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Featured Application: A road environment-type (RET) detection function could improve the
road awareness of inexperienced car drivers, especially in urban areas, and by doing so, it could
slightly raise the urban traffic safety. A pragmatic implementation could make use of static road
object data, e.g., traffic sign (TS) data, that is already collected and available on-board. It could
rely on the TS recognition function offered by advanced driver assistance systems (ADAS). Fur-
thermore, apart from its primary function, the RET detection system could provide reciprocal
information—with respect to the current RET—for various ADAS and autonomous driving (AD)
computations and subsystems. Making use of such reciprocal information could speed up the
ADAS/AD computations, and render their results more accurate and more reliable, e.g., via intro-
ducing parameter constraints and marking regions-of-interest.

Abstract: For over a decade, urban road environment detection has been a target of intensive
research. The topic is relevant for the design and implementation of advanced driver assistance
systems. Typically, embedded systems are deployed in these for the operation. The environments can
be categorized into road environment-types. Abrupt transitions between these pose a traffic safety
risk. Road environment-type transitions along a route manifest themselves also in changes in the
distribution of traffic signs and other road objects. Can the placement and the detection of traffic
signs be modelled jointly with an easy-to-handle stochastic point process, e.g., an inhomogeneous
marked Poisson process? Does this model lend itself for real-time application, e.g., via analysis of a
log generated by a traffic sign detection and recognition system? How can the chosen change detector
help in mitigating the traffic safety risk? A change detection method frequently used for Poisson
processes is the cumulative sum (CUSUM) method. Herein, this method is tailored to the specific
stochastic model and tested on realistic logs. The use of several change detectors is also considered.
Results indicate that a traffic sign-based road environment-type change detection is feasible, though
it is not suitable for an immediate intervention.

Keywords: marked Poisson processes; change detection methods; urban road environment detection;
traffic sign detection and recognition; advanced driver assistance systems

1. Introduction

Despite of the on-going research on self-explaining road layouts and designs [1,2], and
on the computerized recognition methods of such designs and layouts, e.g., on methods
that apply artificial intelligence methodology [3], setting up traffic signs (TSs) along the
roads and traffic lights in road junctions and near pedestrian crossings by the transport
authorities still remains a customary measure for reducing traffic safety risks in urban
areas [4]. Clearly, there are other viable alternative measures, as well as supplementary ones
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for the purpose. These include—among many others—the installation of speed reduction
markings onto the road-surface [5] and the installation of vehicle- to-infrastructure (V2I)
communication facilities, e.g., to succor the TS recognition (TSR) function offered by
advanced driver assistance systems (ADAS) [6] and self-driving cars [7]. In a wider
sense, V2I communication succors the road, traffic and vehicle data gathering, fusion,
and dissemination, and through these data processes, it is expected to have a significant
beneficial impact on traffic safety [8]. More specifically, V2I communication can be used
for raising the road-awareness of car-drivers, as well as that of the intelligent and the
self-driving road vehicles. Furthermore, it can be used for providing the human drivers
and the smart vehicular systems with current traffic information with respect to the region,
town, and area, on the one hand, and with some very specific dynamic information on
individual vehicles in the vicinity, on the other [9].

When speaking about raising road awareness of drivers, one is obliged to speak about
the Global Navigation Satellite System (GNSS), a system that is used by masses of people
around the world. According to [10], the GNSS devices per capita averaged out at 0.8
across the countries of world in 2019. The GNSS is used with wide variety of devices
running map-based applications, a significant percentage of these devices are installed
on-board cars. The brief history of the navigational systems and their respective precisions
are presented in [11]. The paper provides a fresh outlook on the navigational needs of
and the available navigational solutions for autonomous vehicles and systems. As it often
happens to popular services, devices, and applications, threats against these surface from
time to time. Such threats have surfaced also against the GNSS service [12]. Although
the number of successful navigational spoofing attacks is still negligible, the navigational
signal deteriorations due to other—i.e., non-hostile—factors are clearly not. For instance,
the signal reception is often brought down, or even blocked by the high-rise buildings in
densely built urban areas. Some examples in this context are presented in [13].

The speed reduction measures implemented in urban areas are motivated by the traffic
safety concerns associated with the intense road traffic and the limited space available
there for the driving maneuvers [14]. While driving, and particularly while driving in
urban areas, drivers need to perform numerous mental and control tasks—ranging from
those associated with limb-movement to those required for complex driving maneuver
planning and execution—within stringent time and spatial constraints and with high
reliability [15]. Furthermore, these tasks must be performed in presence of disturbances,
such as unfavorable lighting, adverse weather, and traffic conditions [16]. In addition, the
older age of the driver may contribute to the perceived difficulty of these tasks [17].

A system, which pays attention to the driver’s activity within the car and also to
aspects of the urban road environment, was developed as part of the Urban Intelligent
Assist Research Initiative some years ago [18], and since then, other systems with similar,
or enhanced capabilities followed suit [19,20]. The effect of driving experience on drivers’
adaptation to road environment complexity—a notion closely related to that of the road
environment type (RET) used herein—in urban areas was investigated in a simulation
study [21]. The findings of the study underline the need for an automatic RET detection
function, and indicate that such a function is particularly useful for car-drivers lacking
prolonged driving experience, and also for older drivers.

Several algorithmic approaches and sensor arrangements were devised, applied, and
tested for detecting, characterizing, and categorizing urban road environments based on
image and/or point cloud data [22–24]. In the application considered herein, the urban
road environment appears around and sweeps past an ego-car while it is driven in an urban
area. The data streams used for the purpose of road environment detection and analysis
originate—among others—from one or more camera and one or more light detection and
ranging (LiDAR) sensor. In a viable implementation of a road environment detection
and classification system that is capable of assisting a car driver while driving, either a
comprehensive real-time on-board processing of the respective raw data streams is required
(direct processing) or a timely access to and further processing of the data—rendered by
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some other real-time application/subsystem on-board—on certain distinguishing road
objects (ROs) are necessary (indirect processing).

In the above cited papers, the real-time requirements were limited to data synchro-
nization and data collection issues, while the bulk of the processing, e.g., simultaneous
localization and mapping (SLAM), and object segmentation, were carried out in a post-
processing manner. Nevertheless, a large portion of the processing presented in these
papers is real time capable and could be used in direct implementations.

The approach presented in [22] builds and then segments the point cloud originating
from a ground-level LiDAR device moving along a given trajectory. The aim of the authors
was to produce editable—simplified, but visually still pleasing—object-models that lend
themselves for fast visualization. The target areas were the residential urban areas in the
United States. These areas are characterized by their low-rise buildings without strong and
extensive repetitive patterns. The semantical labeling and various analysis steps follow
the mentioned preprocessing steps. Simple models of the individual houses in the area
are then created. The basic building blocks of the models are simple, symmetric, and
convex geometric blocks. These blocks—together with their spatial arrangement and their
connection graph—form an easy-to-handle geometric model of the individual buildings. By
aggregating the certain features of the individual buildings for an area (e.g., by computing
the average building dimensions and the average distance between nearest buildings), the
residential urban road environment can be adequately characterized.

The system presented in [23] extracts the characteristics of individual buildings rather
than those of more extensive road environments. Nonetheless, the building characteristics,
such as building height and building complexity—again aggregated for a given area, or
along a route—together with the spatial densities of the buildings there, are definitive in
the respect of the RET.

A multi-sensor and multi-precision data collection campaign is described in [24]. It
was a car-based campaign that made use of an array of different environment perception,
navigational, and motion sensors. These included four LiDARs, a pair of stereo cameras, a
fiber optics gyroscope and encoder sensors for the tires. The data collection trips covered
diverse complex urban environments in Korea, with a clear emphasis on those environ-
ments, where GPS reception is highly unreliable. The collected data were organized into
a publicly accessible dataset that includes the measured ego-car trajectories, the raw and
processed point cloud data from the LiDAR sensors, as well as the ego-car trajectories with
improved precision computed via SLAM.

Other approaches, e.g., the ones presented in [25,26], rely object-level data as inputs
to the urban RET detection function, i.e., they follow an indirect processing approach. In a
feasible realization, the raw data streams originate from the very same sensors as in the
direct case, but the respective data streams reach the RET detection subsystem only after
having been processed and considerably compressed by one or more ADAS subsystem.
The resulting data are an object-level description of the road environment, i.e., an RO log.
This log serves as an input to the indirect RET detection function.

The on-board data processing described above, as well as other road, traffic, and
vehicular data processing carried out in various ADAS subsystems (e.g., lane detection,
TSR, detection of nearby vehicles) can also be looked at from, analyzed with respect to,
and formulated using a static reference point. Setting up and using a local dynamic map
(LDM) [27] could serve these purposes, and provide additional conceptual support for
the developers of ADAS functions. LDM is a widely used model for representing, and a
standardized technology for integrating static, temporary, and dynamic road, traffic, and
vehicular information into a static geographical context by means of a common coordinate
reference. Customarily, it has four object layers describing and managing ROs that are
subject to change and exhibit dynamics at different time scales. More concretely, these
layers store and handle data on permanent static, transient static, transient dynamic, and
highly dynamic ROs, respectively. For instance, when framing the static RO-based urban
RET detection task in LDM, the ego-car is seen as a highly dynamic RO. A crossroads
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(CRs) intersection of streets is a permanent static RO in this model. The intersection can be
associated with other ROs (e.g., with fixed traffic lights located there, which are transient
static ROs). The lanes, lane markings, pedestrian crossings, and the conventional TSs
are transient static ROs, while the TSs displayed by variable message sign boards can be
classified as transient dynamic ROs. The RETs can be treated as permanent static features
of an area or of a sub-network of roads.

One could look at the ROs in an urban settlement and collect and compile their location
and categorical data into a map layer, e.g., in the way data contributors of OpenStreetMap
maps do with roads, railways, rivers, and various locations of importance [28]. By selecting
appropriate subsets of TSs—i.e., TS subsets that are characteristic to certain RETs—various
sublayers of the RO layer can be created, displayed, and analyzed. The analysis could
include a Delaunay triangulation of the TS locations within a sublayer, and then one could
look for dense clusters of triangles in the generated structure. By carrying out similar
processing for a number of sublayers, a TS-based RET categorization of the urban area can
be created.

By further processing the map-based representation of TSs and other ROs, one could
derive other interesting sublayers that relate to seasonal, weekly, or daily validity of the TSs
and could derive a sublayer representing weather-related TSs (e.g., TSs applicable for wet,
snowy and icy road conditions). For instance, the sublayer representing the within-the-day
validity of TSs—indicated by auxiliary signs or time intervals attached to the TSs—should
reflect the daily dynamics of traffic source and sink structure of the area [29]. Clearly, the
mentioned dynamics are closely related to the RET categorization used herein.

In our view, such sublayers—compiled, e.g., from data gathered in car-based data
collection campaigns—could give useful hints to road authorities and administration as
to where to place additional TSs and auxiliary signs or remove unnecessary existing ones.
Herein, however, we stick to the route-based sampling of the TSs of the urban area, the
map-based processing touched upon above will be addressed in further research.

In [25,26], the urban road environments were categorized into three RETs, namely,
into downtown (Dt), residential (Res), and industrial/commercial (Ind) areas. The ROs
represented in the object-log were the TSs and CRs encountered along the route. In an
advantageous implementation foreseen, both the TS and the CR data originate from their
respective dedicated ADAS subsystems. While in case of the TS data, the corresponding
subsystem, i.e., the TSR ADAS subsystem, is quite common in recent production cars, the
CR detection ADAS function is fairly uncommon at this point of time. It is expected though
that in the coming years, the LiDAR sensors developed for automotive applications will
pave the way for the spread of such an ADAS subsystem.

A good insight in ADAS system architectures, various ADAS subsystems and func-
tions, as well as the respective methods and computations involved is given in [30]. A
survey on TSR methods and systems is given in [31], while in [32], a mapping and naviga-
tion system developed for large-scale global positioning-denied sites is introduced. The
system is capable of detecting CRs, intersections, and other road infrastructure.

The static RO-based urban RET detection approach proposed in [25], and some further
approaches make use of a variety of classification and change detection (CD) methods
known from the statistical inference literature. In the cited paper, it is presumed that the
static ROs in general, and the considered TSs and the CRs, in particular, occur along the
route according to an inhomogeneous discrete-variable binomial process. The minimum
description length (MDL) methodology is then applied to detect and locate change in the
character of the road environment sweeping past the ego-car.

The lane-keep assist ADAS and the lane following autonomous driving (AD) subsys-
tems, which perforce continually identify the current and neighboring lanes, and estimate
their widths, as well as the TSR ADAS and AD subsystems, which locate, identify, and
track the TSs encountered by the ego-vehicle, are of particular interest in the context of RET
detection. First, such ADAS subsystems are already available on-board many production
cars, second, the categorical and spatial distribution of TSs, as well as, the lane-widths and
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the number of lanes—in the current cross-section of the road or in an aggregated form (e.g.,
average lane-width, average number of lanes)—carry information that can be useful in
determining the RET of the given urban area.

It should be emphasized that a timely feedback of the RET information to the above
ADAS and AD subsystems could increase their effective processing speed and lower the
rate of misclassifications via setting practical parameter constraints for the computations
involved. Such constraints could be of geometrical nature and could take the forms
of Boolean, probabilistic, and fuzzy regions-of-interest (ROIs), respectively, e.g., within
image frames of video sequences [33]. While in case of point clouds, volumes-of-interest,
again meant in a Boolean, in a probabilistic, and in a fuzzy way, respectively, could
be marked and used [34]. As a further application of such reciprocal information, the
characteristic size range of TSs—for a given RET—could be used for validating the detected
TS candidates [35].

Similar processing benefit could be gained from the above outlined information
feedback in case of other presently not so wide-spread driver assistance functions, such
as the CR detection. Furthermore, information on the current RET is also important for
suggesting/choosing appropriate vehicle speed and acceleration/deceleration for the
ego-car. An embedded testbed architecture for testing functions of self-driving cars was
proposed in [36]. It could also facilitate the seamless integration of the static RO-based RET
detection function into the intelligent vehicle control systems.

In the following, it will be assumed that TS occurrences are reliably detected and
logged by the on-board TSR ADAS subsystem, moreover, this log is passed on to the
RO-based—in the following practically TS-based—RET detection system in real-time.

It was our aim to choose, adapt, and validate a mathematically sound CD method
that makes provision for and relies on a simple, but realistic stochastic model of the static
RO placement and occurrences, in general, and of the TS placement and occurrences,
in particular, for the purpose and in the context of detecting transitions between road
environments of different character—or more concretely, between road environments of
different RETs—in order to assist car drivers, human, and robotic drivers alike, in their
driving tasks and activities. The continuous-time inhomogeneous marked Poisson process
(IMPP) was identified as a possible stochastic model to work with.

It should be noted, however, that in real life, the static RO placements—including those
of TSs and traffic lights—are governed by technical and administrative guidelines [37], from
time to time they are subjects of potentially lengthy conciliatory procedures between locals
and road administration. The final decisions are therefore taken at different administrative
levels. Some aspects of this occasionally complicated process are outlined in [38]. As
in [25,26] also herein, the occurrences are considered along routes. These routes are
assumed to be random, but they are, in fact, based on intelligent choices made by the
drivers.

Results gained via simulation implementing the IMPP model and making use of
realistic data indicate that a TS-based RET CD is feasible and can be used for driver
assistance, though it is not suitable for initiating an immediate intervention in critical
situations. A more varied selection of static ROs—including, e.g., CRs, traffic lights, and
pedestrian crossings—would further improve the feasibility of the RET CD. Similar utility
and feasibility are expected for the RET detection and identification function computed
with several RET change detectors and an artificial neural network (ANN) that merges and
mushes together the detected RET transitions.

2. Materials and Methods
2.1. Car-Based Collection of Static Road Object Data from Various Urban Road Environments

A series of car-based static RO data collection trips was carried out in Hungary in
2017. The data were collected from a number of urban areas. Data concerning a richer
set—than presented here—of TSs and of some more characteristic ROs was gathered. The
TSs and other ROs were recorded manually along the routes—together with the RETs of
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the given areas—with the help of a dedicated tablet-based Android application, while the
trajectory data of the trip was collected automatically by the app in every few seconds, and
at the times of the TS and other RO entries [25].

The data collection personnel consisted of two persons: a driver and a data entry
assistant. The manual data entry was made easy by the array-like screen design with TSs
and RO symbols. In case of parametrized TSs, e.g., speed limits, the standard options (i.e.,
10 km/h, 20 km/h, . . . , 70 km/h) were offered—also in pictorial form—after the general
TS type. Specific symbols, i.e., touch-screen keys, were offered for entering the considered
RETs, the repeated entries, for the cancelations of the last entry, and for entering verbal
comments. The location, time, TS/RO, and RET categorical data were stored in a text-file
in a comma separated values (cvs) format. After the trips, the csv files were stored as
spreadsheets and were converted to various formats (e.g., kml) for post-processing and
visualization.

From the above data collection, the relevant TS rates—along routes in the considered
RET areas—were known. The empirical rates for the
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2.2. Mathematical Models and Methods

As it was mentioned in the Introduction, the continuous-time IMPP stochastic model
had been chosen for characterizing the along-the-route placement and occurrence of TSs
jointly for the purpose of RET CD in the present study. For a profound treatment of the
mathematical theory of Poisson processes, see [39].

In the chosen stochastic approach, the TS data logs are seen as realizations of an IMPP.
The CD method used commonly in conjunction with Poisson processes is the cumulative
sum (CUSUM) method. Detailed expositions of such methods can be found in [40,41]. By
assuming the validity of the IMPP model—at least with respect to the considered RETs
and considered TSs—for describing and characterizing TS placements and occurrences
along routes within and between urban environments, our task narrowed down to adapt a
suitable CUSUM method for the purpose, and validate it with realistic TS data.

It was our intention to adopt and validate a continuous-time variant of the CUSUM
method for CD. Furthermore, trade-off is sought between the false alarm rate and the
expected detection lag associated with the TS sequences and to provide hints for choosing
appropriate thresholds for the change detectors.

The continuous-variable variant of the CUSUM method for CD in IMPP realizations
is derived in this subsection. The working of the RET change detectors implementing this
method is demonstrated in Sections 3.1 and 3.2. The change detectors presented therein
have been tuned to detect two different RET transitions, namely, Dt to Res and Res to Dt
transitions, and are tested with synthetic input sequences.
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2.2.1. Modelling TS Occurrences within a Given Urban Road Environment

As a first step, we are going to model the TS placements, occurrences, and detections—
along a random route and within a certain urban road environment—jointly as events of a
continuous-variable homogeneous marked Poisson process (HMPP).

In the literature dealing with Poisson processes usually the mentioned continuous
variable is the time. Although, with the notations used herein, as well as with the verbal
expressions describing relations between values, we are going to comply with this “tempo-
ral” convention, and it should be emphasized that the path-length—that has been covered
by the ego-car—is chosen to be the continuous spatial variable.

Let {Tn, kn}, where kn ∈ {1, 2, . . . , K} and K ∈ N, be a marked Poisson process
with counting measures Nk(·). These are defined as Nk(A) = #{n : Tn ∈ A}, where
A is typically an interval. Let the rates associated with the marked Poisson process
be λk, assuming spatial—and particularly along-the-route—homogeneity, and let the
corresponding reference rates of the Poisson process be λ0

k . Then, the negative logarithm of
the likelihood-ratio of an observation sequence ({Tn, kn}), Tn < T is given by

DN
T , T ·∑

k

(
λk − λ0

k

)
−∑

k
Nk(T) · log

(
λk

λ0
k

)
(1)

where Nk(T) is the number of events of type k prior to T.
Assuming now that λ0 =

{
λ0

k
}

is the true set of process parameters, furthermore
assuming that λ = {λk} is a set of tentative parameter values, and writing DN

T = DN
T (λ),

we have the following inequality:

E
{

DN
T (λ)

}
≥ 0. (2)

The left-hand side is simply the Kullback-Leibler (KL) divergence of the true distri-
bution from the estimated one. Using the common notation of the KL divergence, the
left-hand-side of the above inequality can be rewritten as

E
{

DN
T (λ)

}
= DKL

(
mPois

(
λ0T

)
‖ mPois(λT)

)
, (3)

where mPois(·) represents the distribution corresponding to the marked Poisson process,
while DKL

(
mPois

(
λ0T

)
‖ mPois(λT)

)
is the expected number of extra nats—NB: not bits,

but nats, as the natural logarithm is used in Equation (1), not log2—required to encode the
observation sequence from the distribution mPois

(
λ0T

)
using a code optimized for the

distribution mPois(λT) rather than using the code optimized for mPois
(
λ0T

)
.

Associated with DN
T (λ) is the computable quantity

LT(λ) , T ·∑
k

λk −∑
k

Nk(T) · log(λkT) (4)

LT(λ) can be interpreted as the approximate length of an optimal code encoding the
observation sequence, were λ the true set of the process parameters. Considering, however,
that LT(λ) is dependent on λ0—i.e., on the “real” true set of process parameters—via
Nk, we can write LT(λ) = LT

(
λ0, λ

)
, and similarly, we can indicate the same kind of

dependency for DN
T , i.e., DN

T = DN
T (λ) = DN

T
(
λ0, λ

)
.

2.2.2. Modelling TS Occurrences in a Neighboring Urban Road Environment

In conjunction with a second road environment that borders the one looked at in the
previous subsection, let us now consider another marked Poisson process with parameters
µ0 =

{
µ0

k
}

. The probability distribution corresponding to this process is mPois
(
µ0T

)
.

The counting measures Mk(·) are used for counting the events of different types, i.e., for
counting the occurrences of the various TSs, separately.
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Let the a priori estimate of µ0 be µ. Then, similarly to our comments with respect to
LT(λ) defined in Equation (4), the approximate length of an optimal code encoding the
observation sequence observed within this second road environment—were µ the true set
of the process parameters—is given in Equation (5)

JT(µ) , T ·∑
k

µk −∑
k

Mk(T) · log(µkT). (5)

Considering that JT(µ) is dependent on µ0—i.e., on the “real” true set of process
parameters—through event counts Mk, we can write JT(µ) = JT

(
µ0, µ

)
. Furthermore, the

negative logarithm of the likelihood-ratio of an observation sequence—observed within
this second road environment—can be written as DM

T = DM
T (µ) = DM

T
(
µ0, µ

)
.

2.2.3. Modelling TS Occurrences over Two Neighboring Urban Road Environments

If λ and µ are reasonable estimates of λ0 and µ0, respectively, then DN
T
(
λ0, λ

)
and

DM
T
(
µ0, µ

)
are going to remain relatively small. We shall consider the case, when the

parameter-sets of the two marked Poisson process differ considerably, i.e., λ0 and µ0 differ
considerably with λ and λ0 still being close to each other, and with µ and µ0 still being
close to each other. Then DN

T
(
λ0, µ

)
and DM

T
(
µ0, λ

)
are going to be large.

Furthermore, using the encoding argument outlined above, LT(λ)− LT(µ) will have a
tendency to decrease in time (i.e., with T), and similarly, JT(µ)− JT(λ) will also have such
a tendency. The negated version of the latter, i.e., JT(λ)− JT(µ), on the other hand, will
have a tendency to increase in time. More clearly, using the defining formulae in Equations
(4) and (5), respectively,

LT(λ)− LT(µ) = T ·∑
k
(λk − µk)−∑

k
Nk(T) · log

(
λk
µk

)
(6)

tends to decrease with T, while

JT(λ)− JT(µ) = T ·∑
k
(λk − µk)−∑

k
Mk(T) · log

(
λk
µk

)
(7)

tends to increase with T.

2.2.4. Detecting Change between Urban Road Environments and Locating the Change Point

Assume now a switch from the first marked Poisson process to the second, i.e., from
mPois

(
λ0T

)
to mPois

(
µ0T

)
, and accordingly a switch from respective counting measures

Nk(·) to Mk(·) at time τ. Then for T ≤ τ

gT , gT(λ, µ) , LT(λ)− LT(µ) (8)

tends to decrease with T. Let us now introduce the notation T∗ = T − τ. For T > τ, i.e.,
for T∗ > 0, gT is defined as follows

gT , gT(λ, µ) , gτ + Jτ
T∗(λ)− Jτ

T∗(µ), (9)

where Jτ
T∗(λ)− Jτ

T∗(µ) is to be computed according to a modified version of Equation (7),
as shown below

Jτ
T∗(λ)− Jτ

T∗(µ) = T∗ ·∑
k
(λk − µk)−∑

k
Mk

τ(T
∗ + τ) · log

(
λk
µk

)
(10)

here the counting measures Mk
τ(·) count events in the same way as Mk(·) with the only

difference that they now count events only from τ onwards.



Appl. Sci. 2021, 11, 3666 9 of 17

For T > τ, gT tends to increase with T. To estimate the location τ, one should monitor
function gT . Then, in order to determine τ, we need to wait for an increasing trend in gT
to appear.

In order to find out whether a change in the stochastic model has occurred, or not,
and if it has, when/where, one should compute the minimum of gT on-the-fly with
a Page-Hinkley change detector (PHCD), see [42,43] for the detailed derivation of the
change detector.

Using gT , the PHCD, hT is defined as

hT , gT − inf
s≤T

gs. (11)

A change is thought to have occurred if hT exceeds a threshold δ > 0. As it will be
clear from the examples presented in Sections 3.1 and 3.2, the choice of δ is crucial for the
proper working of the detector.

It can be shown—following the line of thoughts presented in [44]—that under the
hypothesis of no-change, hT is L-mixing, and the false alarm probability is exponentially
decaying in δ: P(hT ≥ δ) ≤ Ce−aδ with some a > 0. Hence the false alarm rate itself is
exponentially decaying in δ. As a consequence, the false alarm rate can be effectively
reduced by choosing larger δ. On the other hand, if δ is chosen to be too large, then the
detection lag can be too long or even transitions can be missed.

2.2.5. Basic Properties of Functions gT and hT

Before getting on to elaborate concrete TS-based RET CD examples in Sections 3.1 and
3.2, it is worthwhile to look more closely at the functions involved in the CD computations,
namely, to gT and hT . The diagrams of these functions are composed of linear segments.

In case of gT , each of these linear segments has the same slope, and at either end of a
segment, there can be a “jump”. The jump can be either an upward jump, or a downward
jump depending on the particular event and on the process parameters.

In case of hT , the situation is slightly more complicated. Apart from the linear segments
with the same slope, if any such segment remains in the diagram, there can be broken lines
reaching the horizontal axis, and a number of linear segments along this axis. Furthermore,
all the constituting linear segments and broken lines of hT are located in the upper half-
plane that includes also the horizontal T axis.

3. Results
3.1. Examples

Let us now see two CD examples from the given application field. In these examples,
we intend to detect change in the RET based on TS occurrences along a route. The full
length of the trip represented in the table is 4.6 km. The TSs are assumed to be detected
and located by an on-board TSR system.

The TS locations are marked with the corresponding TSs in the top band of Table 2. The
sequence given there is synthetic, and has been compiled for the purpose of demonstrating

• a RET transition from a Dt to a Res area (denoted by Dt→ Res), if the virtual journey
is taken from the left, and

• a RET transition from a Res to a Dt area (denoted by Res→ Dt), if the journey is taken
from the right.

In the middle and the bottom bands of Table 2, the actual counts of the NS, PL, GW,
and SL TSs for the virtual trips starting from the left, and from the right, respectively, are
given. These counts have been produced in a unified and generic manner, i.e., without
demarking the validity intervals of the respective counting measures.

As these counts are denoted simply by NNS, NPL, NGW , and NSL in the present and
in the subsequent subsections, care should be taken to use them properly, i.e., according to
the direction of the virtual trip.
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Table 2. A synthetic sequence of TSs used in the examples (top band), and the unified counts for the No stopping (NS),
Parking lot (PL), the Give way (GW), and Max speed 30 km/h (SL) TSs in case of trips starting from the left and from the
right, respectively (middle and bottom bands).

——
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2.2. Mathematical Models and Methods 
As it was mentioned in the Introduction, the continuous-time IMPP stochastic model 

had been chosen for characterizing the along-the-route placement and occurrence of TSs 
jointly for the purpose of RET CD in the present study. For a profound treatment of the 
mathematical theory of Poisson processes, see [39]. 

In the chosen stochastic approach, the TS data logs are seen as realizations of an IMPP. 
The CD method used commonly in conjunction with Poisson processes is the cumulative 
sum (CUSUM) method. Detailed expositions of such methods can be found in [40,41]. By 
assuming the validity of the IMPP model—at least with respect to the considered RETs and 
considered TSs—for describing and characterizing TS placements and occurrences along 
routes within and between urban environments, our task narrowed down to adapt a suit-
able CUSUM method for the purpose, and validate it with realistic TS data. 

It was our intention to adopt and validate a continuous-time variant of the CUSUM 
method for CD. Furthermore, trade-off is sought between the false alarm rate and the 
expected detection lag associated with the TS sequences and to provide hints for choos-
ing appropriate thresholds for the change detectors. 
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In the sequence given in the top band, each “—” signifies a 0.2 km path-length along
the route without any relevant TSs—facing the ego-car—installed/detected along the
corresponding patch of road. It should be underlined that these fixed path-length route-
segments are used in the examples simply for convenience, i.e., to make diagrammatic
representation of the TS sequence, as well as the virtual trip easier to follow, and to make
the calculations and diagrams easier to verify.

In each of the two examples that are presented in this subsection, the specific PHCD is
applied to a RET transition that is homologous to the one, the PHCD has been tuned to.

First, let the ego-car start its virtual trip from the left. This case is described in detail
in Example No. 1.

3.1.1. Example No. 1: A Dt→ Res Change Detector Applied to a Homologous RET Transition

In the TS sequence given in the top band of Table 2, the intended RET transition (i.e.,
the Dt→ Res) occurs at about the path-length of 2.2 km (i.e., having covered eleven dashes
from the left in the band). The presence of such a RET transition in the synthetic sequence
was secured by having inserted into it five TSs that are more characteristic of the Res areas
than of the Dt areas—see the rightmost column of Table 1—in consecution and reasonably
close to each other starting from this path-length along the virtual route.

According to the CUSUM-based RET CD method derived in Section 2.2, functions
gT and hT are to be used for the purpose of CD. These functions are now denoted by
gDt→Res

l and hDt→Res
l , respectively. The lower and upper indices indicate the function’s

dependence on path-length l and the RET transition actually monitored by the change
detector, respectively. These functions are given in Equations (12) and (13), respectively.
In the former, the coefficients are given with the same numerical precision as was used in
Table 1.

gDt→Res
l ≈ 2.80 km−1 · l − 1.74 · NNS(l)−

−1.92 · NPL(l) + 0.13 · NGW(l) + 0.69 · NSL(l)
(12)

hDt→Res
l = gDt→Res

l − inf
s≤l

gDt→Res
s . (13)

For the generation of these functions, the actual counts of the four considered TS
types—at a particular path-length—are required. These counts are given in the middle
band of Table 2 for virtual trips starting from the left.

In Figure 1, functions gDt→Res
→l and hDt→Res

→l have been plotted, respectively, for the TS
sequence given in Table 2. The virtual trip in this case had started from the left, as indicated
by “→” in the lower indices.
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Figure 1. A downtown (Dt)→ residential (Res) change detector applied to a homologous road environment type (RET)
transition showing up in the traffic sign (TS) sequence given in the top band of Table 2: (a) Function gDt→Res

l for the
considered TS sequence and (b) Function hDt→Res

→l .

According to the diagram of hDt→Res
→l in Figure 1, a threshold, say, δ = 3.0 could be

selected to detect the RET change. With this threshold, the change is detected at about the
path-length 2.7 km, i.e., with a detection lag of 0.5 km. If smaller thresholds, e.g., δ = 1.0 or
δ = 2.0 are used instead, then 3 and 1 false alarms will occur, respectively, along the 2.2 km
of the Dt route. If, on the other hand, larger thresholds are used, such as δ = 4.0 or δ = 5.0,
then unnecessary extra detection lags of 0.3 and 0.6 km will occur.

3.1.2. Example No. 2: A Res→ Dt Change Detector Applied to a Homologous RET Transition

To make full use of the synthetic TS sequence given in the top band of Table 2 and to
provide a deeper insight into the proposed CD method, let now the ego-car start its virtual
journey from the right.

As a side note, we can reverse such a virtual journey fairly easily in a table. In real life
and in real traffic, however, it would be much more problematic as one might encounter
very different TSs on the way back (if at all the reversed route is permitted by the TSs
installed). Furthermore, the TSs that are facing us now are located on the opposite side of
the road as in the first journey. However, even in case of this wieldy virtual journey, some
modifications in the table, namely, with respect to the TS counts, are necessary.

These new TS counts, i.e., the counts for right-to-left virtual trips, are given in the
bottom band of the table. In this reversed case, the ego-car is driven from an intended Res
area to an intended Dt area, i.e., a Res→ Dt transition is expected.

Again, as in the first example, we wish to form functions gT and hT that signal the
RET transition that is actually expected. Accordingly, these functions are now denoted by
gRes→Dt

l and hRes→Dt
l , respectively.

In order to detect such a transition, the roles of the process parameters λk and µk—given in
the fourth and the fifth column of Table 1, respectively—need to be swapped in Equations
(8) and (9), as now, it is supposed that the first road environment is a Res area, rather
than a Dt area. Again, the unified counts are to be used, namely, the TS counts given in
bottom band.

Functions gRes→Dt
l and hRes→Dt

l are given in Equations (14) and (15), respectively.

gRes→Dt
l ≈ −2.80 km−1 · l + 1.74 · NNS(l)+

+1.92 · NPL(l)− 0.13 · NGW(l)− 0.69 · NSL(l)
(14)

hRes→Dt
l = gRes→Dt

l − inf
s≤l

gRes→Dt
s . (15)
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In Figure 2, the functions gRes→Dt
l← and hRes→Dt

l← have been plotted. The corresponding
virtual journey had started from the right in the band, as indicated by the “←” in the lower
indices. The diagrams presented herein corresponding to virtual journeys from the right
are presented in green.
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Again, threshold δ = 3.0 would be an appropriate choice based on the diagram in
Figure 2. With this threshold, the RET change is detected at about the path-length 3 km.
Since the first signs of the Dt area begin to appear at the path-length 2.8 km, the detection
lag is 0.2 km long.

Comparing the diagrams of gDt→Res
→l and gRes→Dt

l← shown in Figures 1a and 2a, respec-
tively, one notices the symmetry between these. This symmetry can be traced back to two
facts: first, from Equations (8) and (9)—as used in Example 1, and by swapping the roles
of parameters λk and µk for equations corresponding to Example 2—furthermore, from
Equations (12) and (14), it follows that

gRes→Dt
l ≡ −1.0 · gDt→Res

l .

and second, to the fact that the same route—with its TSs—was covered from opposite
directions.

There will be further symmetries perceptible between the respective g...→...
...l... diagrams.

However, similar symmetries do not show up amongst the respective h...→...
...l... functions.

3.2. Further Examples

In each of the two examples below, an “off-the-tune” RET change detector is consid-
ered. These change detectors are applied to the TS sequence used above, furthermore,
the same marked Poisson process reference parameters are used. The examples below
demonstrate that “off-the-tune” change detectors may behave fairly haphazardly. In [17],
approaches are proposed to deal with such behavior of the change detectors. These ap-
proaches are essential if several differently tuned change detectors are to be used within a
compound system, e.g., for the purpose of RET detection and identification, rather than CD.

3.2.1. Example No. 3: A Res→ Dt Change Detector Applied to a Dt→ Res Transition

Functions gRes→Dt
l and hRes→Dt

l to be used for signaling a RET transition Res→ Dt
have already been presented—in conjunction with the Example No. 2—in Equations (14)
and (15), respectively. The only difference is that now we need to use these functions with
the TS counts given in the middle band of Table 2, rather than with the TS counts given
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in the bottom band, as the car is now driven from the left to the right (i.e., a Dt → Res
transition is expected).

In Figure 3, the diagrams of gRes→Dt
→l and hRes→Dt

→l are shown for an intended RET
transition Dt→ Res, respectively. The detector takes the first 0.8 km starting from the left
for a Res area and then detects a change Res → Dt at that point (e.g., with a threshold
δ = 1.0). If threshold δ = 3.0 is used instead, then the RET transition will be detected
at 1.0 km. The corresponding detection lags for these two thresholds are 0.8 and 1.0 km,
respectively. If we use larger thresholds, say, δ = 4.0, or δ = 5.0, then for the former, an
extra detection lag of 0.9 km will be introduced, while the latter will completely miss the
Dt segment of the route.
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The intended RET change of transition Dt→ Res remains undetected by this detector
no matter what δ > 0 is used.

3.2.2. Example No. 4: A Dt→ Res Change Detector Applied to a Res→ Dt Transition

In Figure 4, the diagram of function gDt→Res
l← is shown for the intended RET transition

Res → Dt. This transition is present when driving from the right along the considered
TS sequence. Note that for the given TS sequence and for the given process parameters,
functions gDt→Res

l← and hDt→Res
l← happen to be identical. Using threshold δ = 3.0, the detector

signals a change Dt→ Res at about the path-length of 1 km.
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4. Discussion

According to the approach derived in Section 2.2, the RET changes can be detected
with CUSUM change detectors, which rely on the on-the-fly minimization effected by
PHCDs.

In order to detect all kinds of the RET transitions between the three RETs considered
herein, the simultaneous use of six differently tuned PHCDs is necessary. In Section 3.2, we
have demonstrated what happens to the functions g...→...

...l... and h...→...
...l... when the actual RET

change is not what the detector is tuned to detect. In fact, in the examples given there, we
have applied change detectors that were tuned to the inverse transitions.

If one wanted to use the aforementioned PHCDs for the purpose of detecting not
only the changes between different RETs, but also the actual RETs themselves, further-
more, wished to overcome the haphazard behavior of the “off-the-tune” PHCDs, there are
promising possibilities; for instance, the respective functions h...→...

l can be generated and
considered within a sliding window, furthermore, several overlapping sliding windows
can be used at the same time. In addition, these could be multi-scale windows.

An artificial neural network (ANN) proposed for TS-based RET detection was pre-
sented in [26]. The ANN-based method made use of sliding multi-scale windows, and for
these windows, TS histograms were calculated. The network proposed there could well
be extended to input and make good use of the “summaries” of functions h...→...

l , rather
than the TS histograms. These summaries could be of syntactic nature. A tool capable of
exploring time series data for pattern and query search tasks, as well as for generating
syntactic descriptions of the time series was proposed and demonstrated in [45]. The
syntactic descriptions of the functions h...→...

l should preferably be computed for sliding
multi-scale windows.

The TS-based RET change, the inferred actual RET within, and the complete inferred
RET structure—i.e., a map layer, or sublayer—of an urban area could be utilized in various
manners in automotive applications. First, the TS-based RET change, or the TS-based actual
RET could initiate warnings to novice drivers, e.g., “You are now driving in a downtown
area.” What actually is meant by this warning is as follows: “The area might be uncrowded
now, but in half an hour, or so it could turn very busy and could be loaded with intense car
traffic. Therefore, find a parking place now, if want to stay in this area.”

It also hints at reducing speed to, say, 40 km/h. In a Res area, the respective warning
could, for instance, instruct the novice driver to watch out for groups of children playing
on the streets.

In relation to the control of smart cars, the preferred speed could be set to some lower
than 50 km/h speed in the Dt area, especially during and close to the usual peak hours.
The maximum acceleration and deceleration values could be set to safer values.

In relation to the ADAS/AD computations carried out on-board smart cars, particu-
larly to the computations related to TS detection and recognition, a specific geometrical
size range for TSs can be used. In narrow streets of historical districts, often smaller TSs
are installed by the road authorities, and that size should be allowed in the TS verification
phase of the computing.

The detection of traffic lanes and the estimation of the distances to the TSs from the
ego-car are examples for computations that implicitly make use of some spatial models
of the road and its environment. In Res areas—at least in our country—multi-lane roads
are infrequent, therefore simpler road structures/models should be matched against the
camera images of the road scenery.

Concerning the road administration and management, the TS-based RET map layer
compiled from data gathered through car-based data collection trips could be used to
improve the match between seasonal, weekly, and daily traffic patterns and the inferred
RETs, thereby creating a more perceivable and more self-explaining urban environment
that is hopefully also safer.
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5. Conclusions

The road environment appears around and sweeps past an ego-car, while it is being
driven. The character of the urban road environments can be categorized into urban RETs.
Abrupt changes in the character of the road environment, i.e., transitions between areas
of different RETs, pose traffic safety risk, especially, for drivers lacking prolonged driving
experience and also for drivers of old age.

The urban RET transitions per se manifest themselves in changes in traffic density
and in the composition of the traffic. These are transient dynamic features describing an
urban area, i.e., a subnetwork of an urban road network.

Nonetheless, urban RET transitions manifest themselves also in changes that concern
static ROs, e.g., CRs (permanent static) and conventional TSs (transient static). So, e.g.,
the density and the “mixture” of TSs are expected to change between areas of different
RETs. As a consequence, the RET change could also be detected via monitoring static RO
occurrences along the route.

Herein, TS occurrences were considered only. These are noted in TS data logs. These
logs can be interpreted as realizations of a continuous-variable IMPP, and the RET change
can be detected—relying on this assumption—from them.

CD methods, e.g., the CUSUM method, are known and widely used for “simpler”
inhomogeneous Poisson processes. The mentioned method was adopted and modified for
detecting change between RETs based on a TS log. The behavior of the change detector was
tested on a synthetic TS sequence. Nonetheless, the sequence was used in four different
ways in Examples Nos. 1–4, and some observations and conclusions were drawn from
these.

The presented simulation results indicate that a TS-based RET CD is feasible, and
can be adopted for driver assistance, though it is not suitable for initiating an immediate
intervention in critical situations.

The continuous-time approach presented herein serves as a clarification of the discrete-
time model and method proposed in [25], and it was not meant and it was not expected
to improve for the processing and detection characteristics achieved therein. This is due
to the underlying similarity between the two stochastic models, i.e., between the marked
binomial and the marked Poisson models. For this reason, the precision and the delay
of the RET change detection are expected to be in the same range, respectively, for both
approaches for any realistic parameter-choices in the given context.

Further research and development have been suggested in Section 4 and have been
motivated with regard to the integration of the RET change detector into an ANN-based
detector solution proposed earlier.

Author Contributions: Conceptualization, Z.F. and L.G.; data curation, Z.F.; formal analysis, L.G.;
funding acquisition, P.G.; investigation, Z.F.; methodology, Z.F. and L.G.; project administration, P.G.;
resources, P.G.; software, Z.F.; supervision, P.G.; validation, Z.F., L.G. and P.G.; visualization, Z.F.;
writing—original draft, Z.F. and L.G.; writing—review and editing, P.G. All authors have read and
agreed to the published version of the manuscript.

Funding: The research was supported by the Ministry of Innovation and Technology NRDI Office
within the framework of the Autonomous Systems National Laboratory Program.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data used in the article are presented herein.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2021, 11, 3666 16 of 17

References
1. Theeuwes, J. Self-explaining roads: Subjective categorization of road environments. In Vision in Vehicles VI; Gale, A., Brown, I.D.,

Taylor, S.P., Haslegrave, C.M., Eds.; Elsevier: Amsterdam, The Netherlands, 1998; pp. 279–287.
2. Charlton, S.G.; Mackie, H.W.; Baas, P.H.; Hay, K.; Menezes, M.; Dixon, C. Using endemic road features to create self-explaining

roads and reduce vehicle speeds. Accid. Anal. Prev. 2010, 42, 1989–1998. [CrossRef]
3. Qin, Y.; Chen, Y.; Lin, K. Quantifying the effects of visual road information on drivers’ speed choices to promote self-explaining

plaining roads. Int. J. Environ. Res. Public Health 2020, 17, 2437. [CrossRef] [PubMed]
4. Saha, D.; Dumbaugh, E.; Merlin, L.A. A conceptual framework to understand the role of built environment on traffic safety. J. Saf.

Res. 2020, 75, 41–50. [CrossRef] [PubMed]
5. Ding, H.; Zhao, X.; Rong, J.; Ma, J. Experimental research on the effectiveness of speed reduction markings based on driving

simulation: A case study. Accid. Anal. Prev. 2013, 60, 211–218. [CrossRef]
6. Banach, M.; Długosz, R. Techniques to facilitate the use of V2I communication system as support for traffic sign recognition algo-

rithms. In Proceedings of the 24th International Conference on Methods and Models in Automation and Robotics, Miedzyzdroje,
Poland, 26–29 August 2019; pp. 308–313.

7. Ahangar, M.N.; Ahmed, Q.Z.; Khan, F.A.; Hafeez, M. A survey of autonomous vehicles: Enabling communication technologies
and challenges. Sensors 2021, 21, 706. [CrossRef] [PubMed]

8. Popescu, O.; Sha-Mohammad, S.; Abdel-Wahab, H.; Popescu, D.C.; El-Tawab, S. Automatic incident detection in intelligent
transportation systems using aggregation of traffic parameters collected through V2I communications. IEEE Intell. Transp. Syst.
Mag. 2017, 9, 64–75. [CrossRef]

9. Sattar, F.; Karray, F.; Kamel, M.; Nassar, L.; Golestan, K. Recent advances on context-awareness and data/information fusion in
ITS. Int. J. Intell. Transp. Syst. Res. 2016, 14, 1–19. [CrossRef]

10. Global Navigation Satellite System (GNSS) Devices per Capita Worldwide 2019–2029. Available online: https://www.statista.
com/statistics/1174568/gnss-devices-per-capita-worldwide/#statisticContainer (accessed on 21 March 2021).

11. Reid, T.G.; Chan, B.; Goel, A.; Gunning, K.; Manning, B.; Martin, J.; Tarantino, P. Satellite navigation for the age of autonomy. In
Proceedings of the 2020 IEEE/ION Position, Location and Navigation Symposium, Portland, OR, USA, 20–23 April 2020; pp.
342–352.

12. Schmidt, D.; Radke, K.; Camtepe, S.; Foo, E.; Ren, M. A survey and analysis of the GNSS spoofing threat and countermeasures.
ACM Comput. Surv. 2016, 48, 64. [CrossRef]

13. Welzel, A.; Reisdorf, P.; Wanielik, G. Improving urban vehicle localization with traffic sign recognition. In Proceedings of the 18th
IEEE International Conference on Intelligent Transportation Systems, Gran Canaria, Spain, 15–18 September 2015; pp. 2728–2732.

14. The Traffic Safety Problem in Urban Areas. Available online: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.9
092&rep=rep1&type=pdf (accessed on 9 December 2020).

15. Wechsler, K.; Drescher, U.; Janouch, C.; Haeger, M.; Voelcker-Rehage, C.; Bock, O. Multitasking during simulated car driving: A
comparison of young and older persons. Front. Psychol. 2018, 9, 910–921. [CrossRef]

16. Faure, V.; Lobjois, R.; Benguigui, N. The effects of driving environment complexity and dual tasking on drivers’ mental workload
and eye blink behavior. Transp. Res. Part F Traffic Psychol. Behav. 2016, 40, 78–90. [CrossRef]

17. Payyanadan, R.P.; Lee, J.D.; Grepo, L.C. Challenges for older drivers in urban, suburban, and rural settings. Geriatrics 2018, 3, 14.
[CrossRef]

18. Tawari, A.; Sivaraman, S.; Trivedi, M.M.; Shannon, T.; Tippelhofer, M. Looking-in and looking-out vision for urban intelligent
assistance: Estimation of driver attentive state and dynamic surround for safe merging and braking. In Proceedings of the IEEE
Intelligent Vehicles Symposium, Dearborn, MI, USA, 8–11 June 2014; pp. 115–120.

19. Stapel, J.; El Hassnaoui, M.; Happee, R. Measuring driver perception: Combining eye-tracking and automated road scene
perception. Hum. Factors. 2020. [CrossRef]

20. Tang, R.; Jiang, Z. Driver’s perception model in driving assist. In Proceedings of the IEEE 20th International Conference on
Software Quality, Reliability and Security Companion, Macau, China, 11–14 December 2020; pp. 237–240.

21. Rudin-Brown, C.M.; Edquist, J.; Lenne, M.G. Effects of driving experience and sensation-seeking on drivers’ adaptation to road
environment complexity. Saf. Sci. 2014, 62, 121–129. [CrossRef]

22. Lin, H.; Gao, J.; Zhou, Y.; Lu, G.; Ye, M.; Zhang, C.; Liu, L.; Yang, R. Semantic decomposition and reconstruction of residential
scenes from LiDAR data. ACM Trans. Graph. 2013, 32, 1–10. [CrossRef]

23. Wang, Y.; Cheng, L.; Chen, Y.; Wu, Y.; Li, M. Building point detection from vehicle-borne LiDAR data based on voxel group and
horizontal hollow analysis. Remote Sens. 2016, 8, 419. [CrossRef]

24. Jeong, J.; Cho, Y.; Shin, Y.-S.; Roh, H.; Kim, A. Complex urban dataset with multi-level sensors from highly diverse urban
environments. Int. J. Rob. Res. 2019, 38, 642–657. [CrossRef]

25. Fazekas, Z.; Balázs, G.; Gerencsér, L.; Gáspár, P. Inferring the actual urban road environment from traffic sign data using a
minimum description length approach. Transp. Res. Proc. 2017, 27, 516–523. [CrossRef]

26. Fazekas, Z.; Balázs, G.; Gáspár, P. ANN-based classification of urban road environments from traffic sign and crossroad data.
Acta Polytech. Hung. 2018, 15, 83–100.

27. SAFESPOT Final Report 2010. Available online: http://www.safespot-eu.org/documents/D8.1.1_Final_Report_-_Public_v1.0
.pdf (accessed on 22 March 2021).

http://doi.org/10.1016/j.aap.2010.06.006
http://doi.org/10.3390/ijerph17072437
http://www.ncbi.nlm.nih.gov/pubmed/32260129
http://doi.org/10.1016/j.jsr.2020.07.004
http://www.ncbi.nlm.nih.gov/pubmed/33334491
http://doi.org/10.1016/j.aap.2013.08.007
http://doi.org/10.3390/s21030706
http://www.ncbi.nlm.nih.gov/pubmed/33494191
http://doi.org/10.1109/MITS.2017.2666578
http://doi.org/10.1007/s13177-014-0097-9
https://www.statista.com/statistics/1174568/gnss-devices-per-capita-worldwide/#statisticContainer
https://www.statista.com/statistics/1174568/gnss-devices-per-capita-worldwide/#statisticContainer
http://doi.org/10.1145/2897166
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.9092&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.572.9092&rep=rep1&type=pdf
http://doi.org/10.3389/fpsyg.2018.00910
http://doi.org/10.1016/j.trf.2016.04.007
http://doi.org/10.3390/geriatrics3020014
http://doi.org/10.1177/0018720820959958
http://doi.org/10.1016/j.ssci.2013.08.012
http://doi.org/10.1145/2461912.2461969
http://doi.org/10.3390/rs8050419
http://doi.org/10.1177/0278364919843996
http://doi.org/10.1016/j.trpro.2017.12.055
http://www.safespot-eu.org/documents/D8.1.1_Final_Report_-_Public_v1.0.pdf
http://www.safespot-eu.org/documents/D8.1.1_Final_Report_-_Public_v1.0.pdf


Appl. Sci. 2021, 11, 3666 17 of 17

28. Map Features. Available online: https://wiki.openstreetmap.org/wiki/Map_features (accessed on 8 April 2021).
29. Liu, X.; Gong, L.; Gong, Y.; Liu, Y. Revealing travel patterns and city structure with taxi trip data. J. Transp. Geogr. 2015, 43, 78–90.

[CrossRef]
30. Kastner, R.; Michalke, T.; Adamy, J.; Fritsch, J.; Goerick, C. Task-based environment interpretation and system architecture for

next generation ADAS. IEEE Trans. Intell. Transp. Syst. 2011, 3, 20–33. [CrossRef]
31. Sindhu, O.S.S.V.; Victer, P.P. Computer vision model for traffic sign recognition and detection: A survey. In Proceedings of

the International Conference on Communications and Cyber Physical Engineering, Hyderabad, India, 24–25 January 2018;
pp. 679–690.

32. Veronese, L.P.; Badue, C.; Cheein, F.A.; Guivant, J.; De Souza, A.F. A single sensor system for mapping in GNSS-denied
environments. Cogn. Syst. Res. 2019, 56, 246–261. [CrossRef]

33. Lin, C.C.; Wang, M.S. Road sign recognition with fuzzy adaptive pre-processing models. Sensors 2012, 12, 6415–6433. [CrossRef]
34. Kim, T.; Park, T.-H. Extended Kalman Filter (EKF) design for vehicle position tracking using reliability function of Radar and

Lidar. Sensors 2020, 20, 4126. [CrossRef]
35. Akhlaq, M.; Sheltami, T.R.; Helgeson, B.; Shakshuki, E.M. Designing an integrated driver assistance system using image sensors.

J. Intell. Manuf. 2012, 23, 2109–2132. [CrossRef]
36. Belbachir, A. An embedded testbed architecture to evaluate autonomous car driving. Intell. Serv. Robot. 2017, 10, 109–119.

[CrossRef]
37. Manual for Streets, Department for Transport and Ministry of Housing, Communities & Local Government, UK, 29 March 2007.

Available online: https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/34
1513/pdfmanforstreets.pdf (accessed on 22 March 2021).

38. Roads 2018. Available online: https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/ersosynthesis2018-roads.
pdf (accessed on 22 March 2021).

39. Kingman, J.F.C. Poisson processes. In Encyclopedia of Biostatistics; Armitage, P., Colton, T., Eds.; Wiley and Sons: Hoboken, NJ,
USA, 2005.

40. Poor, H.V.; Hadjiliadis, O. Quickest Detection; Cambridge University Press: Cambridge, UK, 2008.
41. Tartakovsky, A.; Nikiforov, I.; Basseville, M. Sequential Analysis: Hypothesis Testing and Change Detection; Chapman and Hall/CRC:

New York, NY, USA, 2014.
42. Page, E.S. Continuous inspection schemes. Biometrika 1954, 41, 100–115. [CrossRef]
43. Hinkley, D.V. Inference about the change-point in a sequence of random variables. Biometrika 1970, 57, 1–17. [CrossRef]
44. Gerencsér, L.; Prosdocimi, C. Input-output properties of the Page-Hinkley detector. Syst. Control Lett. 2011, 60, 486–491. [CrossRef]
45. Rodrigues, J.; Folgado, D.; Belo, D.; Gamboa, H. SSTS: A syntactic tool for pattern search on time series. Inf. Process. Manag. 2019,

56, 61–76. [CrossRef]

https://wiki.openstreetmap.org/wiki/Map_features
http://doi.org/10.1016/j.jtrangeo.2015.01.016
http://doi.org/10.1109/MITS.2011.942201
http://doi.org/10.1016/j.cogsys.2019.03.018
http://doi.org/10.3390/s120506415
http://doi.org/10.3390/s20154126
http://doi.org/10.1007/s10845-011-0618-1
http://doi.org/10.1007/s11370-016-0213-6
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/341513/pdfmanforstreets.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/341513/pdfmanforstreets.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/ersosynthesis2018-roads.pdf
https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/ersosynthesis2018-roads.pdf
http://doi.org/10.1093/biomet/41.1-2.100
http://doi.org/10.1093/biomet/57.1.1
http://doi.org/10.1016/j.sysconle.2011.04.004
http://doi.org/10.1016/j.ipm.2018.09.001

	Introduction 
	Materials and Methods 
	Car-Based Collection of Static Road Object Data from Various Urban Road Environments 
	Mathematical Models and Methods 
	Modelling TS Occurrences within a Given Urban Road Environment 
	Modelling TS Occurrences in a Neighboring Urban Road Environment 
	Modelling TS Occurrences over Two Neighboring Urban Road Environments 
	Detecting Change between Urban Road Environments and Locating the Change Point 
	Basic Properties of Functions gT  and hT  


	Results 
	Examples 
	Example No. 1: A Dt  Res Change Detector Applied to a Homologous RET Transition 
	Example No. 2: A Res  Dt Change Detector Applied to a Homologous RET Transition 

	Further Examples 
	Example No. 3: A Res  Dt Change Detector Applied to a Dt  Res Transition 
	Example No. 4: A Dt  Res Change Detector Applied to a Res  Dt Transition 


	Discussion 
	Conclusions 
	References

