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Abstract: (1) Background: The purpose of this study was to develop an image-guided endoscopic
sinus surgery (IGESS) system, named Medigator®, based on the leave-one-out registration strategy
and three-dimensional (3D) volumetric visualization of the nasal cavity and paranasal sinuses. (2)
Methods: A phantom was designed and fabricated using a 3D printer. We then performed a phantom-
based accuracy evaluation to validate the performance of the developed registration method. We
included 11 patients who underwent IGESS for clinical study to compare the performance of the
developed IGESS system with that of a commercialized system. (3) Results: The fiducial registration
error (FRE) was 0.14 mm, and the target registration error (TRE) was 0.82 ± 0.50 mm by the phantom-
based evaluation. As a result of the clinical comparative study, the average registration times were
36.04 ± 4.7 and 89.35 ± 26.1 s for the developed and commercialized systems, respectively (p < 0.05).
The image loading time of the developed system was also shorter than that of the commercialized
system (p < 0.05). The average accuracy score of the developed system was not significantly different
from that of the commercialized system (p > 0.05). (4) Conclusions: The developed system provided
an accurate point-to-point registration method based on the leave-one-out strategy. According to
the results of the clinical comparative study, we demonstrated that the developed system showed
reliable potential for clinical application.

Keywords: image-guided endoscopic sinus surgery; 3D volumetric visualization; phantom-based
evaluation; clinical comparative study

1. Introduction

Nearly half of patients with chronic rhinosinusitis undergo surgery within 6 months
of their diagnosis [1]. Endoscopic sinus surgery (ESS) is the most common surgery in the
treatment of chronic sinusitis patients. ESS requires precise dissection of the tissue adjacent
to the orbit or the skull base in a spatially restricted surgical field and has a high risk of
complications, such as cerebrospinal fluid rhinorrhea, visual disturbance, and injury to the
ocular muscle [2]. Therefore, surgeons need a more accurate, technically advanced method
to prevent such complications during surgery.

Image-guided surgery (IGS) systems have been introduced to provide intuitive per-
ception of the surgical target and adjacent anatomical structures for surgeons. Three-
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dimensionally rendered virtual models are continuously visualized on the screen of the
system to provide visual perceptions of the internal anatomy of the patients during
surgery [3–7]. IGS systems require accurate positioning of the surgical instruments or
target anatomical structures [2]. Accuracy of the IGS systems is closely related to regis-
tration between the patient’s physical space and the image space [6–8]. Point-to-point
registration using a corresponding pair of fiducial markers, such as non-invasive adhesive
markers, invasively implanted markers, or anatomical landmarks, is commonly used for
IGS systems [9–14]. In ESS using an IGS system, point-to-point registration methods use
anatomical fiducials on the facial skin of patient [8]. To date, since there are no system-
atic criteria for evaluating registration accuracy, researchers have used non-standardized
methods to evaluate it.

An electromagnetic (EM) tracking-based IGS system has no line-of-sight problem, so
it can be used in minimally invasive surgeries and especially in ESS [15–25]. By using the
transmitted information, the position and orientation of the tracking tool are calculated to
visualize their locations during surgery. In ESS, the current position of the pointing tool is
visualized on the screen of the IGS system.

The contribution of this work is four-fold: (1) We developed a point-to-point reg-
istration method based on the leave-one-out strategy. (2) We fabricated a phantom for
evaluating the accuracy of the image registration method according to ASTM F2554-10 [26].
(3) We developed an image-guided endoscopic sinus surgery (IGESS) system named
Medigator® (Gmeditec, Incheon, Korea) by providing 3D volumetric visual perception
of patient internal anatomy. (4) We performed clinical studies to compare the developed
IGESS system with a commercialized system (Scopis® Hybrid Navigation System, Stryker,
Kalamazoo, MI, USA).

2. Materials and Methods
2.1. Fabrication of Phantom and Acquisition of Phantom’s CT Data

A phantom was fabricated with ABS-like material using a 3D printer (RSPro600, Shang-
hai 3D Union Technology, Shanghai, China) according to ASTM F2554-10 [26] (Figure 1).
The phantom contained forty-seven cone-shaped divots, each 8 mm in diameter, 4 mm
in depth, and having a semi-vertical angle of 22.5◦. Eight of them were oriented at an
angle of 45◦, and the remaining 39 divots were oriented at an angle of 90◦. The positions of
the divots were the same as those specified in ASTM F2554-10 [26]. A three-dimensional
coordinate measuring machine (global advantage silver model, hexagon metrology, Stock-
holm, Sweden) was used to measure the positions of all holes on the phantom. Then, we
acquired a CT image of the phantom with MDCT (SOMATOM Sensation 10, Siemens,
Munich, Germany) under 120 kVp and 80 mAs with a slice thickness of 0.75 mm.

Figure 1. A phantom for evaluating registration accuracy with forty-seven cone-shaped divots.
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2.2. Point-to-Point Registration Method Based on Leave-One-Out Strategy

To define the optimal rotation matrix and translation vector between a pair of corre-
sponding 3D point sets, we developed a novel point-to-point registration method using a
singular value decomposition (SVD) according to the concept of the conventional iterative
closest point algorithm [27]. We used six pairs of corresponding points for registration, and
the overall registration procedure was as follows. (1) The centroids of the point sets were
calculated by averaging the positions of the six points in each set. (2) The centroids of the
point sets were moved to the origin for removing the translation components. (3) We gener-
ated the accumulating matrix and applied SVD to find the rotation (Equations (1)–(3)). (4)
We calculated the translation vector (Equation (4)) and determined the rigid transformation
for registration.

H = (M − Centroid M)(F − Centroid F)
T (1)

[U, S, V]= SVD(H) (2)

R = VUT (3)

R = VUT (4)

t = CentroidF−R × CentroidM (5)

where M (moving points) and F (fixed points) are sets of 3D points with correspondence,
R is a 3 × 3 rotation matrix, t is a translation vector (technically a 1 × 3 matrix), H is
an accumulated matrix, U is an unitary matrix, S is a rectangular diagonal matrix with
non-negative real numbers on the diagonal, and V is an unitary matrix [28].

To improve the accuracy of the point-to-point registration, we established a leave-one-
out registration strategy. An initial registration was performed using the corresponding
point sets using six points, and the fiducial registration error (FRE) was then calculated
using the points used for the registration. After the initial registration, we found and
excluded the point with the highest error. Then, we performed the fine registration using
the remaining five points. As a result, the rigid transformation between the patient’s
physical and image spaces was determined by the registration.

2.3. Image-Guided Endoscopic Sinus Surgery System with 3D Volumetric Visualization

We developed a novel image-guided system named Medigator® (Gmeditec, Incheon,
Korea) for endoscopic sinus surgery based on 3D volumetric visualization of the nasal
cavity and paranasal sinuses. The developed system consisted of patient CT imaging,
registration, and intraoperative visualization. First, the patient’s CT image was loaded
in DICOM format and virtually visualized in real-time as a multi-planar view and 3D-
rendered volumetric image of the patient during surgery (Figure 2a). Then, registration
was performed to match the patient’s physical space with the image space by applying
the SVD-based point-to-point matching. Intraoperatively, the physical position of the
pointing tool tip was transformed into position in the CT image space and visualized on
the screen of the system in real time. To provide visual information of the patient’s internal
anatomy for the surgeons, we extracted the slab volume of the region of interest around the
position of the pointing tool tip from the patient volumetric image. By cutting the patient’s
volumetric image into a virtual plane parallel to the sagittal plane, the operator could more
intuitively identify the three-dimensional position of the pointing tool tip inside the patient
(Figure 2b).

The visualization and manipulation functions of the multi-planar images and volu-
metric model were implemented using DirectX (Microsoft, Redmond, WA, USA) based
on the C++ language. We implemented an electromagnetic (EM) tracking system (Aurora,
Northern Digital Inc., Waterloo, ON, Canada) to track the 3D position of the pointing tool
tip and the dynamic reference tracking tools.
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Figure 2. Graphical user interface (GUI) of the developed image-guided system for endoscopic sinus surgery (ESS) (a), and
visualization of the slab volumetric model (b).

2.4. In-Vitro Accuracy Evaluation of the IGESS System Using the Phantom

We performed the point-to-point registration between the CT image and the physical
spaces using six fiducial points (divots) on the measuring part of the phantom. The physical
positions of the divots on the phantom were measured using a tracked pointing tool with
respect to the EM tracking tool on the installing part (Figure 3). Immediately after the
registration, the system computed and provided the FRE. Then, we measured the positions
of forty-one points (divots) on the measuring part with respect to the EM tracking tool
on the installing part. Then, the physical positions of the points were transformed into
positions in the CT image space using the transformation. The true positions of the points
were measured in the phantom’s CT image space before the evaluation. To quantify the
target registration errors (TRE), we calculated the root mean square (RMS) differences
between the measured and true positions of the points on the phantom. We measured the
positions of all points on the phantom five times and calculated the final TRE by averaging
the repeatedly measured positions.

Figure 3. The fiducial position measurement using a tracked pointing tool with respect to the
dynamic reference tracking tool in the phantom’s physical space (a), and the corresponding positions
in the CT image space (b).
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2.5. Image-Guided Endoscopic Sinus Surgery System with 3D Volumetric Visualization

We performed a prospective cohort study by enrolling eleven chronic sinusitis patients
who needed the ESS with an IGS system from 14 May 2019 to 23 July 2019. The CT images
of the patients were acquired using a CT scanner (SOMATOM definition flash, Siemens,
Berlin, Germany) under 120 kVp and 80 mAs with a slice thickness of 1 mm. This study was
conducted in accordance with the Declaration of Helsinki and approved by the Institutional
Review Board (IRB) of Gachon University Gil Medical Center (GCIRB2018-428)

The overall intraoperative procedures were as follows. (1) Two IGESS systems were
installed side by side for comparative evaluation (Figure 4). A field generator of the EM
tracking system was installed on the back of the patient’s head. The reference tracking tool
was tightly fixed onto the patient’s forehead to prevent head movement during surgery. (2)
The patient’s CT image was loaded into the two systems and virtually visualized on the
screen using a volume-rendering technique. We then selected six landmarks for registration
on the patient’s virtual face surface. (3) The physical positions of the corresponding
landmarks on the patient’s face were measured with a tracked pointing tool with respect
to the reference tracking tool, and these were sequentially registered by point-to-point
matching with corresponding positions selected on the patient’s 3D volume rendered face.
(4) We calculated the image loading time, registration time, and registration error (FRE)
for comparison. (5) After performing the surgery, the surgeon indicated five anatomical
landmarks (middle turbinate, maxillary sinus, posterior ethmoid, sphenoid sinus, and
frontal sinus) using the pointing tools of the two systems (Figure 5). (6) Finally, the degree
of accuracy was evaluated by two surgeons using a visual analogue scale ranging from 1 to
10 points.

Figure 4. Performing image-guided endoscopic sinus surgery (IGESS) using a developed navigation
system.
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Figure 5. Clinical comparative study using developed and commercialized image-guided endoscopic sinus surgery (IGESS)
systems. Measurement of the positions of the anatomical landmarks (middle turbinate (a,b) and posterior ethmoid (c,d) in
the nasal cavity with the developed (a,c) and the commercialized (b,d) systems.

We used SPSS ver. 20 (SPSS Inc., Chicago, IL, USA) for all statistical analyses. We used
a Mann–Whitney test to compare the values of the two systems. All data were expressed
as mean ± standard deviation, and the p-value < 0.05 was considered as statistically
significant.

3. Results

Before the clinical study, we calculated the FRE and TRE to evaluate the accuracy of
the developed point-to-point registration method at the points (divots) on the phantom. We
used six of the points for registration and the other forty-one points for evaluation. As a
result, the mean FRE value of 0.25 mm at the initial registration was decreased to 0.14 mm
by applying the fine registration after excluding the point with the highest FRE. Then, we
calculated the TRE value of 0.82 ± 0.50 mm for the developed registration method (Table 1).

During endoscopic sinus surgery, the intraoperative position of the pointing tool tip
was tracked continuously by the electromagnetic tracking system and visualized simulta-
neously on the multi-planar and 3D volumetric views. Our method also provided the slab
volume view to the surgeon to accurately recognize the positional relationship between the
pointing tool tip and the adjacent anatomical structures of the patient during the surgery
(Figure 2). As a result, the 3D position of the pointing tool tip was visualized with respect
to the nasal cavity and sinuses in real time (Figure 5).
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Table 1. Absolute difference in x-, y-, and z-axes, and root mean square (RMS) difference between
the true and measured positions of the points on the phantom after registration.

Points (Divots)
Target Registration Error (mm)

x y z RMS

1 0.17 0.77 0.38 0.88
2 0.44 0.44 0.03 0.63
3 0.25 0.33 0.11 0.43
4 0.03 0.59 0.06 0.59
5 0.68 0.59 0.18 0.92
6 0.03 0.08 0.04 0.09
7 0.86 0.52 0.18 1.02
8 0.08 0.23 0.66 0.70
9 0.17 0.41 0.72 0.85
10 0.73 0.19 0.08 0.76
11 0.15 0.57 0.80 0.99
12 0.43 0.03 0.11 0.45
13 0.56 0.60 1.08 1.36
14 0.22 0.11 0.18 0.30
15 0.70 0.71 1.11 1.49
16 0.15 0.27 0.19 0.36
17 1.21 0.54 1.36 1.90
18 0.15 0.21 0.51 0.57
19 0.23 0.14 0.50 0.56
20 0.42 0.18 0.42 0.62
21 0.05 0.26 0.18 0.32
22 2.17 0.80 0.09 2.32
23 1.67 0.46 0.02 1.73
24 1.43 0.37 0.21 1.49
25 0.29 0.36 0.41 0.61
26 0.10 0.22 0.58 0.63
27 0.65 0.11 0.88 1.10
28 0.99 0.01 0.90 1.34
29 1.18 0.02 0.78 1.41
30 0.90 0.31 0.35 1.01
31 0.10 0.01 0.16 0.19
32 0.13 0.37 0.43 0.58
33 0.11 0.44 0.46 0.65
34 0.00 0.23 0.26 0.35
35 0.09 0.13 0.23 0.28
36 0.16 0.05 0.23 0.29
37 0.07 0.14 0.35 0.38
38 0.19 0.44 0.25 0.55
39 0.81 0.60 0.16 1.02
40 0.04 0.40 0.78 0.88
41 0.74 0.75 0.50 1.17

Mean 0.48 ± 0.50 0.34 ± 0.23 0.41 ± 0.33 0.82 ± 0.50

We compared the two types of navigation systems, which were the developed system
and the commercialized system, by clinical study. The average registration times were
36.04 ± 4.7 and 89.35 ± 26.1 s for the developed and commercialized systems, respectively
(p < 0.05). The image loading time of the developed system was also shorter than that of
the commercialized system (p < 0.05) (Table 2). Although the average FRE value of the
developed system was higher than that of the commercialized system (p < 0.05) (Table 2),
the average accuracy score of the developed system was not significantly different from
that of the commercialized system (p > 0.05) (Table 3).
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Table 2. Comparison of registration time, image loading time, and fiducial registration errors (FREs)
between the developed (Medigator®, Gmeditec, Incheon, Korea) and the commercialized (Scopis®

Hybrid Navigation System, Stryker, Kalamazoo, MI, USA) systems.

Number Name
Registration Time a Image Loading Time a FRE

M S M S M S

1 KYK 28.71 66.00 1.20 15.78 3.21 0.54
2 CYS 34.92 66.00 1.60 18.40 2.85 0.34
3 YSY 34.27 104.9 1.10 18.20 3.73 0.62
4 PWY 32.33 85.95 1.40 18.10 2.84 0.54
5 KDH 46.87 65.55 1.89 21.59 4.74 0.42
6 KYS 33.21 51.39 1.30 18.50 2.08 0.64
7 KDS 34.58 131.19 1.41 17.90 3.29 0.41
8 CCH 38.13 122.45 1.32 18.41 2.24 0.51
9 KYH 38.42 114.12 1.40 22.46 3.33 0.50

10 ISH 35.59 82.86 1.10 17.50 3.40 0.41
11 KJB 39.43 92.42 1.40 25.16 3.49 0.38

Mean 36.04 ±
4.7

89.35 ±
26.2

1.37 ±
0.23

19.27 ±
2.68

3.20 ±
0.72

0.48 ±
0.10

p-value 0.000 0.000 0.000

FRE: fiducial registration error; M: Medigator®; S: Scopis®; a seconds.

Table 3. Visual analogue scale accuracies when surgeon pointed out important structures in the nasal cavity using the
developed (Medigator®, Gmeditec, Incheon, Korea) and the commercialized (Scopis® Hybrid Navigation System, Stryker,
Kalamazoo, MI, USA) systems.

No. Name
Middle Turbinate Maxillary Sinus Post. Ethmoid Sphenoid Sinus Frontal Sinus Total

M S M S M S M S M S M S

1 KYK 9 8 10 10 8 10 9 8 10 9 9.2 9.0
2 CYS 9 10 10 10 5 10 8 10 7 10 7.8 10
3 YSY 10 9 10 10 8 9 10 10 10 10 9.6 9.6
4 PWY 8 7 10 10 9 8 10 9 9 10 9.2 8.8
5 KDH 9 8 10 10 9 9 10 10 10 10 9.6 9.4
6 KYS 9 9 10 10 6 8 10 10 8 8 8.6 9.0
7 KDS 8 8 10 10 8 9 9 8 10 10 9.0 9.0
8 CCH 10 10 10 10 7 9 10 10 9 9 9.2 9.6
9 KYH 10 7 10 10 7 8 9 9 10 9 9.2 8.6

10 ISH 10 10 10 10 10 10 10 10 9 10 9.8 10
11 KJB 10 10 10 10 10 10 9 10 10 9 9.8 9.8

Mean 9.27 ±
0.79

8.73 ±
1.19 10 ± 0 10 ± 0 7.91 ±

1.58
9.09 ±

0.83
9.45 ±

0.69
9.45 ±

0.82
9.27 ±

1.01
9.45 ±

0.69
9.18 ±

0.58
9.35 ±

0.49

p-value 0.283 1.000 0.058 0.852 0.826 0.715

M: Medigator®; S: Scopis®.

4. Discussion

In endoscopic sinus surgery (ESS) in chronic sinusitis patients, an image-guided
surgery (IGS) system is considered to be a valuable tool for surgeons to make important
decisions during surgery [29]. The IGS system has been commonly used for ESS because it
provides important topological information about the paranasal sinuses during surgery.
The IGS system provides spatial and visual information to the surgeons by visualizing
the patient’s preoperative medical images, such as from CT and MRI, on the screen of the
system during surgery [30,31]. In addition, the IGS system relieves the operator’s mental
and physical stress during ESS surgery, which leads to reduction of surgical risk to the
patient [32,33]. IGS technology has improved dramatically over the last few decades, with
smaller and more portable platforms, quick setup time, and user-friendly interfaces.

One of the most important elements of the IGS system is meeting clinically acceptable
accuracy levels by performing accurate matching between the patient’s physical space
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and the image space. In general, the error of the IGS system for use in ESS surgery is less
than 2 mm [34,35]. Previous studies have shown that the accuracy of registration is highly
correlated with the surgical accuracy of IGS [36,37]. Some researchers proposed three
metrics to evaluate the accuracy of the registration: (1) fiducial localization error (FLE),
which is error in the location of the fiducials; (2) fiducial registration error (FRE), which is
the root mean squared (RMS) distance between corresponding fiducials used in registration;
and (3) target registration error (TRE), which is the RMS distance corresponding fiducials
which are not used in registration [38,39]. To date, there is no standardized criterion for
evaluating the accuracy of the registration. Therefore, previous studies evaluated the
accuracy of registration with their own customized methods [8,40,41]. In a previous study,
a skin-attached skull phantom with 26 titanium screws was fabricated to evaluate the
TREs of five registration methods [8]. The TRE values (mean ± standard deviation) were
0.94 ± 0.06 mm for point-to-point registration using invasive fiducials, 1.41 ± 0.04 mm for
non-invasive point-to-point registration using the metal balls on a headset, 1.59 ± 0.14 mm
for the surface registration, and 5.15 ± 0.66 mm and 4.37 ± 0.73 mm for point-to-point
registration using four and five anatomic landmarks, respectively [8]. Another study
reported TRE values in the range of 0.71 to 3.51 mm for point-to-point registration using
a customized plastic phantom [41]. Ecke et al. measured an accuracy of 1.82 ± 1.42 mm
after performing the point-to-point registration using fiducials [42]. In addition, when
measuring the registration accuracy using anatomical landmarks on the patient’s skin
surface with the pointing tool, the lack of consistency was caused by the softness of the
skin and the deformation due to pressure [43]. In this study, we designed and fabricated
the phantom for evaluating our point-to-point registration method based on the standard
phantom in ASTM F2554-10 for the first time [26]. Immediately after performing the
registration using the developed point-to-point method, the FRE value was 0.14 mm. As
a result of the accuracy evaluation using the phantom, the mean values of the absolute
differences between the true and measured positions were 0.48 ± 0.50, 0.34 ± 0.23, and
0.41 ± 0.33 mm on the x-, y-, and z-axes, respectively, and the TRE was 0.82 ± 0.50 mm.
Our method showed a higher accuracy than previous methods based on point-to-point
registration using customized phantoms. We also demonstrated that our method showed a
clinically acceptable level of accuracy (under 2 mm) [34,35].

Intraoperatively, the IGS systems should accurately and intuitively provide the sur-
geons with the 3D position of the pointing tool tip in real-time. Conventional IGS sys-
tems visualized the intraoperative position of the pointing tool tip in two-dimensional
multi-planar (axial, sagittal, and coronal) views, and it was difficult for surgeons to easily
recognize 3D spatial information with the 2D positional information provided [42]. In
addition, even if the position of the tool tip was displayed on the 3D virtual model of the
patient, it was still difficult for the surgeon to intuitively identify the position of the tool
tip occluded by the skin or bone tissue models [30]. To overcome the limitations of the
conventional methods, our system provided 3D slab volumetric view for the surgeons to
intuitively identify the real-time position of the pointing tool tip inside the patients’ nasal
cavity (Figure 2).

We performed the clinical comparative study to validate the performance of our
developed system by enrolling eleven chronic sinusitis patients who needed the ESS with
an IGS system. As a result of the study, we demonstrated that the registration time and
image loading time of the developed system were significantly shorter than those of the
commercialized system. This showed that it was more efficient to use the developed
system than to use the commercially available system in the surgical preparation process.
Although the average FRE value of the commercialized system was significantly lower
than that of the developed system, there was no statistically significant difference between
the average accuracy scores of the two systems when digitizing five anatomical landmarks,
as evaluated by the surgeons. A previous study demonstrated that the FRE and TRE were
not correlated to each other [44].
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In conclusion, we developed an image-guided endoscopic sinus surgery system with
3D volumetric visualization of the nasal cavity and paranasal sinuses. The developed sys-
tem provided an accurate point-to-point registration method based on the SVD algorithm
and the leave-one-out strategy. According to the results of the clinical comparative study on
eleven patients, we demonstrated that the developed system showed reliable potential for
clinical application. However, the developed system could not perform the surface-based
registration method. For future investigations, we will develop a surface-based registration
method by modifying the conventional algorithms, such as iterative closest point (ICP) [27]
and coherent point drift (CPD) [45]. In addition, we plan to recruit more patients to conduct
clinical comparative studies, and to apply the developed system to additional cases of
revision surgery or advanced skull base surgery.
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