
applied  
sciences

Article

High-Speed Train Tunnel Navigation Method Based on
Integrated MIMU/ODO/MC Navigation

Zhenqian Sun * , Kanghua Tang, Xueying Wang, Meiping Wu and Yan Guo

����������
�������

Citation: Sun, Z.; Tang, K.; Wang, X.;

Wu, M.; Guo, Y. High-Speed Train

Tunnel Navigation Method Based on

Integrated MIMU/ODO/MC

Navigation. Appl. Sci. 2021, 11, 3680.

https://doi.org/10.3390/app11083680

Academic Editor:

Sakdirat Kaewunruen

Received: 16 March 2021

Accepted: 13 April 2021

Published: 19 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

College of Intelligence Science and Technology, National University of Defense Technology,
Changsha 410073, China; tt_kanghua@163.com (K.T.); w_xy93@163.com (X.W.); meipingwu@263.net (M.W.);
guoyan010417@126.com (Y.G.)
* Correspondence: sunzhenqian_nudter@163.com; Tel.: +86-153-3237-4432

Abstract: When a high-speed train is running in a tunnel, the global navigation satellite system
(GNSS) signal is completely lost. Relying only on the inertial navigation system (INS) composed
of Micro-electromechanical Systems (MEMS) devices leads to large navigation errors. To solve this
problem, an integrated micro inertial measurement unit (MIMU), odometer (ODO), and motion
constraint (MC) tunnel navigation method is proposed. This method first establishes a motion
constraint model based on the installation angles of MIMU; secondly, the effect of turning on the
motion constraint model and the odometer is analyzed and the use condition of the motion constraints
is obtained; the installation angles of MIMU are then estimated when GNSS signal is good and the
use condition of the motion constraints is met; finally, the forward speed measured by the odometer
and the motion constraints are applied to suppress the error of the INS and improve the navigation
accuracy in the tunnel. Based on this method, high-speed train navigation tests were carried out both
in areal tunnel environment and in a case study with an artificially disconnected GNSS signal. The
experimental results showed that the navigation accuracy of the train in the tunnel was significantly
improved. Seamless navigation was achieved inside and outside the tunnel, which verified the
effectiveness of the method.

Keywords: high-speed train navigation; tunnel; motion constraints; installation angles; odometer;
extended kalman filter

1. Introduction

As the high-speed railway network becomes denser and the number of trains running
on the network increases, the safety of high-speed trains has become an issue of great
concern [1,2]. There is a requirement for real-time, continuous, accurate, and reliable
navigation information for the operation control system to control, schedule, and monitor
train movements [1,3,4]. In tunnels, the GNSS signal is lost and there is a lack of other
available information, which presents a challenge to these navigation systems [4]. The
issue has drawn particular attention from academics, with both China and the European
community funding related research projects [5].

Traditional train positioning uses speed and distance measurement methods such
as track circuits, transponders, axle-counting equipment, and Doppler radar to unify the
speed and location of the moving train under one-dimensional coordinates [4].Currently,
the positioning accuracy of distances required by the European Train Control System
(ETCS) and the Chinese Train Control System (CTCS), based on balise groups placed on the
track and odometer readings, is ± 5 m + 5% measured distance [5]. However, there has
been a gradual trend towards the reduction of expensive and complex trackside equipment
in train positioning technology development [5]. Traditional methods are associated with
poor positioning accuracy, less train information, complicated system maintenance, and
inability to meet the requirements of high-speed train positioning in long tunnels [6].
Today, the most commonly used train navigation sensors are GNSS, INS, camera, Doppler
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speedometer, barometric altimeter, odometer, lidar, electronic maps, and specially designed
equipment [6]. However, none of these sensors can independently meet the requirements
of navigation accuracy in all environments, and multisensor combined navigation that
can integrate their respective advantages has become the development trend of train
navigation [7,8]. Due to complementary nature of GNSS and INS, they form the basis of
integrated train navigation systems. However, in long tunnels where there is no GNSS
signal, it is difficult to ensure navigation accuracy by relying only on the INS composed of
MEMS devices [5,9,10].

In recent years, many scholars have conducted research on train navigation in tunnels.
Some scholars have proposed methods for establishing reference information in tunnels. Li
proposed a received signal strength indication (RSSI) positioning method based on ZigBee
technology [11], but the error increased significantly as the speed increased. Zheng con-
ducted an INS and radio frequency identification (RFID) integrated navigation simulation
experiment and achieved an astonishing 1.5 m accuracy over a 500 s GNSS outage [12].
However, it is difficult to provide precise locations for RFID tags in long tunnels, and the
high speed of trains is also a challenge to RFID [13]. Liu proposed a method of combining
INS and map matching (MM) [4], but did not report the positioning accuracy during GNSS
outage. It is also uncertain whether MM can suppress the error of INS. Establishing a
high-precision digital map is difficult in a long tunnel. Some studies using multisensor
information fusion methods have achieved meter-level accuracy in tunnels [4,5,10,14].
However, these systems are very complicated and costly, and there are cumbersome in-
stallation and calibration processes for sensors. Some scholars have proposed methods
based on track and train motion constraint information. Wang proposed a method based
on a train motion model and track constraints [15], which had poor accuracy. Liang used
a combination of a train motion model and a gyroscope to locate trains in tunnels [16],
which produced a horizontal position error of 31 mover 10 s and a large position error.
Yang used train motion constraints to suppress the INS error [17], which significantly
improved the accuracy of train navigation. However, the MIMU installation angles were
not considered in the motion constraint model and the accuracy needed to be improved.
Reimer used a high-precision INS/odometer combination method to solve the problem of
train positioning in tunnels, and achieved amazing positioning accuracy by modeling and
analyzing the influence of turning on the odometer measurement [9]. However, the system
was expensive and Reimer did not attempt to achieve the accuracy that low-precision
MEMS inertial devices can attain.

In the field of track inspection, where millimeter-level accuracy is required, Chen
designed a track trolley based on high-precision laser INS/GNSS integrated navigation [18],
and used motion constraints to improve the accuracy of the system during GNSS signal
outage. Since the installation angles were not considered, the improvement of system accu-
racy was limited. Zhang considered the installation angles in a motion constraint model
for the above system [19], but did not mention how to obtain them. Zhu used the method
of similar rotation to obtain these installation angles through data post-processing [20], but
the installation angles were not used for motion constraints. Obtaining accurate MIMU
installation angles is key to improving the effect of motion constraints [10,21].

In this paper, our first aim was to improve the traditional motion constraint method on
the basis of train motion analysis without adding additional sensors, which constrain the
lateral and up speeds of the train, and thus to improve the motion constraint suppression
effect on the error associated with a pure inertial navigation system (P-INS). Our second aim
was to use the speed measured by the odometer installed on the train wheel to constrain
the forward speed of the train on the basis of the motion constraint, so as to provide the
constraint on the three-dimensional speed of the train. However, accurate estimation of
the installation angles of the MIMU and the influence of the train’s maneuvering turn on
the three-dimensional motion constraints were key challenges. Our main contributions are
summarized as follows:
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(1) A method for high-speed train positioning in tunnels based on integrated MIMU
/odometer/MC navigation is proposed;

(2) A motion constraint model is established with the installation angles of MIMU, and
the influence of turning on motion constraint is analyzed;

(3) The installation angles of MIMU are estimated online when the GNSS signal is good
and the use condition of motion constraints is met;

(4) The estimated installation angles and the forward speed measured by the odometer
are applied to suppress the INS error in tunnel navigation. Based on this method,
high-speed train navigation tests were carried out in both a real tunnel environment
and a case study using an artificially disconnected GNSS signal.

The remainder of this paper is organized as follows: Section 2 introduces the motion
constraints and the odometer, Section 3 describes the filter model and algorithm flow,
Section 4 describes the experimental system and equipment, Section 5 discusses the results
of the test, and the conclusions are given in Section 6.

2. Train Motion Constraints and Odometer
2.1. Motion Constraints Model

Defining the train body frame as m, the origin is the installation position of the MIMU
on the carriage of the train. The x, y, and z axes point to the right, forward, and upward
relative to the train body, respectively. Defining the MIMU frame as b, the directions of
each axis of the b frame should be consistent with the direction of each axis of the m frame
to ensure that the installation angles are as small as possible.

A high-speed train’s wheels are pressed against the rails during running [22], and,
assuming there is no side slip or jumping, the speeds of the x and z axes in the m frame
are approximately zero. Ignoring the influence of the installation lever arm between the
MIMU and the GNSS receiver, the constraint relationship is expressed as[

1 0 0
0 0 1

]
Cm

b Cb
nvn =

[
vm

x
vm

z

]
≈ 0 (1)

where vn is the INS output speed in the n frame(local geographic coordinate frame), Cb
n

represents the rotation matrix from the n frame to the b frame; vm
x and vm

z are the speed of
the train in the m frame; and Cm

b is the conversion cosine matrix between the b frame and
the m frame, which can be calculated from the installation angles a =

[
aθ aγ aψ

]T .
Once the MIMU is fixed on the train, the errors of installation angles can be regarded as

random constants with small angles. According to the conclusion reported in Reference [22],
the roll installation angle has no effect on the motion constraints. Regardless of the influence
of the roll installation angle error, the three-dimensional vector form of the remaining two
installation angle errors is δa =

[
δaθ 0 δaψ

]T .
The estimated conversion matrix C̃

m
b can be expressed as

C̃
m
b = (I− [δa×])Cm

b = Cm
b − [δa×]Cm

b (2)

The conversion matrix error δCm
b can be expressed as

δCm
b = C̃

m
b − Cm

b = −[δa×]Cm
b (3)

2.2. Train Turning Influence on Motion Constraints

The curved line of a high-speed railway track is generally composed of a straight line,
a gentle curve, and a circular curve [22], as shown in Figure 1. There is an installation
lever arm between the rotational center of the train body and the MIMU, and the lever arm
speed exists at the position of the MIMU during turning [2,23].
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Figure 1. Track curve line plan. A, B, C and D are the four points on the train track. Segment S is a
circular curve with a turning radius of R.

The train turns under the cooperation of the forward traction, track, bogie, and
wheels [24]. The structure of the bogie is shown in Figure 2. Each bogie contains four
wheels, and each carriage has two bogies. The carriage is mounted on the bogie through
two bogie pins, several springs, and dampers. This structure allows for a certain degree of
rotation between the carriage box and the wheels.
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Figure 2. Physical map of bogie.

In order to simplify the analysis, select the S section shown in Figure 1, and assume
that the train is turning left. The turning motion of the train is shown in Figure 3.
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Figure 3. Geometric analysis of train turning.

The bogies of the train sit on a curved track with a radius R. P1 and P2 are the pins
of the front and rear bogies; the carriage box lies on the secant between the two pins.
The bogies are approximately tangential to the curve, and the carriage lies on the secant
between the two pins [24]. There is an misalignment angle β between the axis of the bogie
and the carriage [10]. The misalignment angle is given by

β = arc sin
d

2R
(4)
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where d is distance between P1 and P2. The carriage rotates around O1 during turning, and
the angular rate of rotation is

ω =
vD1 sin β

(d/2)
=

vD1

R
(5)

where vD1 is the velocity of the front bogie’s pin. Assuming MIMU is installed at point P1,
we have

vD1 = ‖vn
MIMU‖2 (6)

where vn
MIMU is the velocity of the MIMU in the n frame.

The assumption is now violated in the m frame because of the carriage’s rotation
around O1.We can find the velocity of the carriage in the m frame as follows:

vm
D =

[
−vD1 sin β vD1 cos β 0

]T

=
[
− vD1d

2R
vD1
√

4R2−d2

2R 0
]T (7)

Assume a velocity of 350 km/h, a distance of 20 m between the bogie pins and a curve
radius of 5000 m [22]. The lateral velocity of carriage due to the turning will be

vm
D,x = −vD1d

2R
≈ −0.19m/s (8)

This would pose a large risk of corruption of the extended Kalman filter (EKF) state
estimates. Substituting Equation (5) into Equation (7) gives

vm
D =

[
−ωzd

2
ωz
√

4R2−d2

2 0
]T

(9)

where ωz is the output of the z-axis gyro.
Of course, turning maneuvers are quite complicated. Both the front and rear bogies

have varying angular rates of rotation and the center of rotation is not fixed, which makes
it difficult to accurately model the lateral velocity. However, this still provides a theoretical
basis for judging whether the hypothesis that the lateral velocity is zero holds.

2.3. TheThreshold for Motion Constraints

In order to reduce the effect of turning on motion constraints, the turning angle rate
output by the z-axis gyro is used to judge whether the motion constraints can be used,
expressed as follows:

|ωz −ωz_bias| < ωz_threshold (10)

where ωz_bias is the bias of the z-axis gyro and ωz_threshold is the judgment threshold. The
train z-axis gyro data collected in the experiment are shown in Figure 4.
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Figure 4. The measurement of data from the z-axis gyroscope.
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Find the threshold as follows:

ωz_threshold = ηmax
(∣∣ωz_up −ωz

∣∣, |ωz −ωz_down|
)

(11)

where η is the adjustment factor and can be selected according to the movement status,
ωz is the average value of the non-turning data, and ωz_up and ωz_down are the upper and
lower edge values of the data band in the non-turning stage, respectively.

2.4. Odometer

The axle pulse odometer is installed at the wheel of the train, as shown in Figure 5. The
odometer can measure the train’s speed by recording the cumulative number of revolutions
of the wheel and calculating speed using the wheel diameter.
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The speed obtained by the odometer is calculated as

vodo,k =
nk − nk−1

NT
πd (12)

where nk is the total number of pulses output by the odometer at time k, N is the number
of pulses given the wheel rotates a full turn, T is the interval between time k and time k− 1,
and d is the wheel diameter.

Defining the train bogie frame as o, the origin of the o frame is the pin of the bogie. The
x, y, and z axes point to the right, forward, and upwards relative to the bogie, respectively.
The speed output of the odometer in the bogie frame (o frame) is

vo
wheel =

[
0 vodo,k 0

]T (13)

When the train is traveling in a straight line, the bogie coordinate frame and the train
body frame are approximately coincident; that is β = 0.

vm
wheel = Cm

o vo
wheel = vo

wheel (14)

where Cm
o is the transformation matrix from the o frame to the m frame.

3. Model and Algorithm Flow

In this section, corresponding filter models are described, which were designed based
on the judgment of GNSS signals and the train movement status.

3.1. Algorithm Flow

According to the train movement status and the observation environment of the GNSS
signal, three filter models were established. The algorithm flow is shown in Figure 6.
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When GNSS signal and the motion constraints are all available, they are used to
provide measurements for the 17-dimensional EKF1 to estimate state quantities. The
installation angles can be found through feedback correction. When there is a GNSS
signal outage in a tunnel and the motion constraints are available, the observations of
the 15-dimensional EKF2 are provided by the odometer and motion constraints with the
installation angles estimated by EKF1. When the GNSS signal is available but the motion
constraints are unavailable, observations of the 15-dimensional EKF3 are provided by
GNSS. The errors of the inertial devices estimated by the filter are fed back to the inertial
navigation algorithm.

If the navigation mode changes, the public states and their error covariance matrix
are transferred from the old algorithm to the new algorithm, and other quantities are not
updated [25]. If the state vector is switched from X2 to X1 at time k, Xa in X1 is directly
removed and saved, the elements in the row and column corresponding to Xa in Pk are
directly removed and saved, and the remaining quantities remain unchanged. If the state
vector at time k switches from X2 to X1, the previously saved estimate of X̂a is expended on
X2. In the absence of GNSS, the accuracy of state estimation will be reduced; the original
saved covariance matrix elements corresponding to Xa are then enlarged, Pk is expanded,
and the remaining elements of Pk are multiplied by an appropriate factor. The above
configuration of X and P is necessary to maintain the consistency of EKF.

3.2. MIMU/GNSS Loose Integration Model

When the train is turning and the GNSS signal is good, the motion constraints are
unavailable. In this case, the 15-dimensional MIMU/GNSS loose combination EKF filter is
used for train navigation. The state error vector of the system is defined as

X1 =

[
(φn)T (δvn)T (δPn)T

(
δεb
)T (

δ∇b
)T

]T
(15)

where φn denotes the attitude errors, δvn denotes the velocity errors, δPn denotes the
positioning errors, δεb denotes the bias errors of the gyroscopes in the b frame, and δ∇b

denotes the bias errors of accelerometers in the b frame.
The state equation can be written as

.
X1 = FINSX1 + G1W1 (16)
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where FINS is the state transfer matrix, G1 is the noise transferring matrix, and W1 is the
state model noise matrix.G1 and W1 are defined as

G1 =


Cn

b 03×3
03×3 Cn

b
03×3 03×3
03×3 03×3
03×3 03×3

 (17)

W1 =
[

Wb
gx Wb

gy Wb
gz Wb

ax Wb
ay Wb

az

]T
(18)

where Cn
b represents the rotation matrix from the b frame to the n frame, Wb

gi represents the

i-axis gyroscope noise where i = x, y, z, and Wb
gi represents the i-axis accelerometer noise.

The measurement model of GNSS/MIMU integration can be expressed as

Z1 =

[
vn

INS − vn
GNSS

Pn
INS − Pn

GNSS

]
= H1X1 + VGNSS (19)

where Z1 denotes the measurement matrix, vn
INS and Pn

INS are the speed and position of
the inertial navigation system in the n frame, vn

GNSS and Pn
GNSS are the speed and position

of the receiver in the n frame, H1 denotes the observation matrix, and VGNSS denotes the
GNSS measurement noise.

The detailed description of H1 is

H1 =

[
03×3 I3×3 03×3 03×3
03×3 03×3 I3×3 03×3

]T

(20)

3.3. MIMU/GNSS/MC Integration Model

When motion constraints are available and the GNSS signal is good, the installation
angles can be estimated. The pitch installation angle error and the heading installation
angle error are expanded into the error state. The new error state vector is

X2 =
[
(X1)

T (Xa)
T
]T

(21)

where Xa =
[
δaθ δaψ

]T ; δaθ and δaψ are modeled as Gaussian white noise:

δ
.
aθ = 0, δ

.
aψ = 0 (22)

The state equation after expansion is

.
X2 =

[
FINS 02×2
02×2 Fa

][
X1
Xa

]
+

[
G1 02×2

02×2 Ga

][
W1
Wa

]
(23)

where Fa = 02×2, Ga = I2×2.
Combining (3), the total differential of (1) is[

δvm
x

δvm
z

]
=

[
1 0 0
0 0 1

](
Cm

b (C
b
nφn × vn + Cb

nδvn)−δa× Cm
b Cb

nvn
)

=

[
1 0 0
0 0 1

]
(−Cm

n (vn×)φn + Cm
n δvn + ((Cm

n vn)×)δa)

=

[
1 0 0
0 0 1

]
(M1φn + M2δvn + M3δa)

(24)

where Cm
n = Cm

b Cb
n; M1 = −Cm

n (vn×); M2 = Cm
n ; M3 = (Cm

n vn)×.
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Combining (1), the measurement equation composed of motion constraints is ex-
pressed as

Z2 =

[
δvm

x
δvm

z

]
=

[
vm

x − 0
vm

z − 0

]
= H2X2 + Vv (25)

where Z2 denotes the measurement matrix, vm
x and vm

z are the speed of train in the m frame,
Vv is the noise matrix, and the measurement matrix H2 is expressed as

H2 =

[
M1(1,×) M2(1,×) 02×9 0 M3(1, 3)
M1(3,×) M2(3,×) 02×9 M3(3, 1) 0

]
(26)

where Mi(k,×) is all elements in the k-th row of matrix Mi and k = 1, 2, 3.
Combining (19) and (25), the combined observation equation composed of GNSS and

motion constraints is

Z′2 =

[
H1 02×2

H2

]
X2 +

[
VGNSS

Vv

]
(27)

The frequency of motion constraints is set to 1 Hz and synchronized with GNSS
observation data. Through feedback correction, the installation angles can be calculated.

3.4. MIMU/MC/ODO Integration Model Odometer

Curved tracks are set in tunnels only in extreme cases. The length of such curves
should be as short as possible and the radius should be as large as possible [22]. Even if
there is a short turn, the navigation can be completed by P-INS.

When the GNSS signal is completely lost in a tunnel, the installation angle errors are
no longer estimated since there is no position or other speed reference. Motion constraints
provide virtual lateral and upward speed observations of the train body. The state equation
is the same as Equation (16), and the state vector is 15-dimensional. Regarding the estimated
MIMU installation angles as priori constant values, the third part of Equation (24) is zero.
Equation (24) can be rewritten as[

δvm
x

δvm
z

]
=

[
1 0 0
0 0 1

]
Cm

b (C
b
nφn × vn + Cb

nδvn)

=

[
1 0 0
0 0 1

]
(−Cm

n (vn×)φn + Cm
n δvn)

=

[
1 0 0
0 0 1

]
(M1φn + M2δvn)

(28)

The forward speed error of the train can be obtained from the difference between the
forward speed obtained by the MIMU and the odometer:

δvm
y = vm

y − vm
wheel,y

=
[

0 1 0
]
(M1φn + M2δvn)

(29)

The observation equation composed of Equations (28) and (29) is

Z3 =

 δvm
x

δvm
y

δvm
z

 =

 vm
x − 0

vm
y − vm

odoy
vm

z − 0

 = H3X1 + Vv (30)

where the observation matrix is rewritten as

H3 =
[

M1 M2 03×9
]

(31)



Appl. Sci. 2021, 11, 3680 10 of 16

4. Experiment Description

The high-speed train navigation system described here is composed of MIMU (50 Hz),
GNSS module (1 Hz), odometer (1 Hz), and a Cortex-A9 + FPGA hardware platform.
The integrated navigation module was fixed on the train floor; the receiver antenna was
fixed on the top of the train directly above the integrated navigation module; the PC
received and stored experimental data through the serial port. The system composition
is shown in Figure 7. The GNSS module adopted three-mode (GPS + Beidou + Galileo)
and satellite-based enhancement. The specifications of the MIMU and odometer are listed
in Table 1.
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Figure 7. Integrated navigation and data acquisition system.

Table 1. Sensor specifications.

Bias stability (◦/h) 25
Gyroscope Scale factor accuracy (ppm) 1000

Angle random walk(◦/
√

h) 0.3

Bias stability (mg) 0.2
Accelerometer Scale factor accuracy (ppm) 1000

Velocity random walk (m/s/
√

h) 0.05

Resolution(p/r) 100
Odometer Max number of revolution (r/min) 6000

Wheel diameter (mm) 860

5. Experiment Results
5.1. MIMU Installation Angles Estimation Result

When GNSS signal and motion constraints were all available, the installation angles
were estimated. In other cases, the installation angles were kept at the original value, as
shown in Figure 8.
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During the start-up phase of the train’s movement, the acceleration is unstable and
the speed is small. The observability of installation angles is closely related to train
speed and acceleration [26,27], so the estimated installation angles fluctuated significantly
at this time. As the speed increased, the estimates of the installation angles gradually
converged.The installation angles were basically stable during the constant speed driving
phase. Compared with the pitch installation angle, the heading installation angle had a
slower convergence, which may have been related to the lack of heading maneuver of
the train and the low accuracy of the initial heading angle. There was a certain coupling
relationship between the attitude misalignment angles and the installation angles [27].

5.2. Tunnel Exit Positioning Result

The GNSS signal was completely lost in the tunnel. After exiting the tunnel, the
receiver needed to capture and track the GNSS signal again. We set reference points near
the tunnel exit using real-time kinematic (RTK) positioning technology. The GNSS module
still could not achieve positioning at the reference points. Based on the sampled data in
the real tunnel environment, the navigation results of four algorithms were compared:
MIMU/ODO/MC integrated navigation; Considers the Installation Angles of MIMU for
Motion Constraints aided Inertial Navigation System (CIAMC-INS); Traditional Motion
Constraints without installation angles aided Inertial Navigation System (TMC-INS); Pure
Inertial Navigation System (P-INS). The results were projected to the same layer of Google
Earth, as shown in Figure 9. The trajectories are shown in blue, green, black, and red,
respectively. Statistical results of the horizontal position errors at the reference points are
shown in Table 2.
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Table 2. Horizontal position errors of different algorithms at the reference points near the 9063 m tunnel exit.

Point Distance(m)
P-INS TMC-INS CIAMC-INS MIMU/ODO/MC

Error (m) Percentage
Error Error (m) Percentage

Error Error (m) Percentage
Error Error (m) Percentage

Error

21 9163.1 291.4 3.18% 73.2 0.80% 43.3 0.47% 3.7 0.04%
22 9228.2 294.2 3.19% 73.8 0.80% 43.7 0.47% 3.7 0.04%
23 9295.7 297.9 3.21% 74.8 0.80% 44.2 0.48% 3.7 0.04%
24 9349.5 301.6 3.23% 76.1 0.81% 44.7 0.48% 3.8 0.04%

The horizontal position error of MIMU/ODO/MC was 98.8%, 95.0%, and 91.6% lower
than that of P-INS, TMC-INS, and CIAMC-INS, respectively. The horizontal errors and
percentage errors of P-INS, TMC-INS, and CIAMC-INS algorithms all accumulated over
time in the absence of a GNSS signal. The CIAMC-INS had a more obvious suppression
effect on the position error of P-INS than TMC-INS, and the error increased more slowly.
The MIMU/ODO/MC integrated navigation added a forward speed constraint of the train
body on the basis of the CIAMC-INS algorithm and realized seamless positioning inside
and outside the tunnel.
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5.3. Navigation Results in Tunnel

In order to further analyze the effectiveness and navigation accuracy of the MIMU/ODO/MC
algorithm inside the tunnel, a section of open area data was selected, and the smoothed
result of the GNSS/MIMU integrated navigation was used as reference. GNSS data was
disconnected for 100 s to simulate the GNSS signal outage in a tunnel. The differences
between the results of the four algorithms and the reference were defined as corresponding
errors. The train traveled 9515 m during the GNSS outage, as shown in Figure 10.
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The position errors of the four algorithms are presented in Figure 11. The velocity
errors of the four algorithms are presented in Figure 12.The attitude angle errors of the four
algorithms are presented in Figure 13. The 100 s error and root mean square error (RMSE)
of the navigation results of the four algorithms are shown in Table 3.
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Figure 11. Position error curves of four algorithms without GNSS signal. (a) East position error curves; (b) north position
error curves; (c) height position error curves.

As shown in Figure 11 and Table 3, the position error of MIMU/ODO/MC was
significantly less than those of P-INS, TMC-INS, and CIAMC-INS.

Both CIAMC-INS and TMC-INS were able to suppress the position errors of P-INS, but
the effect on the upwards position error was better. This is related to the higher accuracy
of pitch installation angle estimation. Due to the lack of constraints on the forward speed
of the vehicle body, the position errors associated with the CIAMC-INS and TMC-INS
algorithms still accumulated significantly. By adding the forward speed of the train body
measured by the odometer as an observation, the MIMU/ODO/MC integrated navigation
was able to obtain meter-level positioning accuracy and realize seamless positioning inside
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and outside the tunnel. The position error percentages of the four algorithms were 3.25%,
0.87%, 0.43%, and 0.05%.
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Figure 12. Velocity error curves of four algorithms without GNSS signal. (a) East velocity error curves; (b) north velocity 
error curves; (c) upwards velocity error curves. 
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Figure 12. Velocity error curves of four algorithms without GNSS signal. (a) East velocity error curves; (b) north velocity
error curves; (c) upwards velocity error curves.
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Figure 13. Attitude error curves of four algorithms without GNSS signal. (a) Pitch angle error curves; (b) roll angle error
curves; (c) heading angle error curves.

Table 3. Navigation errors of different algorithms at the reference point near the 9063 m tunnel exit.

Algorithm Error δλ (m) δL (m) δH (m) δVe (m/s) δVn (m/s) δVu (m/s) φx (deg) φy (deg) φz (deg)

P-INS
100 s
error −227.7 −190.4 85.5 −4.208 −6.358 1.687 −0.647 −1.651 0.971

RMSE 89.95 84.22 37.1 1.781 2.916 0.947 0.313 0.857 0.516

TMC-INS
100 s
error 54.1 −60.1 −18.7 1.173 −1.783 −0.389 −0.203 0.355 −0.265

RMSE 20.83 21.40 9.8 0.545 0.739 0.218 0.106 0.508 0.126

CIAMC-INS
100 s
error 24.8 −30.2 −11.5 0.663 −0.419 −0.229 −0.076 −0.309 −0.132

RMSE 11.12 12.44 5.1 0.308 0.230 0.128 0.042 0.180 0.063

MIMU/
ODO/MC

100 s
error 2.9 −2.1 −2.8 −0.044 −0.039 −0.075 −0.045 0.041 −0.052

RMSE 1.11 0.44 1.99 0.019 0.016 0.036 0.017 0.099 0.016

As shown in Figure 12 and Table 3, the velocity error of MIMU/ODO/MC was
significantly less than those of P-INS, TMC-INS, and CIAMC-INS

TMC-INS, CIAMC-INS, and MIMU/ODO/MC all suppressed the velocity errors
of P-INS. However, MIMU/ODO/MC had the lowest 100 s velocity errors and RMSE.
Compared with TMC-INS and CIAMC-INS, MIMU/ODO/MC was able tosuppressthe
velocity errors of P-INS more effectively.
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As shown in Figure 13 and Table 3, the 100 s attitude angle error of MIMU/ODO/MC
was significantly less than those of P-INS, TMC-INS, and CIAMC-INS.

TMC-INS, CIAMC-INS, and MIMU/ODO/MC could all suppress the attitude angle
errors of P-INS. MIMU/ODO/MC had the lowest 100 s attitude angle error and RMSE.
Compared with TMC-INS and CIAMC-INS, MIMU/ODO/MC suppressed the attitude
angle errors of P-INS more effectively.

6. Discussion

In this paper, experiments conducted under the conditions of a real tunnel and artificial
disconnection of GNSS signal achieved the expected results. Due to the low accuracy of
the MEMS inertial devices used, the positioning error of P-INS algorithm diverged quickly
in a long tunnel without GNSS signal. TMC-INS reduced the positioning error to one
quarter of the original. Based on the TMC-INS algorithm, the CIAMC-INS algorithm
considering the MIMU installation angles improved the accuracy of TMC-INS by about
40%. It was shown that it is necessary to consider the installation angles of MIMU when
using motion constraints, and that the method of estimating the installation angles online
is feasible. However, the CIAMC-INS algorithm does not meet the requirements of meter-
level positioning accuracy for long tunnels. The MIMU/ODO/MC method combined with
the odometer used to measure the forward speed of the train satisfied the requirements of
meter-level positioning accuracy in along tunnel, and the effect of three-dimensional speed
constraints was obviously better than that of two-dimensional speed constraints.

7. Conclusions

In this paper, we propose a MIMU/ODO/MC integrated navigation method to solve
the problem of the large positioning errors when depending solely on INS composed of
MEMS in tunnels. Our approach makes full use of the train motion constraints and sensors
that already exist on trains (odometer). In order to better exploit the potential of motion
constraints, we consider the installation angles of MIMU relative to the train body in the
motion constraint model. The installation angles are estimated online when both the GNSS
and the motion constraints are available. In a tunnel, the train motion constraints provide
the lateral and upward velocity observations, and the odometer provides the forward
velocity observation. The tests carried out in a real tunnel environment and with an artifi-
cially disconnected GNSS signal both showed that the accuracy of the MIMU/ODO/MC
integrated method was significantly higher than any of P-INS, TMC-INS, and CIAMC-INS,
and achieved seamless navigation inside and outside the tunnel. However, there are still
shortcomings in our method. For example, the navigation accuracy of the algorithm will
decrease in long, curved tunnels. In future work, we will consider the lateral and upward
velocity caused by the train turning in the motion constraint model in order to improve the
adaptability of the algorithm to various patterns of train movement. In addition, we will
study how to apply this method in other contexts to improve navigation accuracy when
satellite signals are disturbed.
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