accessible in all
the environments, which makes it an unreliable positioning method for ground vehicles.

Appl. Sci. 2021, 11, 3688. https://doi.org/10.3390/app11083688 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-9038-405X
https://orcid.org/0000-0003-3462-8579
https://doi.org/10.3390/app11083688
https://doi.org/10.3390/app11083688
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083688
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11083688?type=check_update&version=3

Appl. Sci. 2021, 11, 3688 2 of 23

However, recently, researchers around the world have made significant efforts to deal with
this challenge.

The third essential element of an autonomous electric vehicle is its proper design and
performance of the hardware. The process includes designing the electronic control units
(ECUs), data processors, internal communications, vehicle bus, mechanical actuators and
electromechanical actuators.

In this study, we designed and implemented the vehicle hardware, electronic drivers,
communication architecture, localization algorithm, and controller architecture. The sys-
tem’s full state is estimated by fusing visual inertial odometry (VIO) measurements with
wheel odometry using an extended Kalman filter (see Section 4). For the high-level control
part, we proposed a nonlinear model predictive control (see Section 5).

2. Related Studies
2.1. Control

The first challenge when implementing an autonomous vehicle is the design of a
proper controller. Researchers have made significant efforts to improve the performance of
path-tracking by the controllers in vehicles.

Many studies have implemented a variety of different control approaches to control
autonomous vehicles. Earlier studies endeavored to employ widely used model-free con-
trollers such as the proportional-integral-differential (PID) controller method [2]. However,
in situations where the system parameters change over a wide range, the PID controllers
are not suitable approaches [3]. The second problem is the tuning of this type of controller.
In order to alleviate the latter problem, some researchers have proposed artificial intelli-
gence methods for auto-tuning in the controller. The controller, however, still lacks proper
stability in challenging driving scenarios [4,5].

The Stanley method [6] is another widely used algorithm that has been employed in
many studies [7,8]. This method originally was designed for lateral motion control, and
it did not take into account the longitudinal motion control of the vehicle. Although the
method improves the performance of the lateral controller, it still lacks the capability to
consider the dynamic properties such as forces that usually appear at high speeds.

A Pure Pursuit controller is another widely used control approach in ground vehi-
cles [9]. The controller was initially introduced as a path-tracking method for ground
robots. The approach uses the nearest forward point on the path with respect to the present
position as a look-ahead distance to adjust the steering commands. However, the controller
has some problems. First, the controller is not able to track straight trajectories between two
consecutive points. In order to get an optimized response, the controller parameters must
be tuned carefully for different speed classes. The second problem is that the controller
is not able to stabilize the vehicle on a specific point. As a solution, a threshold must be
defined to stop the car when it approaches a destination point [10].

According to many previous comparison studies [11–13], it has been proven that
optimal control approaches provide far more acceptable performance of ground vehicle
control as compared with traditional model-free approaches and geometric path tracking
algorithms [14]. Although different types of optimal control algorithms have been used
in vehicle control, model predictive control (MPC) is the most usable method [15]. The
controller has several advantages over other control algorithms. Firstly, it can control a
multi-input multi-output system, which might have severe interactions between input
and output. Secondly, the controller is able to take into account several soft and hard
constraints [16]. A linear model predictive control with an optimization problem solver
is used to predict both ensuing states of the system and a series of proper control inputs.
However, a linear model often is not adequate to describe the nonlinear behavior of the
dynamic model in ground vehicles. As an alternative, a nonlinear model is used instead of
the linear model [17]. As the ordinary MPC cannot take the nonlinear dynamic model as
its prediction model, researchers have introduced a new optimal model predictive control
approach called the nonlinear model predictive control (NMPC), in which a nonlinear

Appl. Sci. 2021, 11, 3688 3 of 23

model of the plant is used to predict the forward reaction of the system during ensuing
states (see Section 4.2).

Most studies have used a dynamic bicycle model combined with a linear tire model as
a vehicle model for MPC [18]. This approach, however, comes with two main drawbacks.
It is computationally heavy and the tire model approaches its singularity points at low
vehicle velocities. Generally, tire models consider the sideslip angle estimator term, which
has the vehicle speed in the denominator. It reduces control performance of the stop-and-go
maneuver, which is an essential capability for driving in urban environments [19]. Another
disadvantage of the dynamic bicycle model is its problem with system identification
(because of several parameters that need to be measured with high accuracy). Contrary to
the dynamic bicycle model, kinematic bicycle models do not rely on tire models. Kinematic
bicycle models by nature are more suitable for stop-and-go driving control when velocity
approaches zero. In addition, system identification is far easier for the kinematic bicycle
model (as compared with its dynamic counterpart) because it needs fewer parameters to be
measured. The aforementioned advantages of the kinematic bicycle model support using
this model as a prediction model for the NMPC. In this study, a nonlinear kinematic bicycle
model is employed as a prediction model for the controller (see Section 5.1).

2.2. Vehicle Localization

Vehicle localization is the second challenge when implementing an autonomous
vehicle. Although the controller plays the main task in driving the vehicle, it heavily
relies on the position and orientation data of the vehicle that are fed to the controller as
feedback, and therefore the performance of the controller depends on the accuracy of data
provided by the localization algorithm. Hence, obtaining the position and orientation of the
vehicle with high accuracy plays a vital role in the desirable performance of an autonomous
vehicle. A variety of methods are used in vehicles to find the position and orientation of
ground vehicles.

The most widely used positioning system in vehicles is the GNSS-based positioning
approach. GNSS stands for Global Navigation Satellite System, which includes all global
satellite-positioning systems providing position and timing signals for navigation. The
Navstar Global Positioning System (GPS) is among the oldest components of GNSS used
in the positioning of vehicles. The positioning accuracy of the GPS, however, is limited to
almost 8 m (excluding the survey-grade GPS). Furthermore, the position data updates are not
fast enough (~10 Hz). In addition, the GNSS receiver must be able to receive an electronics’
triangulation signal, therefore, the system needs to have a clear view of the sky. This problem
hinders the positioning in tunnels and urban canyons. Multi-path interference is another
problem in GPS-based positioning systems that reduces the accuracy of data.

Another method that is used for finding the heading and position of a ground vehicle
is wheel odometry. Wheel odometry uses signals from encoders, coupled with wheels, to
calculate the revolutions each wheel has made. A dynamic model along with the data from
wheel encoders are used to calculate a vehicle’s present position. The algorithm can also
find the current orientation of a vehicle relative to the starting point. The reported position,
however, is susceptible to error because of the drift phenomenon. In this phenomenon,
position error accumulates over time. The problem deteriorates when the vehicle moves
on a non-smooth surface. The problem makes the reported odometry data unreliable when
there is slippage between the surface and the tire. The problem usually happens when the
vehicle carries out maneuvers on uneven terrains or slippery surfaces.

Visual odometry (VO) is another method used in vehicle position estimation. The
method uses a sequence of camera images to estimate the amount of vehicle movement. The
majority of studies on VO have employed three famous methods called the feature-based
method [20–22], direct approach [23,24], and hybrid approach (this approach, combines
the benefits of the feature-based method and direct method) [25,26]. Direct methods work
on the assumption that the projection of a point in two consecutive frames has the same
intensity. This assumption often fails due to lighting changes, sensor noise, pose errors, and

Appl. Sci. 2021, 11, 3688 4 of 23

dynamic objects [27]. Hence, direct methods require a high frame rate, which minimizes
the intensity changes. Another issue with the direct method is high computational costs
due to the use of all the pixels over all frames. Generally, when there is a smooth and low-
textured surface or bad lighting conditions, the odometry data from the Visual Odometry
are susceptible to error. Moreover, VO is liable to error when there is a sudden camera
movement [28]. In order to alleviate the error, usually, inertial measurement units (IMU)
are employed along with VO.

Most positioning systems today have an element called inertial measurement unit
(IMU). Inertial measurement units are considered to be the cornerstone of an inertial
navigation system (INS). The INS uses data from IMU to find acceleration attitude, angular
velocity, linear velocity, and position relative to the world frame [29]. In an INS, acceleration
is integrated with respect to time to find position and velocity. The integration process,
however, has a problem. The issue arises from the integration of errors over time. The
problem brings about a drift in the position that is reported by the sensor. The error in
acceleration generates a linear error in velocity. The error also generates a quadratic error
in position. Similarly, an error in gyroscope data causes a quadratic error in velocity and a
cubic error in the position [30].

The advantage of an IMU is that it can provide odometry data with a fast update
rate when there are large sudden movements across a short time interval. This motivates
designers to use it along with VO to form a visual inertial odometry (VIO). Data from the
IMU and VO can be fused either loosely or tightly. A loosely coupled approach for visual-
inertial systems keeps the visual and inertial framework as independent entities [31], while
a tightly coupled approach combines the visual and inertial parameters under a single
optimization problem and their states are jointly estimated [32]. Contemporary tightly
coupled methods for visual inertial odometry fall into two categories, namely optimization-
based methods [33–35] and filter-based algorithms [36–38]. In an optimization-based
approach, an optimal estimate is calculated using an optimization problem solver. The
optimizer tries to minimize the photometric error in order to extract more information from
images. Although optimization-based methods provide high accuracy, these algorithms
impose high computational costs on the system. Contrary to optimization-based methods,
the Kalman filter is the cornerstone of filter-based approaches [39]. Filter-based methods
show acceptable efficiency, and the accuracy is comparable to that of optimization-base
methods. In this study, we use a filter-based stereo visual-inertial odometry introduced
in [40]. It employs a multi-state constraint Kalman filter (MSCKF). For the feature detector,
a Fast corner detection [41,42] is used.

2.3. Research Contribution

The main contribution of this study is to design an autonomous electric ground
vehicle for the path-tracking maneuver. In this study, we propose a localization architecture
that fuses data from a hybrid visual-inertial odometry with data from a wheel odometry
algorithm. The proposed localization system is able to estimate the position and orientation
of the vehicle with high accuracy. The proposed control approach used in this study uses a
modified nonlinear model predictive controller (NMPC) with constrained input-output for
path tracking.

In this paper, we also present the process of hardware and software design and
implementation of the vehicle. The optimal design of hardware and software is conducted
such that the designed autonomous vehicle can run the proposed control and localization
algorithms with high accuracy.

The next sections of the paper are organized as follows: In Section 3, we introduce the
overall structure of the proposed system; in Section 4, we introduce the localization algo-
rithm, system state estimator algorithm structure, and sensors; in Section 5, we introduce
the proposed NMPC that is employed for the ground vehicle control; in Section 6, we dis-
cuss the hardware structure and implementation; in Section 7, we describe the simulation
and real-time experimental results of the employed localization algorithm; in Section 8,

Appl. Sci. 2021, 11, 3688 5 of 23

we depict simulation and evaluation of the employed control algorithm; in Section 9, we
discuss real-time electric vehicle experimental results; and in Section 10, we provide our
conclusions.

3. Proposed Approach

The proposed approach consists of a path tracking module based on NMPC (see
Section 5.2) which uses 10 steps ahead to predict the future state and control inputs. The
full system architecture is presented in Figure 1.

Figure 1. Controller and localization system architecture.

For accurate state estimation, in this study, we used an extended Kalman filter (EKF)
to fuse odometry data of multiple algorithms. The visual-inertial Odometry (VIO) algo-
rithm fuses data from the visual odometry (VO) algorithm with data from the inertial
measurement unit (IMU). The output of the VIO is the position and orientation data of the
vehicle in three-dimension (3D). Simultaneously, the position data and the orientation data
of the vehicle, in two-dimension (2D), are generated by a wheel odometry processor unit
that consists of rotary encoders and a data processor. In the next step, the data provided by
the two sources are sent to the final position and orientation estimator that is an extended
Kalman filter in the robot localization package (see Section 4.4). The last localization unit
does both the frame transformation and sensor fusion. The unit provides the position data
and orientation data of the ground vehicle with high accuracy. The generated data are used
as input signals for the NMPC algorithm. The controller generates control commands that
are sent to the low-level control in the electronic control unit (ECU) of the vehicle. In the
next three sections, we discuss the theory, design, and implementation of each element in
the introduced system architecture.

4. Vehicle State Estimation, Localization, and Sensors
4.1. The Proposed Algorithms for Vehicle State Estimation, Localization, and Sensors

The localization method used in this study relies on data fusion of visual-inertial
odometry and wheel odometry. Data from the aforementioned sources are sent to an
estimator algorithm that uses an extended Kalman filter to provide an almost accurate
estimation of vehicle location and heading with reference to the initial point of the car in
the odometry frame.

4.2. Visual-Inertial Odometry Algorithm

In this study, a Kalman-filter-based stereo visual inertial odometry is used. Data from
the IMU and a stereo camera are used in the algorithm. The IMU model can be written as:

XI =
(

I
GqT , bT

g , GvT
I , bT

a , GpT
I , I

CqT , IpT
C

)T
(1)

Appl. Sci. 2021, 11, 3688 6 of 23

where I
GqT (q stands for quaternion) provides the rotation from the inertial frame to

the vehicle frame, Gv I and Gp I define the linear velocity and location of the vehicle frame
mapped into the inertial frame, respectively, arrays bg and ba are defined as measurement
biases of velocity and acceleration from the inertial measurement unit, respectively, and I

Cq
and IpC provide the transformation between the body and camera frames, respectively. In
order to avoid singularities in covariance matrixes, the IMU error-states in Equation (1) can
be modified as follows:

X̃I =
(

I
Gθ̃T , b̃

T
g , GṽT

I , b̃
T
a , Gp̃T

I , I
Cθ̃T , I p̃T

C

)T
(2)

In this relation, standard additive error is used for position, velocity, and biases (e.g.,
Gp̃ I =

Gp I − Gp̂ I). The quaternion error, δq = q⊗ q̂−1, has a close relation to state error
as follows:

δq ≈
(

0.5 G
I θ̃T , 1

)T
(3)

where, G
I θ̃ is a representation of a small angle rotation. As a result, the ultimate state error

can be written as:

X̃ =
(

X̃
T
I , X̃

T
C1

, . . . , X̃
T
CN

)T
(4)

where each camera state error can be described as follows:

X̃Ci =
(

Ci
G θ̃T , Gp̃T

Ci

)T
(5)

In order to obtain a process model, an indiscrete dynamic model of the estimated
inertial measurement unit states can be considered as:

I
G

.
q̂ = 0.5Ω(ω̂)I

G q̂,
.
b̂g = 03×1

G .
V̂
= C

(
I
Gq̂
)T

â + Gg (6)

.
b̂a = 03×1, G .

p̂ I =
GV̂ ,

I
C

.
q̂ = 03×1, I .

p̂C = 03×1

where ω̂ and â are extracted from the IMU measurements for angular velocity and acceler-
ation (without biases) as follows:

ω̂ = ωm − b̂g (7)

â = am − b̂a (8)

However,

Ω(ω̂) =

(
−[ω̂X] ω

−ωT 0

)
(9)

where [ω̂×] is the antisymmetric matrix of ω̂ at Equation (6) playing a role as quaternion to
the rotation matrix convertor. According to Equation (6), the linearized indiscrete dynamics
for the IMU state error can be as follows:

.
X̃ I = Fx̃I + GnI (10)

Here, nT
I =

(
nT

g , nT
ωg, nT

a , nT
ωa

)T
. The vectors ng and na are representations of a Gaussian

noise of gyroscope measurement and accelerometer. The other terms
(
nωg and nωa

)
rep-

resent the random walk rate of the gyroscope and accelerometer measurement biases.

Appl. Sci. 2021, 11, 3688 7 of 23

To propagate uncertainty of state, a discrete-time state-transition matrix extracted from
Equation (10) and discrete-time covariance matrix must be calculated at the initial step as:

Φk = Φ(tk+1, tk) = exp
(∫ tk+1

tk

F(τ)dτ

)
(11)

Qk =
∫ tk+1

tk

Φ(tk+1, τ)GQGΦ(tk+1, τ)Tdτ (12)

where Q = E
[
nI nT

I
]

is defined as the dispersion matrix of continuous-time noise in the
system. As a result, the propagation covariance of inertial measurement unit states can be
written as:

PI Ik+1|k = ΦkPI Ik|k ΦT
k + Qk (13)

After portioning the covariance of the overall state as:

Pk|k =

(
PI Ik|k PICk|K
PT

ICk|k PCCk|k

)
(14)

The propagation of uncertainty can be written as:

Pk+1|k =

(
PI Ik+1|k ΦkPICk|k

PT
ICk|kΦT

k PCCk|k

)
(15)

After getting new images, the state must be augmented using renewed state from the
camera. The position of the recent camera state can be calculated from the newest IMU
state as follows:

C
G q̂ = C

I q̂ ⊗ I
G q̂ (16)

G p̂c = G p̂c + C
(

I
G q̂
)T I p̂c (17)

Moreover, the augmented covariance matrix is as follows:

Pk|k =

(
I21+6N

J

)
Pk|k

(
I21+6N

J

)T

(18)

Considering a scenario where feature f j is observed using the stereo camera for

position
(

Ci
G q, G pCi

)
, note that the used stereo cameras have two single camera cells with

positions represented as
(

Ci,1 q, G pCi,1

)
and

(
Ci,2 q, G pCi,2

)
for the right side and left side

camera cells in the stereo camera package, respectively. The stereo measurement, zj
i , is

represented as:

Zj
i =

uj

i,1

vj
i,1

uj
i,2

vj
i,2

 =

 1
Ci,1 Z j

02×2

02×2
1

Ci,2 Z j

Ci,1 X j
Ci,1Y j
Ci,2 X j
Ci,2Y j

 (19)

In Equation (19),
(Ci,k X j

Ci,k Y j
Ci,k Z j

)T
, k ∈ {1, 2}, are considered to be the location of

the feature, f j, on the left-side and right-side sub-camera frame (Ci,1, Ci,2) having relation
to the camera location as follows:

rj
i = zj

i − ẑj
i = H j

Ci
X̃Ci + H j

fi

G p̃ j + nj
i (20)

where nj
i is the noise of measurement, and H j

Ci
and H j

fi
are the measurements of the Jacobian.

After collecting multiple sampled observations of the similar feature f j, we can have:

rj = H j
x x̃ + H j

f
G p̃ j + nj (21)

Appl. Sci. 2021, 11, 3688 8 of 23

In order to make sure that the uncertainty of G p j does not have any effect on residual,

the residual in (20) is projected to the kernel, V, of H j
f as follows:

rj
0 = VTrj = VT H j

x x̃ + VTnj = H j
x,0 x̃ + nj

0 (22)

Taking into account Equation (22), the updating step of EKF could be calculated.
A simple execution of EKF-based VIO produces incorrect information in the heading.
This problem originates from the difference between the linearizing point for process and
measurement step at the same time instant. In order to maintain the consistency of the
filter, a variety of different methods have been used in previous studies. Some of these
methods have been presented in FEJ-EKF [43], OC-EKF [44], and a robocentric mapping
filter [45]. In this study, we employed OC-EKF.

4.3. Wheel Odometry Algorithm

The wheel odometry works based on data from encoders coupled to the rear wheels.
Every single encoder generates 100 sets of pulses for a revolution of the tire (encoder
resolution). A revolution of the tire makes the single revolution in the encoder (1 by 1
coupling). Each rotary incremental encoder provides a least two output signals (usually
A and B), which are in form of digital square waves. The rate of occurrence in the signal
represents the shaft speed rotation, while the quantity of pulses shows the covered distance.
Encoder output signals are sent to a processor board. The processor samples the encoder’s
signal every 5 milliseconds. Vehicle kinematic state can be defined using vehicle position
(X, Y) in the world coordinate frame (with an index point) and the vehicle heading Ψ.
Whenever the vehicle starts to turn, it must follow a circular path (see Figure 2). The
integration time is so insignificant that we can consider the curvature of the path as a
constant curvature. In Figure 2, Xi and Yi are initial points and X f and Yf are final points.

Figure 2. Wheel odometry model.

Length of the arcs for the right wheel ∆dr and the left wheel ∆dl are calculated using
encoder measurement from the encoder (∆cr,∆cl), the radius of the wheels (WRr, WRl),
and resolution of the encoder (Eres) as follows:

∆dr =
2π(WRr∆cr)

Eres
(23)

∆dl =
2π(WRl∆cl)

Eres
(24)

Appl. Sci. 2021, 11, 3688 9 of 23

Considering Wdis as the distance between wheels, the radius of curvature for each
wheel and center can be calculated using the following relations:

Rright =
∆drWdis

∆dr − ∆dl
(25)

Rcenter =
Wdis

2
∗ ∆dr + ∆dl

∆dr − ∆dl
(26)

Rle f t =
∆dlWdis

∆dr − ∆dl
(27)

Using the above parameters, change of heading angle (∆Ψ) and
(
∆x, ∆y

)
increments

can be calculated as:

∆Ψ =
∆dr − ∆dl

Wdis
(28)

∆x = Rcenter(cos(Ψ) sin(∆Ψ)− sin(Ψ)(1− cos(∆Ψ))) (29)

∆y = Rcenter(sin(Ψ) sin(∆Ψ)− cos(Ψ)(1− cos(∆Ψ))) (30)

Finally, the position and orientation of the vehicle are updated as follow:

Ψi+1 = ∆Ψ + Ψi (31)

xi+1 = ∆x + xi (32)

yi+1 = ∆y + yi (33)

Table 1 depicts the vehicle parameters (in our designed vehicle in this study) used in
the wheel odometry model.

Table 1. Measured parameters of the vehicle.

Parameter Quantity

Right wheel radius (WRr) 0.27 m
Left wheel radius (WRl) 0.27 m

Distance between wheels (Wdis) 0.975 m

4.4. Sensor Fusion

In order to fuse output data from both the wheel encoder units and the visual-inertial
odometry algorithm, Robot_localization package [46] in the Robot Operating System (ROS)
is employed. The package contains two types of estimators, namely an extended Kalman
filter (EKF) and an unscented Kalman filter (UKF). The extended Kalman filter in the
“robot_localization” package is defined as a node named “ekf_localization_node”. The
node implements an extended Kalman filter that employs an internal omnidirectional model
for motion. The model is used to project states forward (in time) and rectify the projected
estimate using data from the visual-inertial odometry and wheel odometry altogether. The
EKF imposes less computational costs on processors as compared with the UKF. The sensor
fusion node estimates six degrees of freedom position and velocity of the vehicle.

5. Control System Module
5.1. Kinematic Bicycle Model

The vehicle bicycle model which consists of a stiff body and non-deforming wheels is
shown in Figure 3. Consider the vehicle moving on the surface without slipping, there is
full rolling friction between tires and surface [47]. This model is employed in NMPC to
predict the future state of the system.

Appl. Sci. 2021, 11, 3688 10 of 23

Figure 3. Rear axle bicycle model.

In the figure, the distance between the rear and front axles of the car is defined as L
(m). Linear and angular velocities are shown with V (m/s) and ω (rad/s) respectively.
Here ψ (rad) is the heading angle and δ (rad) is defined as the steering angle of the vehicle.
They can be formulated using relations (34), (35), and (36):

R = L/tan(δ) (34)

ω = V/R (35)

ψ =
.

ω (36)

The center of the rear axle is chosen as the desired point. If we consider the in-
stantaneous center of rotation (ICR), the kinematics bicycle model states are formulated
as follows:

.
x = v cos(ψ) (37)

.
y = v sin(ψ) (38)
.
ψ =

v
l

tan(δ) (39)

Here, system states (position, heading, and linear velocity with respect to inertial
frame {O, X, Y}) are represented as X = [x y ψ]T . Vector of control inputs is defined in
u = [v δ]T , where (v) and (δ) are the linear velocity and steering angle, respectively.

Since the NMPC algorithm employed in this study is not computed in continuous
time, at the first step, the kinematic model must be discretized. Considering the sampling
period time dt, a data-sampling instant (t), and using the Euler approximation on (37)–(39),
the discrete-time model can be formulated as follows:

xt+1 = xt + vt cos(ψt)dt (40)

yt+1 = yt + vt sin(ψt)dt (41)

ψt+1 = ψt +
(vt

l

)
tan(δt)dt (42)

where:

Xk+1 = f d(x(t), u(t)) (43)

5.2. The NMPC Algorithm

The model predictive control (MPC) is considered to be an optimal control algorithm
that uses a model of the plant to find a series of optimal control signals by minimizing
a cost function. A plant model is used at each sampling iteration in order to predict the
future behavior of the system during the prediction horizon. Taking into account the

Appl. Sci. 2021, 11, 3688 11 of 23

predictions, an objective function can be minimized with respect to the future sequence of
inputs. A quadratic function of states and control inputs can be used to define the cost
function in (44) as:

J(k) = ∑
Hp
i=1(X

T(k + i | k)QX(k + i | k))+

(UT(k + i | k)RU(k + i | k))
(44)

where the value of x at the time instant (m) is predicted at the time instant (n), the relation
is shown with x(m | n). Vectors of system states and control inputs are defined as X and U
respectively. Weighting matrices (Q and R) are used to penalize the state’s error and control
effort, respectively. The prediction horizon is represented as Hp , which is an important
factor in defining prediction horizon duration time (T). The prediction horizon duration
can be formulated as follows:

T = Hp ∗ dt (45)
The second part in the aforementioned cost function (44) minimizes the control effort.

The optimization problem is defined such that it can find a proper series of control inputs
and states as follows:

X,U = argmin{J(k)} (46)

X(k | k) = X0 (47)

X(k + i + 1 | k) = f d(X(k + i | k), U(k + i | k) (48)

where the inceptive value of states is represented by X0. It corresponds to the numeric
value of states that is measured at current time instant. Prediction model in optimization is
defined in (48). In addition, there is a possibility to impose some bounds, defined in (49)
and (50), on the magnitude of control variables and states as follows:

Xmin ≤ X(k + i | k) ≤ Xmax i ∈
[
0, Hp

]
(49)

Umin ≤ U(k + i | k) ≤ Umax i ∈
[
0, Hp − 1

]
(50)

It has been proven that only some initial control predictions are effective in stabilizing
the system. Hence, in the majority of cases, another parameter called the control horizon
(Hc) is defined, which is the optimized number of control moves at each control interval. It
falls between one and the prediction horizon. The final goal of optimizing the objective
function is to reduce the error while states are approaching the desired point. Therefore,
(51) substitutes for (44) as follows:

J(k) = ∑
Hp
i=1 ‖ X(k + i | k)− r(k + i) ‖2

Qe
+ ∑Hc−1

i=1 ‖ U(k + i) | k ‖2
Qu

+

∑Hc−1
i=2 ‖ U(k + i− 1)−U(k + i− 2) ‖2

Qrat

(51)

where the predicted states vector is represented with X(k + i | k). Here, r(k + i) is the
desired set-point vector. In addition, some weighting matrices (Qe, Qu, and Qrat) are
employed to reduce state tracking error, control effort, and rate of change in control signal,
respectively.

In the modified cost function, the third summation reduces stress on actuators by
limiting the rate of change. Constraints (52)–(54) are imposed on the control inputs and
states as follows:

−0.6 ≤ δ(k + i− 1 | k) ≤ 0.6 (52)

0 ≤ v(k + i− 1 | k) ≤ 1 (53)

−0.42 ≤ δrat(k + i− 1 | k) ≤ 0.42 (54)

where the rate of change in steering angle is represented by δrat. The simplified differentially
flat bicycle model is discretized using the direct multiple shooting method. The model

Appl. Sci. 2021, 11, 3688 12 of 23

is used as a prediction plant to decrease the computational costs of nonlinear model
predictive control. This approach utilizes the long prediction horizon of nonlinear model
predictive control, which allows safe path tracking while approaching a user-specified goal
destination. The task is done by controlling the longitudinal velocity and the steering angle.

6. Hardware Architecture and Interfaces

System architecture and interfaces are shown in Figure 4. The system is comprised
of two main parts, namely the high-level part and the low-level part (containing a low-
level controller). The main processor is programmed to run the high-level controller
algorithm, visual-inertial odometry, sensor fusion, and serial port communication with a
low-level controller. The control commands are sent to the low-level controller that tries
to control actuators including speed controller, brushless DC motor (BLDC), brake motor,
and electronic power steering (EPS).

Figure 4. System architecture and interfaces.

The main processor in this study is a Jetson AGX Xavier (NVIDIA Corporation, Santa
Clara County, CA, USA). This is an embedded system-on-module (SOM) from the NVIDIA
AGX Systems family. It is equipped with an octa-core NVIDIA Carmel ARMv8.2 CPU, 16
GB 256-bit LPDDRX with 137 GB/s, and other processing related to parallel processing,
machine learning, and image processing. The processor runs the ROS on which the control
algorithm, visual-inertial odometry algorithm, and sensor fusion algorithm are launched.
Table 2 shows the specifications of the main processor.

Appl. Sci. 2021, 11, 3688 13 of 23

Table 2. Main processor specifications.

Hardware Unit Specifications

GPU 512-core Volta GPU with tensor cores
CPU 8-core ARM v8.2 64-bit CPU, 8 MB L2 +4 MB L3

Memory 32 GB 256-bit LPDDR4xI137GB/s

The main processor, and connections’ structure with other parts are shown in Figure 5.
The incremental rotary encoders coupled with the wheels’ shafts provide data in the form
of two square waves.

These raw data (from encoders) are sent to an Arduino Uno embedded processor
board (Arduino Uno is an open-source microcontroller board employing an 8-bit AVR
Microchip ATmega328P that is developed by Arduino). The processor board processes the
square wave signals and generates the position and heading of the ground vehicle. An
ELLIPSE2-N from SBG is employed as IMU. It contains an accelerometer with velocity
random walk 100 (x,y) µg/

√
hz and 150 (z) µg/

√
hz. The accelerometer bandwidth is

250 Hz while the sampling rate of the accelerometer is 3 kHz. The sensor also contains a
gyroscope with an angular random walk of 0.16◦/

√
hr. The bandwidth of its gyroscope is

133 Hz, whereas the sampling rate is up to 10 kHz. It should be noted that the device is
equipped with other aiding sensors, but in this study, we do not use them.

Figure 5. Main processor and its connection to other parts.

The device publishes inertial data with an update rate of up to 200 Hz. The IMU
specifications are shown in Table 3. The inertial measurement data are published via a
topic in the ROS with the updated rate adjusted at 100 Hz.

Table 3. IMU hardware specifications.

Accelerometer Parameters Quantity Gyroscopes Parameters Quantity

Scale factor stability (%) 0.1 Scale factor stability (%) 0.05

Nonlinearity (% of FS) 0.2 Nonlinearity (% of FS) 0.05

One year bias stability (mg) 5 One year bias stability (◦/s) 0.2

Velocity random walk (µg/
√

hz) 100 (x,y) Angular random walk (◦/
√

hr) 0.16
150 (z)

In-run bias instability (µg) 20 In-run bias instability (◦/hr) 8

Vibrating rectification error (mg/g2) 7 Orthogonality 0.05

Bandwidth (Hz) 250 Bandwidth (Hz) 133

Sampling rate (kHz) 3 Sampling rate (kHz) 0.05

Appl. Sci. 2021, 11, 3688 14 of 23

A ZED stereo camera (StereoLabs, San Francisco, CA, USA) with resolution 2 × (1920
× 1080) in 30 fps is employed to capture a stream of images. Its maximum field of view is
90◦ horizontal and 60◦ vertical. The camera image stream is received through its special
package in the ROS. Table 4 shows the specifications of the stereo camera.

Table 4. Stereo camera specifications.

Parameter Specifications/Quantity

Output resolution Side by side 2× (2208 × 1242) @ 15 fps
2× (1920 × 1080) @ 30 fps
2× (1280 × 720) @ fps
2× (640 × 480) @ 100 fps

Output format YUV 4:2:2

Field of view Max. 110◦ (D)

Baseline 120 mm

Interface USB 3.0

Sensor type 1/2.7”

Active array size 4 M pixels per sensor

Focal length 2.8 mm (0.11”)—f/2.0

Shutter Electronic synchronized rolling shutter

The low-level controller is comprised of two processor boards that are programmed
to receive commands and control actuators. The actuators include the BLDC motor (with
coupled gearbox), brake motor (responsible for controlling the flow of hydraulic oil from
master brake pistons to caliper pistons), and electronic power steering (responsible for
changing steering angle). Figure 6 shows the content of the low-level control box.

Figure 6. Platform control unit and low-level controller.

The platform control unit (PCU) is responsible for receiving control commands from
the high-level controller via RS232 serial communication protocol. It also receives com-
mands from a remote transceiver. The processor module establishes a Control Area Net-
work Bus (CAN Bus) by which it can communicate with the automatic speed control
module (ASM), brake motor driver, and electronic power steering (EPS). The BLDC motor
is controlled by the ASM and PCU, while the brake and EPS are controlled through the
PCU module. In Figure 6, RT stands for the remote transceiver. Solid state relays (SSR)
play a role as electronic controlled switches. The final system configuration for the electric
vehicle is depicted in Figure 7.

Appl. Sci. 2021, 11, 3688 15 of 23

Figure 7. Electric vehicle system configuration.

The electric vehicle employs a 3 kW BLDC motor with 3000 r/min that generates the
needed torque. The rotational force is transferred to wheels via a gearbox and vehicle
differential. The EPS communicates with the low-level controller through the CAN Bus.
It is responsible for changing the steering angle. The brake motor driver also receives
commands via the CAN Bus. The power supply box is equipped with several DC-to-DC
converters that provide the proper voltage and current for each device. Figure 8 depicts
the designed autonomous electric vehicle prototype.

Figure 8. The prototype of the electric vehicle.

7. Simulation and Real-Time Experimental Results from the Employed Localization
Algorithm

In order to evaluate the performance of the VIO algorithm, the Malaga dataset [48]
was used. At the second step, a real-time experiment with our designed electric vehicle pro-
totype was performed to evaluate the performance of the integrated localization algorithm
(VIO plus wheel odometry). The Malaga dataset was collected in different urban scenarios
with a car equipped with a variety of different sensors including one stereo camera, an
IMU, and laser sensors. This dataset provides different driving scenarios. In this study,
a scenario named “short avenue loop closure” was used. Figure 9a shows the employed

Appl. Sci. 2021, 11, 3688 16 of 23

driving scenario. The size of the vehicle estimation trajectory was intentionally chosen to
be bigger than that of the true trajectory, because we wanted to evaluate the ability of the
filter for scale estimation. In this test, the ratio was defined to be three. Figure 9b shows the
performance of the employed visual-inertial odometry in simulation as compared with the
ground truth from a GPS in the dataset.

Figure 9. Driving scenario from Malaga and localization algorithm simulation result with the Malaga
dataset. (a) Short avenue loop closure driving scenario dataset from Malaga; (b) performance of
employed visual-inertial odometry in simulation with the Malaga dataset.

As it can be seen in Figure 9, although the scale of the VO trajectory was set to be three
times bigger than the ground truth trajectory, the EKF was able to do scale estimation and
provided correct estimation for VIO. In order to evaluate the performance of the proposed
localization algorithm, an experiment using our designed electric vehicle was conducted.
Figure 10 shows the result of the experiment that was conducted on the Kunsan National
University campus.

Figure 10. Real-time experiments with the proposed localization algorithm.

From the result of the real-time experiment, it can be seen that the combination of the
VIO and wheel odometry provides a far better estimation as compared with both the VO
and VIO.

8. Simulation and Evaluation of the Employed Control Algorithm

The performance of the controller performing the trajectory-tracking maneuver was
evaluated by defining a trajectory using (55)–(57) as follows:

Appl. Sci. 2021, 11, 3688 17 of 23

X = 10 ∗ ecos (t) (55)

Y = 15 ∗ esin (t) (56)

Ψ0 = 1.36 (rad) (57)

where vectors of x and y coordinates in the trajectory plane are shown with X, Y. Heading
at the starting point is shown with Ψ0. Simulations were conducted using MATLAB
and GAZEBO simulators. The CasADi package [49] was employed in order to solve
the optimization problem. The package provides an open-source software framework
for numerical optimization. The package is a general-purpose tool that can be used to
model and solve optimization problems. The core of the package has been written in C++,
but the creators made some interfaces for Python, MATLAB, and Octave. The package
is widely using for academic purposes as well as in industrial applications in different
fields, including optimal control, robotics control, and the aerospace industry. In this
study, the optimizer used the IPOPT class inside the package. A primal-dual interior-point
method was applied, which uses line search based on the filter method [50]. The software
simulation architecture for evaluating the controller is shown in Figure 11.

Figure 11. Software simulation architecture for evaluating the vehicle controller.

Figure 12a depicts the desired trajectory and the performance of the trajectory tracking
of the simulated vehicle. The vehicle heading angle error is shown in Figure 12b. The
control inputs including velocity and steering angle are shown in Figure 13a,b, respectively.
Lateral and longitudinal trajectory tracking performance (with respect to their occurrence
time) are shown in Figure 14.

Figure 12. Results of simulation for trajectory-tracking and heading error. (a) Desired trajectory Vs
the trajectory made by the simulated vehicle; (b) heading angle error.

Appl. Sci. 2021, 11, 3688 18 of 23

Figure 13. Control inputs. (a) Velocity; (b) Steering.

Figure 14. Lateral and longitudinal trajectory tracking of the vehicle with respect to their occurrence
time (note that the time shift in the figures is the effect of the propagation delay of the system).
(a) Longitudinal trajectory with respect to time; (b) lateral trajectory with respect to time.

The simulation results in Figure 12 show that NMPC is able to control the car properly
while tracking the trajectory. Simulation results, also, show that NMPC has optimized the
controller effort during the simulation. In addition, the controller managed to steer the car
towards the desired heading at the destination.

9. Real-Time Electric Vehicle Experimental Results
9.1. Trajectory Tracking

The proposed control and state estimation (the vehicle position and heading angle
estimation) algorithms were implemented on our designed electric ground vehicle. A
sinusoidal trajectory was defined as follows:

Xtrj = 1 + t/10 (58)

ψdes = 0 (59)

Ytrj = sin (0.1 ∗ t) (60)

We conducted a real-time trajectory tracking maneuver using our designed electric
vehicle and the proposed system structure. Figure 15a,b show the trajectory tracking of
the vehicle and the vehicle heading angle, respectively. Figure 16a shows vehicle linear
velocity during the maneuver, while Figure 16b depicts vehicle trajectory tracking in the
X coordinate (with respect to the occurrence time). It must be noted that the time shift in
Figure 16b is the effect of the response delay of the system.

Appl. Sci. 2021, 11, 3688 19 of 23

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 24

9. Real-Time Electric Vehicle Experimental Results

9.1. Trajectory Tracking

The proposed control and state estimation (the vehicle position and heading angle

estimation) algorithms were implemented on our designed electric ground vehicle. A

sinusoidal trajectory was defined as follows:

𝑋𝑡𝑟𝑗 = 1 + 𝑡/10 (58)
𝜓𝑑𝑒𝑠 = 0 (59)

𝑌𝑡𝑟𝑗 = sin (0.1 ∗ 𝑡) (60)

We conducted a real-time trajectory tracking maneuver using our designed electric

vehicle and the proposed system structure. Figure 15a,b show the trajectory tracking of

the vehicle and the vehicle heading angle, respectively. Figure 16a shows vehicle linear

velocity during the maneuver, while Figure 16b depicts vehicle trajectory tracking in the

X coordinate (with respect to the occurrence time). It must be noted that the time shift in

Figure 16b is the effect of the response delay of the system.

(a) …(b)

Figure 15. Heading and trajectory. (a) Trajectory tracked by the vehicle; (b) heading of the electric

vehicle.

 (a) …(b)

Figure 16. Velocity and the performance of the trajectory tracking of the vehicle in X coordinate with

respect to time. (a) Vehicle velocity; (b) trajectory tracking of the vehicle (in X coordinate) with

respect to time (note that the time delay in the figure is the propagation delay of the system that

caused a time shift between graphs).

9.2. Path Following

Figure 15. Heading and trajectory. (a) Trajectory tracked by the vehicle; (b) heading of the electric
vehicle.

Figure 16. Velocity and the performance of the trajectory tracking of the vehicle in X coordinate
with respect to time. (a) Vehicle velocity; (b) trajectory tracking of the vehicle (in X coordinate) with
respect to time (note that the time delay in the figure is the propagation delay of the system that
caused a time shift between graphs).

9.2. Path Following

The performance of the vehicle in performing path tracking was evaluated by conducting
an experiment on the Kunsan university campus. Figure 17 shows the experimental result.

Figure 17. Result of path-following maneuver by the vehicle.

Appl. Sci. 2021, 11, 3688 20 of 23

The controller is fed with waypoint data during the driving maneuver. Control inputs
are depicted in Figure 18a. Figure 18b shows vehicle derivation from the desired path. The
controller’s brake commands and changes in the vehicle steering angle, respectively, are
shown in Figure 19a,b. Vehicle velocity and heading angle are shown in Figure 20.

Figure 18. Vehicle derivation from desired path and control inputs. (a) Control inputs; (b) vehicle
derivation from desired path during maneuver.

Figure 19. Brake commands and changes in vehicle steering angle: (a) brake commands; (b) changes in
vehicle steering angle.

Figure 20. Vehicle velocity and heading angle. (a) Vehicle velocity; (b) vehicle heading.

Appl. Sci. 2021, 11, 3688 21 of 23

10. Conclusions

In this study, we aimed to develop an autonomous electric vehicle for path tracking.
We discussed both hardware and software design and implementation. Control and
navigation algorithms were developed and implemented. The vehicle was able to perform
path tracking maneuvers under environments in which the positioning signals from the
Global Navigation Satellite System (GNSS) are not accessible. The proposed approach
used a constrained input-output nonlinear model predictive controller (NMPC) for path
tracking. The implemented localization algorithm guaranteed almost accurate position
estimation under GNSS-denied environments.

The performances of the algorithms were evaluated using MATLAB and GAZEBO
as simulators. In addition, the capability of the system was evaluated in real time by
performing experiments using the designed vehicle. The simulation results and the real-
time experiments confirm the capability of the designed vehicle for performing challenging
path tracking under GNSS-denied environments.

Author Contributions: Conceptualization, A.B., O.D., and D.-J.L.; methodology, A.B. and O.D.;
supervision, D.-J.L.; project administration, D.-J.L.; funding acquisition, D.-J.L. All authors have read
and agreed to the published version of the manuscript.

Funding: This study was supported by the Spatial Information Research Institute grant funded
by LX (grant 2020-254); the National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT) (2019R1F1A1049711); the Unmanned Vehicles Core Technology Research
and Development Program through the National Research Foundation of Korea (NRF) and the
Unmanned Vehicle Advanced Research Center (UVARC) funded by the Ministry of Science and
ICT, the Republic of Korea (2020M3C1C1A01082375); and the Unmanned Vehicles Core Technology
Research and Development Program through the National Research Foundation of Korea (NRF) and
the Unmanned Vehicle Advanced Research Center (UVARC) funded by the Ministry of Science and
ICT, the Republic of Korea (2020M3C1C1A02084772).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Maghenem, M.; Loria, A.; Nuno, E.; Panteley, E. Distributed full-consensus control of nonholonomic vehicles under non-

differentiable measurement delays. IEEE Control Syst. Lett. 2021, 5, 97–102. [CrossRef]
2. Zhao, P.; Chen, J.; Song, Y.; Tao, X.; Xu, T.; Mei, T. Design of a control system for an autonomous vehicle based on adaptive-PID.

Int. J. Adv. Robot. Syst. 2012, 9, 44. [CrossRef]
3. Barzegar, A.; Piltan, F.; Vosoogh, M.; Mirshekaran, A.M.; Siahbazi, A. Design serial intelligent modified feedback linearization

like controller with application to spherical motor. Int. J. Inf. Technol. Comput. Sci. 2014, 6, 72–83. [CrossRef]
4. Alouache, A.; Wu, Q. Genetic algorithms for trajectory tracking of mobile robot based on PID controller. In Proceedings of the

2018 IEEE 14th International Conference on Intelligent Computer Communication and Processing (ICCP), Cluj-Napoca, Romania,
6–8 September 2018.

5. Abdelhakim, G.; Abdelouahab, H. A new approach for controlling a trajectory tracking using intelligent methods. J. Electr. Eng.
Technol. 2019, 14, 1347–1356. [CrossRef]

6. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al.
Stanley: The Robot That won the darpa grand challenge. In The 2005 DARPA Grand Challenge; Springer: Berlin/Heidelberg,
Germany, 2007; Volume 36, p. 1.

7. Amer, N.H.; Hudha, K.; Zamzuri, H.; Aparow, V.R.; Abidin, A.F.Z.; Kadir, Z.A.; Murrad, M. Adaptive modified Stanley controller
with fuzzy supervisory system for trajectory tracking of an autonomous armoured vehicle. Rob. Auton. Syst. 2018, 105, 94–111.
[CrossRef]

8. Dominguez, S.; Ali, A.; Garcia, G.; Martinet, P. Comparison of lateral controllers for autonomous vehicle: Experimental results. In
Proceedings of the 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC), Rio de Janeiro, Brazil,
1–4 November 2016.

9. Morales, J.; Martínez, J.L.; Martínez, M.A.; Mandow, A. Pure-pursuit reactive path tracking for nonholonomic mobile robots with
a 2D laser scanner. EURASIP J. Adv. Signal Process. 2009. [CrossRef]

10. Pure Pursuit Controller-MATLAB & Simulink. Available online: https://www.mathworks.com/help/robotics/ug/pure-pursuit-
controller.html (accessed on 30 January 2021).

http://doi.org/10.1109/LCSYS.2020.3000676
http://doi.org/10.5772/51314
http://doi.org/10.5815/ijitcs.2014.05.10
http://doi.org/10.1007/s42835-019-00112-1
http://doi.org/10.1016/j.robot.2018.03.006
http://doi.org/10.1155/2009/935237
https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html
https://www.mathworks.com/help/robotics/ug/pure-pursuit-controller.html

Appl. Sci. 2021, 11, 3688 22 of 23

11. Mobarez, E.N.; Sarhan, A.; Ashry, M.M. Comparative robustness study of multivariable controller of fixed wing Ultrastick25-e
UAV. In Proceedings of the 2018 14th International Computer Engineering Conference (ICENCO), Giza, Egypt, 29–30 December
2018.

12. Norouzi, A.; Kazemi, R.; Azadi, S. Vehicle lateral control in the presence of uncertainty for lane change maneuver using adaptive
sliding mode control with fuzzy boundary layer. Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng. 2018, 232, 12–28. [CrossRef]

13. National Aeronaut Administration (Nasa). An Improved Lateral Control Wheel Steering Law for The Transport Systems Research Vehicle
(TSRV); Createspace Independent Publishing Platform: North Charleston, SC, USA, 2018; ISBN 9781722072544.

14. Vivek, K.; Ambalal Sheta, M.; Gumtapure, V. A comparative study of Stanley, LQR and MPC controllers for path tracking
application (ADAS/AD). In Proceedings of the 2019 IEEE International Conference on Intelligent Systems and Green Technology
(ICISGT), Visakhapatnam, India, 29–30 June 2019.

15. Camacho, E.F.; Bordons Alba, C. Model Predictive Control, 2nd ed.; Springer: London, UK, 2007; ISBN 9780857293985.
16. Findeisen, R.; Allgöwer, F. An Introduction to Nonlinear Model Predictive Control; Technische Universiteit Eindhoven Veldhoven:

Eindhoven, The Netherlands, 2002; Volume 11, pp. 119–141.
17. Canale, M.; Fagiano, L. Vehicle yaw control using a fast NMPC approach. In Proceedings of the 2008 47th IEEE Conference on

Decision and Control, Cancun, Mexico, 9–11 December 2008.
18. Kong, J.; Pfeiffer, M.; Schildbach, G.; Borrelli, F. Kinematic and dynamic vehicle models for autonomous driving control design.

In Proceedings of the 2015 IEEE Intelligent Vehicles Symposium (IV), Seoul, South Korea, 28 June–1 July 2015.
19. Menhour, L.; d’Andrea-Novel, B.; Boussard, C.; Fliess, M.; Mounier, H. Algebraic nonlinear estimation and flatness-based

lateral/longitudinal control for automotive vehicles. In Proceedings of the 2011 14th International IEEE Conference on Intelligent
Transportation Systems (ITSC), Washington, DC, USA, 5–7 October 2011.

20. Mur-Artal, R.; Montiel, J.M.M.; Tardos, J.D. ORB-SLAM: A versatile and accurate monocular SLAM system. IEEE Trans. Robot.
2015, 31, 1147–1163. [CrossRef]

21. Mur-Artal, R.; Tardos, J.D. ORB-SLAM2: An open-source SLAM system for monocular, stereo and RGB-D cameras. IEEE Trans.
Robot. 2017, 33, 1255–1262. [CrossRef]

22. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An efficient alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011.

23. Engel, J.; Schöps, T.; Cremers, D. LSD-SLAM: Large-scale direct monocular SLAM. In European Conference on Computer Vision,
Proceedings of the ECCV 2014: Computer Vision—ECCV 2014, Zurich, Switzerland, 6–12 September 2014; Springer International
Publishing: Cham, Switzerland, 2014; pp. 834–849. ISBN 9783319106045.

24. Goncalves, T.; Comport, A.I. Real-time direct tracking of color images in the presence of illumination variation. In Proceedings of
the 2011 IEEE International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

25. Forster, C.; Pizzoli, M.; Scaramuzza, D. SVO: Fast semi-direct monocular visual odometry. In Proceedings of the 2014 IEEE
International Conference on Robotics and Automation (ICRA), Hong Kong, China, 31 May–5 June 2014.

26. Krombach, N.; Droeschel, D.; Behnke, S. Combining feature-based and direct methods for semi-dense real-time stereo visual
odometry. In Intelligent Autonomous Systems 14; Springer International Publishing: Cham, Switzerland, 2017; pp. 855–868. ISBN
9783319480350.

27. Fanani, N. Predictive Monocular Odometry Using Propagation-Based Tracking; Goethe-Universität Frankfurt: Johann Wolfgang,
Germany, 2018.

28. Oskiper, T.; Zhu, Z.; Samarasekera, S.; Kumar, R. Visual odometry system using multiple stereo cameras and inertial measurement
unit. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22
June 2007.

29. Sensing and Control for Autonomous Vehicles: Applications to Land, Water and Air Vehicles, 1st ed.; Fossen, T.I.; Pettersen, K.Y.;
Nijmeijer, H. (Eds.) Springer International Publishing: Cham, Switzerland, 2017; ISBN 9783319553726.

30. Jimenez, A.R.; Seco, F.; Prieto, J.C.; Guevara, J. Indoor pedestrian navigation using an INS/EKF framework for yaw drift reduction
and a foot-mounted IMU. In Proceedings of the 2010 7th Workshop on Positioning, Navigation and Communication, Dresden,
Germany, 11–12 March 2010.

31. Weiss, S.; Siegwart, R. Real-time metric state estimation for modular vision-inertial systems. In Proceedings of the 2011 IEEE
International Conference on Robotics and Automation, Shanghai, China, 9–13 May 2011.

32. Leutenegger, S.; Lynen, S.; Bosse, M.; Siegwart, R.; Furgale, P. Keyframe-based visual–inertial odometry using nonlinear
optimization. Int. J. Robot. Res. 2015, 34, 314–334. [CrossRef]

33. Yang, Z.; Shen, S. Monocular visual-inertial state estimation with online initialization and camera–IMU extrinsic calibration. IEEE
Trans. Autom. Sci. Eng. 2017, 14, 39–51. [CrossRef]

34. Usenko, V.; Engel, J.; Stuckler, J.; Cremers, D. Direct visual-inertial odometry with stereo cameras. In Proceedings of the 2016
IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016.

35. Yang, G.; Zhao, L.; Mao, J.; Liu, X. Optimization-based, simplified stereo visual-inertial odometry with high-accuracy initialization.
IEEE Access 2019, 7, 39054–39068. [CrossRef]

36. Mourikis, A.I.; Roumeliotis, S.I. A multi-state constraint Kalman filter for vision-aided inertial navigation. In Proceedings of the
2007 IEEE International Conference on Robotics and Automation, Roma, Italy, 10–14 April 2007.

http://doi.org/10.1177/0959651817733222
http://doi.org/10.1109/TRO.2015.2463671
http://doi.org/10.1109/TRO.2017.2705103
http://doi.org/10.1177/0278364914554813
http://doi.org/10.1109/TASE.2016.2550621
http://doi.org/10.1109/ACCESS.2019.2902295

Appl. Sci. 2021, 11, 3688 23 of 23

37. Bloesch, M.; Omari, S.; Hutter, M.; Siegwart, R. Robust visual inertial odometry using a direct EKF-based approach. In Proceedings
of the 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Hamburg, Germany, 28 September–2
October 2015.

38. Tsotsos, K.; Chiuso, A.; Soatto, S. Robust inference for visual-inertial sensor fusion. In Proceedings of the 2015 IEEE International
Conference on Robotics and Automation (ICRA), Seattle, WA, USA, 26–30 May 2015.

39. Kelly, J.; Sukhatme, G.S. Visual-inertial sensor fusion: Localization, mapping and sensor-to-sensor self-calibration. Int. J. Robot.
Res. 2011, 30, 56–79. [CrossRef]

40. Sun, K.; Mohta, K.; Pfrommer, B.; Watterson, M.; Liu, S.; Mulgaonkar, Y.; Taylor, C.J.; Kumar, V. Robust stereo visual inertial
odometry for fast autonomous flight. arXiv 2017, arXiv:1712.00036. [CrossRef]

41. Trajković, M.; Hedley, M. Fast corner detection. Image Vis. Comput. 1998, 16, 75–87. [CrossRef]
42. Barzegar, A.; Doukhi, O.; Lee, D.-J.; Jo, Y.-H. Nonlinear Model Predictive Control for Self-Driving cars Trajectory Tracking in

GNSS-denied environments. In Proceedings of the 2020 20th International Conference on Control, Automation and Systems
(ICCAS), Busan-City, Korea, 13–16 October 2020.

43. Huang, G.P.; Mourikis, A.I.; Roumeliotis, S.I. Observability-based rules for designing consistent EKF SLAM estimators. Int. J.
Robot. Res. 2010, 29, 502–528. [CrossRef]

44. Hesch, J.A.; Kottas, D.G.; Bowman, S.L.; Roumeliotis, S.I. Observability-constrained vision-aided inertial navigation. Univ. Minn.
Dep. Comput. Sci. Eng. MARS Lab. Tech. Rep. 2012, 1, 6.

45. Castellanos, J.A.; Martinez-Cantin, R.; Tardós, J.D.; Neira, J. Robocentric map joining: Improving the consistency of EKF-SLAM.
Rob. Auton. Syst. 2007, 55, 21–29. [CrossRef]

46. Moore, T.; Stouch, D. A generalized extended Kalman filter implementation for the robot operating system. In Intelligent
Autonomous Systems 13; Springer International Publishing: Cham, Switzerland, 2016; pp. 335–348. ISBN 9783319083377.

47. Matute, J.A.; Marcano, M.; Diaz, S.; Perez, J. Experimental validation of a kinematic bicycle model predictive control with lateral
acceleration consideration. IFAC Pap. OnLine 2019, 52, 289–294. [CrossRef]

48. The Málaga Stereo and Laser Urban Data Set. Available online: https://www.mrpt.org/MalagaUrbanDataset (accessed on 22
February 2021).

49. Andersson, J.A.E.; Gillis, J.; Horn, G.; Rawlings, J.B.; Diehl, M. CasADi: A software framework for nonlinear optimization and
optimal control. Math. Program. Comput. 2019, 11, 1–36. [CrossRef]

50. Wächter, A.; Biegler, L.T. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear
programming. Math. Program. 2006, 106, 25–57. [CrossRef]

http://doi.org/10.1177/0278364910382802
http://doi.org/10.1109/LRA.2018.2793349
http://doi.org/10.1016/S0262-8856(97)00056-5
http://doi.org/10.1177/0278364909353640
http://doi.org/10.1016/j.robot.2006.06.005
http://doi.org/10.1016/j.ifacol.2019.08.085
https://www.mrpt.org/MalagaUrbanDataset
http://doi.org/10.1007/s12532-018-0139-4
http://doi.org/10.1007/s10107-004-0559-y

	Introduction
	Related Studies
	Control
	Vehicle Localization
	Research Contribution

	Proposed Approach
	Vehicle State Estimation, Localization, and Sensors
	The Proposed Algorithms for Vehicle State Estimation, Localization, and Sensors
	Visual-Inertial Odometry Algorithm
	Wheel Odometry Algorithm
	Sensor Fusion

	Control System Module
	Kinematic Bicycle Model
	The NMPC Algorithm

	Hardware Architecture and Interfaces
	Simulation and Real-Time Experimental Results from the Employed Localization Algorithm
	Simulation and Evaluation of the Employed Control Algorithm
	Real-Time Electric Vehicle Experimental Results
	Trajectory Tracking
	Path Following

	Conclusions
	References

