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Abstract: The adaptive mesh techniques applied to the Finite Element Method have continuously
been an active research line. However, these techniques are usually applied to tetrahedra. Here,
we use the triangular prismatic element as the discretization shape for a Finite Element Method
code with adaptivity. The adaptive process consists of three steps: error estimation, marking, and
refinement. We adapt techniques already applied for other shapes to the triangular prisms, showing
the differences here in detail. We use five different marking strategies, comparing the results obtained
with different parameters. We adapt these strategies to a conformation process necessary to avoid
hanging nodes in the resulting mesh. We have also applied two special rules to ensure the quality of
the refined mesh. We show the effect of these rules with the Method of Manufactured Solutions and
numerical results to validate the implementation introduced.

Keywords: finite element method; adaptivity; periodic boundary conditions; computational
electromagnetics

1. Introduction

The Finite Element Method (FEM) is a mature tool used to obtain the numerical
solution of partial differential equations (PDEs) used in multiple engineering fields and
physics [1–4]. Apart from the solid mathematical foundation of FEM, one of the main
advantages of this technique is the use of adaptive refinement to improve the error con-
vergence in the approximation of the field. This leads to better use of the computational
resources since we obtain automatically more accurate solutions with fewer unknowns to
solve. Additionally, the use of these techniques provides an estimation of the error in the
problem. In FEM, we can perform h refinements (decreasing the size of the elements used
for discretizing the original domain) and p refinements (increasing the order of basis func-
tions that approximate the field under study). The combination of these two refinements
leads to the so-called hp refinement [5–7], which might lead to exponential convergence
when appropriate estimators are used.

The p refinements are especially effective when approximating smooth solutions,
whereas h (also called mesh adaptive) refinements are more general and adapt to non-
smooth solutions (e.g., bends, corners, or other special geometries).

A good compromise is the use of second-order basis functions [8], as in [9,10]. The
field of application of h and hp adaptivity, [11–16], is quite broad: multigroup neutron
diffusion [17], brittle fracture modeling [18], tomography [19], inverse scattering problems
in electromagnetics [20], electromagnetic cloaking [21], acoustics [22], metamaterials [23],
or mechanics [24]. However, these techniques are specific to hexahedral and tetrahe-
dral meshes.
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The use of different shapes depending on the geometry of the problem is advanta-
geous from the computational point of view. We should use tetrahedra for irregular and
unstructured geometries and hexahedra for rectangular-like geometries. The triangular
prism can be considered as a hybrid of these two, and it can be used to connect hexahedral
and tetrahedral meshes [25], whereas it is also well suited for planar geometries with an
irregular pattern on the surface, e.g., laminates and sandwich structures [26,27] integrated
circuit package designs [28], planar microwave circuits and antennas [29], waveguide
sections [30], or coating for irregular volumes meshed with tetrahedra. Additionally, the
generation of volumetric meshes for prisms is typically easy since we only need to extrude
a 2D triangular mesh.

We need to introduce adaptivity techniques to all the different shapes to choose the
most suitable shape for each problem. Unfortunately, the application of adaptivity tech-
niques to triangular prisms is not so frequent in the literature apart from [31,32]. Whereas
the formulation and the definition of the estimator do not depend on the discretization
shape, the development of marking strategies and the application of different h refinements
need to be particularized for the different shapes.

Here, we suggest to take the fundamental ideas from 2D refinement and apply them
rigorously to the adaptivity with triangular prisms, solving the particularities (especially
related to maintaining admissible meshes in the sense of having conformal solutions from
the FEM point of view straightforwardly) that arise from the application of these ideas
to volumetric meshes. First, we use the Method of Manufactured Solutions, MMS [33],
to show the significance of the mesh quality indicators we have introduced and to ex-
periment with five different marking strategies of the elements to be refined. Then, we
validate our implementation with a propagation problem (specifically, a WR-90 rectangular
waveguide). Finally, we show with an L-shaped waveguide section the effectiveness of the
adaptivity algorithm.

The rest of the paper is structured as follows: In Section 2, we detail each different
step of the adaptivity algorithm. In Section 3, we provide meaningful experiments with
MMS and propagation problems to show the performance of the adaptivity refinement
developed in the previous section. Finally, we draw the conclusions that can be extracted
from this work in Section 4.

2. Methods

Every adaptive algorithm needs four steps:

• Solve the electromagnetic domain under study.
• Estimate how accurate the approximation of the fields is.
• Mark the elements we want to refine to improve the accuracy.
• Refine the defined elements in the previous step.

We repeat these four steps until we achieve a threshold of the estimated error or after
a number of iterations is run. This section explores each of these steps separately.

2.1. Variational Formulation

We assume that the domain Ω of the electromagnetic problem to be solved is a smooth
domain for which we have the following boundary value problem:

∇× (µ−1
r ∇× E)− k2

0εrE = F in Ω, (1)

n̂× (E× n̂) = ΨD on ΓD, (2)

n̂× (µ−1
r ∇× E) = ΨN on ΓN, (3)

n̂× (µ−1
r ∇× E)− jk0n̂× (E× n̂) = ΨC on ΓC, (4)

taking the electric field E as the field to approximate. We decompose the boundary of the
domain ∂Ω into the sets ΓD, ΓN, and ΓC, corresponding to Dirichlet, Neumann, and Cauchy
boundary conditions, respectively. We set k0, εr, and µr as the vacuum wavenumber,
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relative electric permittivity, and relative magnetic permeability, respectively. The vector n̂
is the outward unit normal vector regarding Ω. We assume isotropic and homogeneous
materials without loss of generality. The terms F, ΨD, ΨN, and ΨC are used for the
volumetric excitation and non-homogeneous boundary conditions. If we are not using
MMS, F, ΨD, and ΨN are set to 0.

We use the space of functions [1],.

H(curl, Ω) :=
{

w ∈ [L2(Ω)]3
∣∣∣∇×w ∈ [L2(Ω)]3

}
, . (5)

to approximate the electric field due to its nature. The space L2(Ω) is the space of square-
integrable functions over Ω. We also use the subspace H0(curl, Ω), whose functions enforce
Dirichlet boundary conditions. We define the sesquilinear forms:(

w, v
)

Ω
=
∫

Ω
w∗ · vdΩ, (6a)〈

w, v
〉

Γ
=
∫

Γ
w∗ · vdΓ, (6b)

using ∗ to denote complex conjugation, Ω as a given volume, and Γ as a specific surface.
Applying the Galerkin method yields:
Find E ∈ H0(curl, Ω) such that(

∇×w, µ−1
r ∇× E

)
Ω
− k2

0

(
w, εrE

)
Ω
+jk0

〈
n̂×w, n̂×w

〉
ΓC

=
(

w, F
)

Ω
−〈

n̂× (w× n̂), ΨN

〉
ΓN
−
〈

n̂× (w× n̂), ΨC

〉
ΓC
∀w ∈ H0(curl, Ω). (7)

The solution to this problem is obtained by solving the system of equations obtained
after the discretization of the domain into second-order triangular prisms from [10].

Method of Manufactured Solutions

The MMS consists of the manufacture of an analytical solution to a differential equation
by solving the problem backward. If we take an equation D(E) = f , assuming that D is a
differential operator and f is a source term, the first step is to manufacture fMMS employing
the introduction of an analytic solution EMMS. Afterwards, we solve the differential
equation obtaining the approximate solution EFEM that can be compared to EMMS to assess
the quality of the approximation.

The excitations that we use in (7) are

F = ∇×
(

µ−1
r ∇× EMMS

)
− k2

0εrEMMS (8a)

ΨD = n̂× (EMMS × n̂) (8b)

ΨN = n̂× (µ−1
r ∇× EMMS) (8c)

ΨC = n̂× (µ−1
r ∇× EMMS)− jk0n̂× (EMMS × n̂) (8d)

We use MMS in Section 3.1 to show the effect of the different marking strategies
and the impact of the rules introduced in the algorithm to improve the quality of the
adapted mesh.

2.2. Estimator

For computational purposes, the estimator of the areas where the accuracy of the
solution would benefit more to have smaller elements should be cheap to compute. We
use a straightforward local estimator based on [34], although other good alternatives
are [35–37]. We compute the estimator individually for each element m with a volumetric
residualR(m)

vol , defined through
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R(m)
vol = ∇× µ−1

r (∇× E(m)
FEM)− k2

0εrE(m)
FEM − F, (9)

and a face residualR(m)
face that changes if a boundary condition is present in that face. Thus,

we define the residualsRD,RN, andRC for the Dirichlet, Neumann, and Cauchy boundary
conditions, respectively, as

R(m)
D = n̂(m) × (E(m)

FEM × n̂(m))−ΨD, on ΓD, (10a)

R(m)
N = n̂(m) × µ−1

r (∇× E(m)
FEM)−ΨN, on ΓN, (10b)

R(m)
C = n̂× µ−1

r (∇× E(m)
FEM)− jk0n̂(m) × (E(m)

FEM × n̂(m))−ΨC, on ΓC. (10c)

We also use the tangential continuity of the magnetic field (not imposed explicitly) as
the face residualRneigh for faces that belong to both elements m and n, i.e.,

R(m)
neigh = n̂(m) × µ−1

r (∇× E(m)
FEM) + n̂(n) × µ−1

r (∇× E(n)
FEM), (11)

soR(m)
face = R(m)

D ∪R(m)
N ∪R(m)

C ∪R(m)
neigh for each face in the m-th element.

Adding up all the residuals, we introduce the residual for each element m, which is
introduced through

R(m) = h(m)
(
R(m)

vol ,R(m)
vol

)
m
+

5

∑
k

Kkh(m)
k

〈
R(m)

face,k,R(m)
face,k

〉
k
, (12)

where Kk is 1
2 and 1 for triangular and rectangular faces, respectively. Moreover, h is the

diameter of the entity (volume or face). Note that the sesquilinear forms are local to the
element m or a given face k.

2.3. Marking Strategies

We use five different marking strategies, i.e., algorithms that decide which elements
are refined in terms of the local residual defined in Section 2.2:

• Next-step estimator: inspired by [38], it is based on the estimation of the error that an
element would have when refined.

• Quantile: here, we order the elements from highest to lowest residual and we refine a
given percentage, as shown in [39].

• Maximum: we define a threshold relative to the maximum residual in the mesh (using
a parameter θ ∈ [0, 1]) [40].

• Fixed-energy fraction: we order the elements by their residual from highest to lowest,
and we refine the first elements which constitutes a given percentage of the energy of
the residual in the whole problem [41].

• SER (Solve-Estimate-Refine): we combine here the fixed-energy fraction and maximum
strategies [42]. We mark sets of elements (ordered from highest to lowest residuals)
which are smaller and smaller (determined by a varying Heaviside step function) to
achieve a given percentage of the energy of the whole problem. If the step function is
forced to select only one element, we have the fixed-energy fraction strategy.

All of these strategies have been tested with unstructured meshes, i.e., with triangles
or tetrahedra. We need to introduce modifications to these techniques for them to be
applied to semi-structured meshes. In particular, we use a process of conformation to
avoid the well-known issue of hanging nodes [6]. We have a hanging node when a direct
correspondence of basis functions cannot be established between neighbor elements: e.g.,
when the edge of one element starts in the middle of the edge of the neighbor element. We
could use special strategies to remedy this problem [6], but they are out of the scope of this
work. This conformation process makes undetermined the number of prisms to be refined
in the marking step, since the refinement has to be propagated horizontally and vertically.
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We call P the set of elements of the original domain P , whereas PR is the set of
elements marked to be refined, with PR ⊂ P . In Algorithm 1, we suggest a variation
(introducing an adaptive threshold to guarantee that, in each round, some elements are
marked) of the algorithm proposed in [38], assuming that the residual follows asymptoti-
callyR = chλ after a first uniform refinement.

Algorithm 1 Marking strategy using the next-step estimator inspired by [38]

Require: R(m)
k−1 . Estimator of the last step

Require: conform_refinement(PR) . Process of conformation to avoid hanging nodes

Input: R(m)
k . Evaluation of (12)

Input: P . Set of original elements (of size N)

Output: PR . Set of elements marked to be refined (of size NR)

1: procedure MARK_NEXTSTEP(R(m)
k ,P ,PR)

2: θ← 1

3: i← 0 . Number of iterations of mark_nextstep

4: if k = 1 then . To force a first round of uniform refinement

5: R(e)
2 ← 0 ∀e ∈ P

6: else

7: for all e ∈ P do . Go through each element

8: R(e)
k+1 ← (R(e)

k )2/R(e)
k−1

9: end for

10: end if

11: while NR = 0 do

12: θ← θ/10i . Adjustment of ςcut

13: ςcut ← θ·max{R(1)
k+1, . . . ,R(N)

k+1} . Threshold to be marked

14: for all e ∈ P do

15: ifR(e)
k ≥ ςcut then

16: e ∈ PR . Add to the set of marked elements

17: end if

18: end for

19: i← i + 1 . Increase the iteration number

20: end while

21: PR ← conform_refinement(PR) . Conform marked elements

22: end procedure

We include the algorithm for the quantile marking strategy in Algorithm 2. We adapt
the implementation to the presence of the conformation process: we perform an iteration
considering fewer and fewer elements until the number of elements to be refined is lower
than the given percentage (specified through parameter θ) of elements to be refined.

The maximum marking strategy does not require special treatment due to the confor-
mation of the mesh, as shown in Algorithm 3, in contrast to the slight modifications intro-
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duced in the fixed-energy fraction and SER algorithms, included in Algorithms 4 and 5,
respectively.

Algorithm 2 Quantile marking strategy based on [39]

Require: conform_refinement(PR) . Process of conformation to avoid hanging nodes

Require: order_residual(Rk) . Order elements from highest to lowest local residualR(m)
k

Input: R(m)
k . Evaluation of (12)

Input: θ . Percentage of elements to be refined

Input: P . Set of original elements (of size N)

Output: PR . Set of elements marked to be refined (of size NR)

1: procedure MARK_QUANTILE(R(m)
k ,θ,P ,PR)

2: θR ← θ

3: Pord ← order_residual(Rk) . Get an ordered set of elements

4: while NR < θN do

5: for all e ≤ θR · NR do

6: e ∈ PR . Add to the set of marked elements

7: end for

8: PR ← conform_refinement(PR) . Conform marked elements

9: θR ← θ − 0.05 . Try with a smaller set

10: end while

11: end procedure

Algorithm 3 Maximum marking strategy

Require: conform_refinement(PR) . Process of conformation to avoid hanging nodes

Input: R(m)
k . Evaluation of (12)

Input: θ . Percentage to set threshold

Input: P . Set of original elements (of size N)

Output: PR . Set of elements marked to be refined (of size NR)

1: procedure MARK_MAXIMUM(R(m)
k ,θ,P ,PR)

2: ςcut ← θ·max{R(1)
k , . . . ,R(N)

k } . Threshold to be marked

3: for all e ∈ P do

4: ifR(e)
k ≥ ςcut then

5: e ∈ PR . Add to the set of marked elements

6: end if

7: end for

8: PR ← conform_refinement(PR) . Conform marked elements

9: end procedure
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Algorithm 4 Fixed-energy fraction marking strategy

Require: conform_refinement(PR) . Process of conformation to avoid hanging nodes

Require: order_residual(Rk) . Order elements from highest to lowestR(m)
k

Input: R(m)
k . Evaluation of (12)

Input: θ . Percentage to set amount of energy of PR

Input: P . Set of original elements (of size N)

Output: PR . Set of elements marked to be refined (of size NR)

1: procedure MARK_FIXEDENERGY(R(m)
k ,θ,P ,PR)

2: ςcut ← θ ·∑N
m=1R

(m)
k . Threshold to be marked in energy

3: Pord ← order_residual(Rk) . Get an ordered set of elements

4: Nref ← 1 . Initialize number of elements to mark.

5: while ∑
N f
m=1,m∈PR

R(m)
k ≤ ςcut do . N f is the size of PR

6: for all e ≤ Nref do

7: e ∈ PR . Add to the set of marked elements

8: end for

9: PR ← conform_refinement(PR) . Conform marked elements

10: Nref ← Nref + 1 . Increase the number of elements to refine.

11: end while

12: end procedure

Algorithm 5 Slight variation of the marking strategy in [42]

Require: conform_refinement(PR) . Process of conformation to avoid hanging nodes

Require: order_residual(Rk) . Order elements from highest to lowestR(m)
k

Input: R(m)
k . Evaluation of (12)

Input: θ . Percentage to set amount of energy of PR

Input: P . Set of original elements (of size N)

Output: PR . Set of elements marked to be refined (of size NR)

1: procedure MARK_SER(R(m)
k ,θ,P ,PR)

2: ςcut,energy ← θ ·∑N
m=1R

(m)
k . Threshold to be marked in energy

3: Pord ← order_residual(Rk) . Get an ordered set of elements

4: Nref ← 1 . Initialize number of elements to mark.

5: θR ← 1 . Initialize threshold to mark elements

6: while ∑
N f
m=1,m∈PR

R(m)
k ≤ ςcut,energy do . N f is the size of PR

7: θR ← θR − 0.02 . Decrease threshold in each iteration

8: for all e ≤ Nref do

9: e ∈ PR . Add to the set of marked elements

10: end for

11: PR ← conform_refinement(PR) . Conform marked elements

12: end while

13: end procedure
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2.4. Refinement

Our refinement strategy uses two-dimensional strategies for triangles (horizontal
direction) applying afterwards an extrusion in the segment (vertical) direction, being split
if required. To distinguish between the different kinds of refinements that appear in
the algorithm, we use a two-digit number, being the first digit related to the horizontal
direction, whereas the second digit includes the information for the vertical direction.

For the horizontal part, we use a red-green algorithm, [43]. When we mark a triangle to
be refined, we mark it as. red, so four new triangles are created joining the middle points of
each edge. We set the neighbor triangles (when they are not marked themselves) to green,
i.e., we create two new triangles joining the middle point of the red edge to the opposite
vertex. The triangles with more than one red neighbor are automatically marked also as
red (although other variations, as the red-green-blue algorithm, are possible [40]). We denote
red and green refinements by 2 and 1, respectively. For the vertical direction, we note if
there is a refinement with a 1, leading to five different refinements as shown in Figure 1.

To avoid the problem of hanging nodes, we apply a conformation process that regu-
larizes the resulting mesh. We need to propagate the refined elements in the horizontal
and vertical direction, i.e., when we refine the triangular faces of a given prism, we have to
refine the triangular faces of the top and bottom neighbors. Let us assume that only one
element is marked as 21 (refinement in both directions), as in Figure 2. Then, the prisms in
the same layer are marked as 11, since we mark the neighbors triangles as green and we
need to refine the vertical direction to avoid hanging nodes. For the same reason, all the
prisms in the same layer without triangle refinement are marked as 1, whereas the vertical
neighbors of the 21 elements are marked as 20, and the horizontal neighbors of these new
20 elements are marked as 10.

21

11 20

1 10
Figure 1. Each possible refinement for triangular prisms. We show for brevity one case out of three
for 10 and 11 cases.
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Conformation

Figure 2. An example of application of conformation process in refined meshes.

However, the use of green refinement might lead to meshes of poor quality, which
might introduce additional error [44]. One problem is the appearance of eyes in the mesh
if green elements are used in one vertex shared by many elements (and the vertex whose
angle is divided is this one vertex). This is a non-reversible problem since the error would
accumulate in this point, and we cannot improve the shape of the triangles introducing red
elements. We use an accumulator for all the vertices in the mesh that counts the number of
elements that have this vertex, setting a threshold and marking 1x elements as 2x for these
eyes not to appear. The other problem is the appearance of very deformed triangles (i.e.,
with very small angles). To remedy that, when an element is marked as 1x, we check the
divided angle and we mark it as 2x when it is lower than 23 degrees. (which experimentally
has been proven as a good threshold). We show the effectiveness of these two quality
criteria in Section 3.1.

3. Results

We use three sets of results: first, we use MMS to assess the effect of the different
marking strategies and the two criteria for ensuring the quality of the mesh; second, we
employ a WR-90 waveguide to validate the refinement strategy; and, third, we analyze an
L-shaped waveguide to show the effectiveness of the whole algorithm.

3.1. MMS

We solve a cube with dimensions [0, 1] m× [0, 1] m× [0, 1] m with vacuum as material.
We use a working frequency of 50 MHz. We use

EMMS =


y9

y9

y9

, (13)

to manufacture the excitation and solve the problem. This choice is motivated by the fact
of having a polynomial out of the second-order space of basis functions which produces a
higher error with a higher value of y. We show a mesh with an eye in Figure 3, whereas, in
Figure 4, we have avoided this eye with the procedure detailed in Section 2.4. We can see
an abnormal increase in the error distribution around these eyes, therefore showing the
importance of avoiding them in real applications. In these figures and all that follow, the
distribution of the error is computed at each point as ‖EFEM − EMMS‖2.
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(a) Mesh
(b) Error

Figure 3. Presence of anomaly (eye) in the refined mesh.

(a) Mesh
(b) Error

Figure 4. Treatment of eyes in the refined mesh.

The effect of the second criterion to improve the quality of the refined mesh is present in
Figure 5. If we forced that the 1x elements have a maximum angle of 0.4 rad in the problematic
vertex, we increase the number of elements of the refinement but we don’t obtain abnormal
error areas, as shown in Figure 6. However, in this last figure, we can see another abnormal
area related to the appearance of non-treated eyes. Thus, if we also apply the criterion present in
Figure 4, we can see that the error is higher where it is expected as in Figure 7.

(a) Mesh
(b) Error

Figure 5. Presence of distorted elements in the refined mesh.
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(a) Mesh

(b) Error

Figure 6. Refinement with a criterion for not allowing elements with an angle lower than 0.4 rad.

(a) Mesh

(b) Error

Figure 7. Refinement with criteria for not allowing neither eyes nor elements with an angle lower
than 0.4 rad.

Finally, we assess the effect of the five marking strategies detailed in Section 2.3 with
the parameters shown in Table 1. We apply different rounds of refinement and compare
the maximum value of the error in Figure 8. The difference between the marking strategies
is small, although all of the strategies outperform the uniform refinement. In addition, the
best strategy with this metric is Algorithm 3 as expected since we are using the maximum
value of the point error.

Table 1. θ parameter for verification with MMS.

EMMS y9

Quantile 0.3
Maximum 0.05

Fixed-Energy 0.9999
SER 0.9
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10 3 10 4 10 5 10 6

Number of unknowns

10 -2

10 -1

Uniform

Next-step

Quantile

Fixed-energy

Maximum

SER

Figure 8. Convergence of the maximum value of the error for (13).

To provide a better insight into the effect of each strategy, the meshes and the error
for the five marking strategies after three rounds of refinement are shown in Figures 9–13.
The differences between strategies are small and strongly depend on the chosen parameter.
The strategies based on the energy of the residual (fixed-energy and SER) show smaller
elements especially around the areas of stronger error (even when the variation between
residuals is minimal), whereas the maximum strategy is more uniform. On the other
hand, the quantile strategy might lead to some irregular meshes (since we may apply the
same refinement to elements with very different residuals). Finally, the next-step marking
strategy needs to refine all the mesh in the first step, leading to more structured meshes.

.
(a) Mesh .

(b) Error

Figure 9. Approximation of (13) using the next-step marking strategy.

.
(a) Mesh .

(b) Error

Figure 10. Approximation of (13) using the quantile marking strategy.
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.
(a) Mesh .

(b) Error

Figure 11. Approximation of (13) using the maximum marking strategy.

(a) Mesh

(b) Error

Figure 12. Approximation of (13) using the fixed-energy marking strategy.

(a) Mesh

(b) Error

Figure 13. Approximation of (13) using the SER marking strategy.

3.2. WR-90 Waveguide

To show the performance of the algorithm with real problems, we simulate a WR-90
waveguide with length l = 1λ, using a working frequency of f = 7.5 GHz. We use a
structured mesh to show clearly the effect of the refinement, and the maximum marking
strategy with θ = 0.65. We show the initial mesh in Figure 14. The estimator shows that
the higher error is located close to the electric walls, so the marked elements are in that
area. The first round of refinement is included in Figure 15, where we can see that the error
is lower in the refined elements. Thus, the main contribution to the error is located in the
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middle of the waveguide, where we mark the elements to be refined. Finally, the same
effect is seen in Figure 16, noting that. we have achieved the behavior of the algorithm that
we would expect.

(a) Mesh (b) Estimator (c) Marking

Figure 14. First iteration for a structured mesh of a WR-90 waveguide.

(a) Mesh
(b) Estimator (c) Marking

Figure 15. Second iteration for a structured mesh of a WR-90 waveguide.

.
(a) Mesh .

(b) Estimator

.
(c) Marking

Figure 16. Third iteration for a structured mesh of a WR-90 waveguide.

3.3. L-Shaped Waveguide

To show the utility of an adaptivity algorithm, we solve an electromagnetic problem
with a singularity. We bend a WR-90 waveguide along its transverse face (E-plane), where
the electric field is maximum. We show the geometry of the problem in Figure 17, using a
working frequency of f = 7.5 GHz.

0.02286

0.0
101
6

 

0.0
826

 

0.0826 

0.01016

0.02286

Figure 17. WR-90 bend waveguide used in Section 3.3.
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For the adaptivity refinement, we use the maximum marking strategy with θ = 0.65.
We show the initial mesh and the results of applying the estimator and the marking
strategy in Figure 18. In addition, in Figures 19 and 20, we show the same. outputs for
two additional steps of refinement. We see that the estimator yields the highest error
around the singularity, with a closer and closer location of the red area with smaller and
smaller elements.

(a) Mesh (b) Estimator (c) Marking

Figure 18. First iteration for L-shaped problem with h adaptivity.

(a) Mesh (b) Estimator (c) Marking

Figure 19. Second iteration for L-shaped problem with h adaptivity.

(a) Mesh (b) Estimator
(c) Marking

Figure 20. Third iteration for L-shaped problem with h adaptivity.

We show the evolution of the electric field in Figure 21, whereas in Figure 22 we use
only uniform refinement. We can see that the singularity is much better represented when
using the adaptivity algorithm in contrast with uniform refinement. On the one hand, the
value of the field at the singularity is higher when using the adaptivity algorithm. In this
sense, for quantitative comparison, we show in Figure 23 the evolution of the value of the
singularity with successive levels of refinement for both strategies (adaptive as in Figure 21
and uniform as in Figure 22) with respect to the number of unknowns. We observe that the
singularity is better represented (since it has a higher value) with fewer unknowns than
the uniform strategy, as we should expect from the previous results. On the other hand,
the singularity of the field is constrained to the corner when the adaptivity algorithm is
used, i.e., the adaptivity improves the representation of the strong decaying of the field out
of the singularity.
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(a) First iteration
(b) Second iteration

(c) Third iteration

Figure 21. Evolution of the electric field for h refinement in a L-shaped domain.

(a) First mesh (b) Second mesh

(c) Third mesh

Figure 22. Evolution of the electric field for uniform refinement in an L-shaped domain.
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Figure 23. Representation of the singularity with different levels of h refinement.

4. Conclusions

There exist many different possibilities in the FEM community when choosing the
shape of the finite element. For versatility and convenience, specific techniques are some-
times developed only for tetrahedra or hexahedra. To effectively choose the discretization
shape in terms of the geometry of the problem, we need to develop the same techniques
for all the shapes.

Specifically, the use of adaptive techniques is very popular to save computational
resources and introduce smart meshes where the areas that contribute more to the error are
further refined. However, the use of these techniques applied to triangular prisms is not
so common in the literature, whereas the use of these elements is quite advantageous in
some scenarios (e.g., in planar circuits or thin material layers). For this reason, we have
developed an adaptivity technique specifically designed for triangular prisms.

We can summarize the main contributions of this paper with the following points:

• We have introduced an estimator inspired by [34], with minor modifications to adjust
the use of triangular prisms.

• We have experimented with five different marking strategies, modified to be adapted
to the semi-structured nature of the triangular prism.

• We have suggested a refinement technique based on the red-green algorithm from [43].
• We have introduced specific criteria to increase the quality of the generated meshes: specif-

ically, we avoid the eyes in the mesh and the appearance of highly deformed triangles.
• We have developed a conformation process to avoid the problem of the hanging nodes.

We have validated with numerical results the performance of the algorithm. We have
shown the different behavior of each marking strategy: strategies based on the energy
of the residual for each element show smaller elements around areas of stronger error,
whereas strategies based on a given threshold of the element with maximum error yield
more uniform meshes. In contrast, strategies based on refining a given percentage of the
elements lead to more irregular meshes. All of the strategies provide smaller elements in
higher error areas for both MMS and propagation problems. In addition, we have shown
the performance of the algorithm with a singularity due to the geometry of the problem to
be solved. This algorithm provides smaller elements in the vicinity of the singularity, as
expected giving a better approximation of the singularity with fewer unknowns compared
to the uniform refinement.

As future research lines, the treatment of hanging nodes would eliminate the process of
conformation, easing the step of refinement. Moreover, we could detect in which direction
the estimator is more needed and apply the refinement only in the horizontal or vertical
direction as detected.
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