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Abstract: (1) Methods for checking the condition of monumental masonry structures can still be
considered understudied. Among the different approaches available in the literature, the graphical
ones have a special role, due to their simplicity and effectiveness. (2) In this work, a 2D method
(Thrust Line Analysis (TLA)), the Modified Thrust Line Method (MTLM), and the 3D Membrane
Equilibrium Analysis (MEA) method are compared. All methods have the same starting concept: no
tensile strength, no sliding between the stone blocks, infinite compressive strength. (3) The methods
are compared in terms of stress distribution (for the same—or similar—thrust line), and in terms
of the Geometrical Safety Factor ensured. (4) The work shows that these theories, if properly
conveyed in a scientific methodology (as many authors are doing currently and have done in the past)
demonstrate the effectiveness and the advantages of graphical methods for simple structures.

Keywords: masonry domes; thrust line analysis; modified thrust line method; membrane equilib-
rium analysis; rigid no-tension material; hoop forces

1. Introduction

Proper modelling of the mechanical behavior of masonry domes is a crucial task for
the correct evaluation of their structural safety, and consequently, to assure their preservation.
Masonry structures do not behave as elastic continua, and, due to the intrinsic anisotropic
and non-linear response, most of the difficulties in masonry modelling come from its mechani-
cal properties, its heterogeneity (as it is made of blocks usually bonded with mortar) and, of
course, from the geometric complexity of the artefact.

Although non-linear analysis remains an essential field of structural investigation
in the current scientific context, many studies are looking at on limit analysis as a reliable
tool to evaluate the safety factors of masonry constructions.

The current article provides a further deepening of some methods used to examine
the state of unreinforced masonry structures, based on the equilibrium approach to limit
analysis under Heyman’s assumptions of rigid no-tension materials [1].

The theoretical investigation leans on the case study of San Francesco di Paola in Naples,
a large dome in masonry conceived of as an assemblage of rigid blocks and subject to the self-
weight action. In previous works, this dome has been investigated, with a particular focus
on graphical analysis of the dome [2,3], combined with kinematic analysis [4], to define a range
of possible displacements, assessing the relative stability of the structure. The dome safety
assessment has been evaluated under horizontal actions in some of these works, by performing
a thrust membrane analysis through a tilting test [5–7].
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These works represent the background and the starting point of the present study. As
is well known, the fundamental aspect of the graphic statics in the modelling of masonry
domes is the analysis of a three-dimensional structural behavior in a bi-dimensional space.
Despite being a powerful tool to explain and examine the stability of two-dimensional
structures, Thrust Line Analysis (TLA) does not consider the hoop forces, thus producing
overly conservative results when applied to three-dimensional cases [8]. On this basis,
the present paper aims to explore the role of variable internal meridional and hoop forces
by introducing the Modified Thrust Line Method (MTLM) [9] to investigate the equilib-
rium of the dome. The results obtained are compared with the Membrane Equilibrium
Analysis [10], an analytical and general method that can be applied to three-dimensional
cases, disregarding the axis-symmetry of the geometry and of the loads. The methods
are not further developed with respect to the current literature. The main contribution of
this research is to investigate the differences and the points of agreement of the different
methods, highlighting the strengths and weaknesses of each of them, also with reference to
the presented case study.

Out of the authors’ knowledge, there are few works comparing different method-
ologies applied to masonry structures. TLA and MEA have been used in [5] to assess
the seismic vulnerability of San Francesco di Paola; in [11], some differences between TLA
and MEA have been highlighted, and both methods are discussed together with the Finite
Element Method, following the idea proposed in [12].

2. Mechanical Behavior of Masonry Domes

Domes may essentially be defined as vaults with an intrados surface generated by
the revolution around its vertical axis. Due to their shape, domes have several advantages:
they are generally compressed in all directions and, therefore, suitable to be built in masonry
or low-reinforced concrete. They are also subject to very few torsional or bending effects,
even at the edges, and present high shape stability [13]. Generally, these structures work
in pure biaxial compression, along the meridians and parallels. Like an arch, a dome
transfers gravity loads to the base by developing internal meridional forces, which behave
as arch actions, always compressive and growing from the crown to the imposts for any
uniform and axis-symmetrical load. Unlike an arch, a dome can also develop internal forces
along the circumferential direction, known as hoop forces. Meridional and hoop forces,
acting perpendicular to each other, allow the dome to be stable, though incomplete, with
an oculus. On the contrary, an arch is unstable without its keystone; see Figure 1a,b [14].

(a) (b)

Figure 1. (a) Internal meridional forces and hoop forces in a dome [15]; (b) Comparison between arches
and domes. In the arch, you only consider the stresses on the two beds of the arch stones; in the dome,
the stones are subject to stresses on all four faces. If the keystone of an arch is removed, the arch
must collapse; if the stone in a dome, corresponding to the keystone, is removed, the dome need not
fall. The reason is that the horizontal thrust, necessary for the equilibrium, can only be supplied by
the keystone in the case of the arch; in the dome, it can be supplied by each ring of stones [16].

The application of the Theory of Membranes to hemispherical geometries returns
a biaxial compressive state of stress from the apex of the dome until a latitude of 51.82◦ [17].
In the remainder, the hoop stress exhibits a tensile behaviour that appears to be in contrast
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with the theory of Rigid-No-Tension materials. If the whole geometry of the dome is able
to contain a different surface for which the corresponding equilibrated stress is of pure
compression, the dome will be able to work in compression without the development of
cracks. On the contrary, in correspondence of the tensile band, some cracks will develop,
as shown in Figure 2, giving rise to a monoaxial compressive stress state along the merid-
ional direction. This stress configuration the basis of the use of the Thrust Line Analysis
method for the study of masonry domes.

Figure 2. Crack pattern on hemispherical domes [1].

In particular, the meridian stresses vary depending on whether the dome is a single
surface, if it has an opening in the center of the top, or it is surmounted by a lantern,
as shown in Figure 3.

(a) (b) (c)

Figure 3. Stresses on the meridians for the hemispherical dome. (a) In the case of a single surface
of revolution, the stresses on the meridian planes are tensions and compressions with zero stress
at 51◦49′ from the vertical. (b) In the dome with an oculus, the stresses on the meridian planes are
similarly tensions and compressions with a point of zero stress with a greater angle than 51◦49′,
which varies with the opening amount. (c) In the dome surmounted by a lantern, the extent of
the tensile stress is increased, and the point of zero stress rises [16].

2.1. Evolution of Classical Methods for Assessing the Stability of Vaults and Dome

The most critical studies on domes have begun from the 18th Century onward, even
though the construction of masonry domes dates back to the 17th century. Hooke’s
centuries-old law of inversion for which “as hangs a flexible cable, so inverted, stand the touching
pieces of an arch” remains a milestone of structural theory. Hooke had an intuition that led
him to state that an arch in compression has the same, reversed shape of a hanging chain
under its own weight [18].

It is possible to analyze complicated vaults and domes with reference to the the-
ory of masonry arches. Though complex, a dome can always be considered as a set of
arches and obtained by slicing the dome with meridional planes, forming several arches
in the meridional direction [19]. The thrust transmitted by the two ideal half-arches con-
necting at the keystone must be counteracted at the base to make the arch-system stable.
The slicing technique, which analyses two-dimensional sections to assess three-dimensional
structures, dates back to Poleni (1748). In his structural analysis of the cracked basilica
dome of St. Peter, in Rome [20], Poleni considered the cupola as a series of lunes with
internal forces in only meridional directions, namely as wedge-shaped arches not requiring
hoop forces to be stable. Inspired by Hooke’s law, the method proposed by Poleni can be
considered a first statement of the static theorem of limit analysis of masonry structures [20].
Many architects have followed Poleni’s principle, among which, Gaudí, at the beginning
of the 20th century, applied the same principle of the catenary in 3D hanging models to
design the Church of Colonia Güell (near Barcelona) and additional complex structures.
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A different approach to the analyses of domes was introduced by Schwedler in 1866 [17],
who developed the basic equilibrium concept of the membrane theory, which was subse-
quently refined by Rankine (1904) in [21].

In 1878, Eddy published a graphical method to analyze masonry domes by determin-
ing the hoop forces, in terms of both tension and compression, for the membrane stress
condition of the vault [9]. While recognizing that hoop forces can mutate within the surface,
Eddy considered the dome to be a radial series of arches and, to maintain compression
everywhere in the section, he forced the solutions to stay within the middle-third of the sec-
tion. In the 1920s, Wolfe published a graphical procedure for masonry domes [22] that
can be seen as a graphics-based version of the membrane theory introduced by Schwedler.
Like the membrane theory, this method fixed internal hoop forces to the values needed to
equilibrate the meridional forces. Eddy’s approach led to the subsequent development of
the Modified Thrust Line Method (MTLM) [23].

During the 19th century, the thrust line analysis and graphic statics marked a further
development in the theory of structures by providing a practical method based on the cate-
nary principle. Out of all the modern theories to support classical approaches developed
in the first half of the 20th Century, Heyman’s Limit Analysis [1] appears to be the most
appropriate approach to understand and analyze masonry structures. Heyman’s lower-
bound theorem (safe theorem) gives the accepted application of plastic theory for the use of
lines of thrust for stability assessment. Thrust lines were implemented to assess the stability
of arches and vaults in a variety of ways. For details on thrust line construction, the reader
can refer to Ochsendorf [24] and Block [25], and refer to Huerta [26] for a comprehensive
historical review.

3. Problem Statement
3.1. A Few Initial Remarks

In this work, we consider three different methodologies (the Thrust Line Analysis, the Mod-
ified Line Thrust Method, and the Membrane Equilibrium Analysis) in the framework of limit
analysis and apply them to the case study of the dome of San Francesco di Paola, in Naples.

The Thrust Line Analysis (TLA) is based on the slicing technique to reduce the initial
three-dimensional problem of the vault in a two-dimensional analysis. Looking at a dome,
it consists of dividing it into lunes defined by vertical cutting planes passing through
the revolution-axis. In this approach, compressive hoop forces are totally neglected. This
initial assumption is not arbitrary, but based on a peculiar physical behavior that can
often be seen in masonry domes: the supports spread outwardly a little, and the dome
shows typical meridional cracks that are often necessary to accommodate physiological
settlements of the supports. In this light, the slicing technique can correctly reproduce this
physical behavior by not running into over-conservative solutions. This phenomenon is
due to the low tensile resistance of the material. As a result, part of the dome is cut into
wedges, and its lower part is subjected to uniaxial compressive stresses in the direction of
the meridional cracks.

This aspect does not compromise the structural behavior of domes. The difference
between use of the slicing technique and biaxial methods as the membrane theory lies
mainly in the upper part of the dome, subjected to a biaxial stress state. Nonetheless,
the value of the compressive hoop force is low and does not lead to high differences in terms
of results. Although TLA allows for the direct evaluation of such effects, representing
a widely accepted assessment strategy, in some cases, it could lead to over-conservative
solutions [8].

However, Membrane Equilibrium Analysis (MEA) is a more general method, which
naturally considers the presence of biaxial stress regimes; the main drawback is that it re-
quires a more sophisticated mathematical background, losing the characteristic simplicity
of other graphical methods. The advantage is that it can be applied to a large variety
of vaults, disregarding the symmetries of geometries and loads, such as cloister vaults,
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cross vaults, and others. Some comparative studies between TLA and MEA were recently
developed in [11].

The Modified Thrust Line Method (MTLM) conjugates the simplicity of TLA with
the possibility of accounting for the presence of hoop forces. The advantage of MTLM is
its simplicity, which allows the method to be included in the set of graphical techniques.
Hence, the analyses executed through this method can be compared with the TLA analyses
to show the influence of hoop forces and those obtained with the membrane solutions.

The aim of this work is to highlight the analogies and differences between the three
methods. Based on the case study of San Francesco di Paola, we highlight the differences,
strengths and weaknesses of each method, outlining how the parameters used in each
method may affect the results. The idea is to provide some hints about simple methods
for the study of masonry domes. A simple but complete knowledge of the behavior of
masonry domes, possibly with simple instruments, can help to assess the safety of existing
masonry buildings, avoiding inappropriate interventions on historic buildings.

3.2. Previous Applications of the Methods

Of the three methods under discussion, the Thrust Line Analysis is the more an-
cient, and was introduced in the form of a graphical method many centuries ago, for
the study of the stability of bi-dimensional structures, such as arches, portals, and but-
tresses. Its extension to axis-symmetric geometries, under the conservative assumptions of
a monoaxial–radial–stress regime, was adopted by Poleni for the assessment of the dome
of St. Peter Basilica in the Vatican City, in [19]; in [27,28] the method is deeply reviewed,
while a historical excursus on its application has been reported in [29].

While a more sophisticated method for three-dimensional geometries has been de-
veloped, TLA has remained a first, straightforward starting point for the assessment of
domes, and as such, it has been adopted to assess the domes of San Francesco di Paola [2,7]
under statics and dynamic loads. It has recently been applied in [11] to study of the double-
shell dome of Santa Maria alla Sanitá and the single-shell dome of San Gregorio Armeno,
in Naples.

TLA, however, is still frequently adopted to assess the stability of two-dimensional
structures, such as arches, and buttresses. In this field, we recall the works on the Gothic
cathedral of Girona [30,31], or on the castle of Bellvar, in Palma de Mallorca [32].

On the contrary, the Modified Thrulst Line Method and Membrane Equilibrium
Analysis have been developed only recently. In particular, MTLM was conceptualized
to refine the study of masonry domes [23]. Known applications of this method on real
structures include the work by Cipriani [33] on some masonry domes in the urban context
of Cairo, built in the first centuries of the second millennium, and, more recently, the study
of the dome of the church of Santa Maria in Ciel d’Oro in Montefiascone (Italy) [14].

Finally, Membrane Equilibrium Analysis has been proposed for the analysis of ma-
sonry vaults with a general shape, not restricted to axis-symmetric cases. Among others,
the method has been applied to the cloister vault surmounting a room in Palazzo Carac-
ciolo di Avellino, in Naples, under different load conditions [34], to the cross vaults of
the Cathedral of Caserta Vecchia (Italy) [35], and the Gustavino helical stairs [36].

3.3. Materials and Methods

This section describes the procedures adopted to evaluate the stability of the dome,
together with the parameters assumed in the study.

According to Heyman’s assumptions—for which masonry (i) has no resistance in ten-
sion; (ii) has an infinite compressive strength; (iii) cannot undergo sliding mechanisms—
the dome is modelled as composed of rigid-unilateral material that is resistant to com-
pressive loads but not to tensile loads. The masonry material is then conceived as a set of
non-deformable blocks supporting their own weight, in dry and direct contact; the stresses
are so low, and friction is so high between voussoirs, that stones are effectively interlocked,
thus preventing any sliding mechanism. Furthermore, as stated in the Safe Theorem, lines
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of thrust may efficiently represent the stability of domes, which depends on the geometrical
distribution of loads, rather than the mechanical properties of masonry material, which
may not be rigorously established.

In the following, we recall the fundamentals of the three methods adopted in this
paper for the assessment of the case study, also discussing the potentiality of each of this
method for the evaluation of the Geometrical Safety Factor (GSF), the traditional parameter
adopted to quantify the level of safety of a masonry structure. GSF is defined as the ratio
between the thickness of a vault and the maximum thickness reduction for which it is
possible to draw at least one thrust line (or surface), under the same loads.

Given the maximum percentage reduction d, the geometrical safety factor is computed as

GSF =
1

1− d
(1)

3.3.1. Thrust Line Analysis

The Thrust Line Analysis (TLA) was first developed for two-dimensional structures,
like arches and buttresses, and successively applied to axis-symmetric structures. Its
suitability, however, is extended to all cases for which a mono-axial stress regime can be
assumed for the equilibrium of a structure.

The method consists of dividing a structure into a finite number of elements (vous-
soirs), each one with its weight, and drawing the loads path between blocks, mainly
recurring to graphic methods.

According to the Safe Theorem of Limit Analysis, the equilibrium and stability of
the structure are assessed if at least one line of transmission of loads passes within the in-
trados and the extrados of the structure.

It is well known that for stable structures, there is an infinite number of lines of thrust
that can be computed. However, they depend on only two parameters: the initial point
of the thrust line and the value of the horizontal thrust. It is then very easy, through
an automatic procedure, to draw all the possible thrust lines of a structure.

3.3.2. Modified Thrust Line Method

The MTLM is a graphic static tool developed by Lau in 2006 [23]. Similarly to TLA,
it allows for assessment of the state of axisymmetric masonry structures through the use of
the thrust line. Indeed, according to the Safe Theorem, a balanced state is guaranteed if at
least one thrust line lies entirely within the thickness of the analyzed structure.

Differently from TLA, the lines of thrust obtained through MTLM also consider
the contribution of the hoop forces. This implies that, in addition to the Heyman premises,
this method requires further assumptions for the assessment of the equilibrium of the
dome [37]—namely, the load has to be axisymmetric, as well as the geometry of the struc-
ture. Under these additional constraints, the state of a dome is determined by studying
the equilibrium of only one lune, representative of the whole dome. As shown in Figure 4,
the lunes are obtained by dividing the structure into equal parts with vertical radial planes.

Similarly to TLA, the lune is divided into blocks referred to with a index i, running
from the impost to the top of the vault, with mass mi and centroid Ci. For each block,
one point Ai is determined as the intersection of the vertical line passing through Ci
and the resultant of all the loads of the blocks from 1 to the current block i. Therefore
the thrust line is obtained as the set of all points Ai. The determination of each point Ai
follows the same logic as that adopted for TLA; it is affected by all forces and requires a
solution to the equations of equilibrium of each block.

Pi − Ri + wi + Hri −Hl i = 0 (2)

For each block, i. Considering a generic i-th block, Equation (2) expresses the equilibrium
at the point Ai, and involves the thrust Pi of the upper blocks, the reaction −Ri from
the lower blocks, the weight of the block itself wi and the two forces Hri and Hli which
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represent the action of the hoop forces acting on the block. Due to static indetermination,
Equation (2) cannot be solved: the thrust, reaction and the hoop forces are all unknown.

Figure 4. (a) Bottom, plan view of hemispherical dome and a lune. Top, elevation view of a lune
divided into blocks. (b) three-dimensional view of a lune and the forces acting on it. The hoop forces
are highlighted in green; in blue, the masses of blocks, and in red, the thrusts.

For each block i, the terms of Equation (2) are −Ri, Hri, −Hli and wi; thanks to
the symmetry of load and structure, the two hoop forces are equal and the unknown
variables are two (the radial thrust and the hoop forces). Furthermore, for all blocks,
the reaction which acts on the upper rigid body is the reverse of thrust applied on the lower
block. Therefore, by estimating the hoop forces and starting from the uppermost block,
the position of all points Ai is identified, and the thrust line is traced.

To solve Equation (2), the hoop forces are estimated by an optimization algorithm [23] or
by graphical manipulation [14]. In the present work, the MTLM has been implemented into
the graphical editor algorithm Grasshopper [38] for Rhinoceros software [39], and the hoop
forces are estimated by graphical manipulation [14]. According to the further assumptions
(load and geometry are axisymmetric) and considering the compressive forces to be positive,
the hoop forces are sought based on the guiding criterion that they act normally to the lateral
block face, and their magnitude decreases from the crown to the base of the dome.

With MTLM, it is possible to compute the geometrical safety factor with the same
general definition given in Equation (1). The difference with respect to TLA is that, with
MTLM, the thrust surface depends not only on two parameters, but also on the value
of the hoop forces at each voussoir. Therefore, it is practically impossible to check all
the possible equilibrium curves, and the search for the GSF of a structure must be done
using well-established optimization tools.

The higher number of degrees of freedom in the MTLM, however, ensures that it is
always possible to find a thrust line closer to the middle surface of the structure, permitting
a higher thickness reduction, and finally, a higher geometrical safety factor.

3.3.3. Membrane Equilibrium Analysis

The Membrane Equilibrium Analysis (MEA) is a complete analytical tool to assess
the stability of a vault and find a possible state of stress, under the restrictions of Rigid
No-Tension (RNT) materials. The driving criterion is again the Safe Theorem of Limit
analysis, particularized to three-dimensional structures.
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Differently from the previously considered methods, MEA is a more general numerical
tool, which does not need any preliminar consideration of the symmetry of the geometry
and of the loads, and is, therefore, also adopted in complicated vaults, such as cloister
vaults or cross vaults.

In MEA, the equilibrium of a vault is assessed through the search for a membrane sur-
face, comprised inbetween the intrados and the extrados of a vault, capable to equilibriate
the assigned load with a purely compressive membrane stress field [34,40,41].

The theoretical framework adopted here has been proposed in previous works [10,40,42],
and consists of solving the equilibrium equation

divT + b = 0 (3)

for membranes, where T is the membrane generalized stress—that is, the stress for unit
thickness of the membrane—and, therefore, is measured as a force per unit length, and b is
the applied load. The membrane behavior allows for the assumption that the stress can be
expressed in a membrane reference system as

T = Tαβaα ⊗ aα (4)

where the assumption of summation over repeated indices is implicit; moreover, aα

is a curvilinear covariant basis vector, tangent to the membrane geometry, and Tαβ is
a contravariant component of the generalized stress. After some algebra, which is out of
the scopes of this work, but is reported in [41,43], we reach the transversal equilibrium
equation of the membrane

F,22 f ,11 +F,11 f ,22−2F,12 f ,12 +p = 0 (5)

where f = f (x1, x2) is the geometrical description of the membrane, x1 and x2 are the Carte-
sian coordinates of a horizontal plane; F is a stress potential, defined such that F,11 = S22,
F,22 = S11, and F,12 = −S12, Sαβ being the components of the Pucher stresses—that is,
the projection of the generalized stress T onto the planform of the membrane—and, as such,
are measured again as a force per unit length, that is, in kN/m. In particular, Sαβ = J Tαβ,
where J is the ratio between an infinitesimal area onto the membrane and its projection
onto the horizontal plane; moreover, a subscript after a comma denotes partial derivative;
finally, p is the distributed vertical load.

Equation (5) is a second-order partial differential equation, where the stress potential
and the shape are both unknown. It can, however, be solved if at least one of the two
functions are assigned. This can be done by assigning a shape (comprised between the ge-
ometrical boundary of the vault), and assuming the stress potential as unknown: in this
case, the compressive state of the resulting stress has to be checked, and in case, a new
membrane shape has to be assigned [41]; in this case, to numerically solve Equation (5),
the ellipticity of the Equation that corresponds to the concavity of the assigned surface
should be assured.

On the contrary, Equation (5) can be solved for the membrane shape, given an assigned
compressive stress state. In this case, the Equation is elliptic by definition, since the assigned
stress state is compressive under the Safe Theorem, and, therefore, the stress potential is
concave. This method allows for the assessment of non-concave surfaces, as proposed recently
by [44].

In this work, we consider only concave shapes for the membrane, and for the ap-
plication part, we choose one of the possible concave shapes obtained through MTLM.
For its numerical solution, we adopt the Lumped Stress Method (LSM) [45], which is
a well-established numerical tool for boundary value problems. It consists of approxi-
mating the membrane surface f in a finite number Nt of linear triangles and Nn nodes,
which correspond to the nodal elevation of the membrane, namely fi, i = 1, . . . , Nn. From
a suitable discretization and solution of Equation (5), according to the LSM, it is possible
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to obtain the corresponding nodal values of the stress potential Fi, that, using the same
triangulation, give rise to a folded three-dimensional solid representing a discretized stress
potential. From the nodal values of the stress potential, it is possible to retrieve the Pucher
stresses, and, finally, the generalized stresses. The last check is to verify that the stress is al-
ways negative semidefinite, according to the Safe Theorem of Limit Analysis requirements.
If so, the problem is solved, and the safety of the structure is checked; otherwise, a new
membrane surface has to be adopted, iterating the procedure until a shape–stress potential
is found that fulfils the requirements of the Safe Theorem of Limit Analysis for masonry.

For membrane analysis, the computation of the geometrical safety factor of a structure
is even more complicated with respect to the other two methods, given the even higher
number of degrees of freedom. That is equal to the number of nodes of the discretization
of the domain. The dimensionality of the problem can, however, be reduced for axis-
symmetric domains, such as in the present case study, but a fast optimization tool, that is
also able to reject those surfaces for which positive stresses arise, is still needed.

The assumed limitation on concave membrane surfaces reduces the space of applica-
bility of MEA, and, therefore, can have a consequence for the GSF, since some non-concave
surfaces, accessed by MTLM, cannot be accessed by the present version of MEA.

4. The Case Study of San Francesco di Paola

In the present section, we apply the methods recalled in the previous sections to
the case study of San Francesco di Paola, in the historical center of Naples (Italy). We first
make a brief excursus ona previous calculation made in the literature for the assessment
of this church, then give some details about the geometrical characteristics of the dome,
and finally apply the different methods under discussion.

4.1. Previous Calculation on the Case Study

The Church of San Francesco di Paola in Naples is a majestic building that surprisingly
has barely been studied, probably because of its architectural features, which resamble
the type established by the Pantheon in Rome, despite it being a neoclassic building erected
in the 19th century. Thus, few documents are available in the literature on its more proper
structural and constructive aspects. However, it arouses great interest due to its substantial
and massive structure: its dome has an impressive 36 m span (the fourth largest dome
in Italy).

The geometry used for the calculation is done with an analysis by laser-scanner
and a photogrammetric survey carried out in collaboration with Tecno IN Geosolutions [2].

Recently [4], the stability assessment of the dome of San Francesco di Paola under
vertical loads has been discussed using both the kinematic theorem and the safe theo-
rem of limit analysis; by combining kinematic and static approaches, it was possible to
comprehend the range of possible movements of the masonry structure and evaluate its
relative safety. The most interesting aspect of this research concerns the idea that traditional
masonry structures can be analyzed as rigid blocks whose collapse can occur, for example,
due to variations in the applied load, long-term failures or accelerations of the ground.
It has also been emphasized that the kinematic of historic masonry dome has an important
role in assessing the stability of such structures. In fact, displacements are common in his-
toric masonry structures due, for example, to the consolidation of materials, imperfections
in construction or differential settlements in foundations [46–48]. For these traditional
masonry buildings, it is more likely that collapse occurs due to excessive subsidence or
accelerations of the ground, rather than to an applied load.

The assessment of this dome under horizontal actions has been studied in [5,7].
The horizontal force capacity of the dome-buttress system has been evaluated through
a tilting test, adopting MEA and TLA as for the related evaluations. The work aimed to
determine the limit value of the dome inclination for which the masonry is still entirely
compressed and to assess the buttress stability. The results show that TLA is more conser-
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vative with respect to MEA for this kind of analysis, giving a lower limit rotation angle for
TLA with respect to MEA.

4.2. Geometrical Parameters

In the following, some descriptive and constructive information about this dome, its
geometry and the parameters used to model the structure, are presented before the proper
structural analysis.

The analyzed dome, hemispherical in shape, has a diameter of 36 m and a height of
about 22 m from the base to the key, made entirely of masonry. Note that this different ratio
between the diameters confers a greater slimness to the dome, by configuring it as a not
perfectly hemispherical shell. Outside, the shape of the dome appears more complex than
the internal one: downwards, the cylindrical wall becomes a terraced wall, divided into
seven climbs covered by leads. With this wall ring around the foot of the cupola, the builder
inhibited side slipping and provided a counter-weight that strengthened the cupola in its
lower zone, crucial for its stability, as shown in Figure 5a. At the top, the dome ends
with a compression ring that surrounds the opening in the center, with a diameter of
8.20 m. This ring is about 55 cm thick and about 145 cm high, and a lantern—made of glass
and iron—surmounts it, as can be seen in Figure 5b. The dome is supported by a tambour
resting on eight polygonal pylons, with a base of 9 m by 4 m, interspersed with twenty
columns. Several tribunes have been realized inside the tambour, used by the royals to
attend religious services. Regular brick walls comprise the tambour structure, which is
empty inside, with a circular path along its entire circumference, as shown in Figure 5c,d;
externally, Gaeta limestone covers its surface [2,3].

(a) (b)

(c) (d)

Figure 5. Dome of San Francesco di Paola in Naples: (a) external view; (b) details of the terraced wall
divided into steps; (c) general view of the interior of the church; (d) picture of the path inside the tambour.

Figure 6 shows the transverse section of the structure, used in the analyses, and outputs
the geometry obtained from earlier studies [2,3]. The analyses performed in this paper
consider only the dome’s cap (from the angle of 24.80◦), since it represents the critical
part for equilibrium and stability, considering that in the lower portion, in accordance
with the circular steps, the thickness increases. In fact, with this ring of walls around
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the foot of the cupola, the builder inhibited side-slipping and provided a counter-weight
that strengthened the cupola in its lower zone, crucial for stability.

Figure 6. Transverse section and geometry of the dome.

Based on the above considerations, we fixed the properties and parameters for the anal-
yses presented in Section 4. The dome is considered only when subjected to its self-weight,
and it divided into 32 spherical sectors, called lunes, as prescribed by Heyman [49]. For
the MTLM, each slice, in turn, was divided into 75 voussoirs, equally spaced across its length.
In the literature, it is common to consider 7 voussoirs sufficient for a correct evaluation of
the thrust lines. This is due to the fact that TLA and its modified versions were performed
graphically. With computer software, this number can be increased. In this work, 75 voussoirs
were considered a good trade-off between the computational cost and the needed accuracy of
the results. We considered a tuff density of 18.00 kN/m3 for the material. The lantern weight
is WL = 1600 kN.

From a strictly procedural point of view, we first use the MTLM to select a thrust
surface between the intrados and the extrados of the membrane. This surface is used
as a guess surface for MEA, in order to compare the results; finally, since, with TLA,
the same profile cannot be obtained, among the possible thrust sufraces, we select the one
that is closer to that obtained with MTLM (see Figure 7).

Figure 7. Overlay of the thrust lines.
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4.3. Application
4.3.1. MTLM and TLA

Using MTLM, we obtain a horizontal thrust in the upper part of the dome Px75 =
170.0 kN, which increases for the first five voussoirs then stabilizes at a value of 322.5 kN
(see Table 1). This is due to the fact that these first five voussoirs absorb the lantern load,
showing a significant hoop forces value that, from the sixth voussoirs onwards, is almost zero.
The variation in the thrust component Pxi is clearly shown in the force polygon in Figure 8.

Table 1. Data comparison between TLA and MTLM in terms of thrusts and hoop forces in the upper part
of the dome (voussoir 75) and in the bottom part of the dome (voussoir 1). All values are reported in kN.

Px75 Py75 Px1 Py1 Hl75 Hl1

MTLM 170.0 54.9 322.5 628.8 867.2 0.16
TLA 323.7 54.9 323.7 628.8 0 0

Figure 8. Equilibrium of the dome of San Francesco di Paola with MTLM. In the dome section
(top left), the thrust line is drawn in red and the vectors representing the weight of each voussoir
are drawn in blue. In the force polygon (on the right), the horizontal thrust is outlined in green
and the vertical thrust in blue. Bottom-plan view of the lune with hoop forces (bottom left) plotted
in green; the hoop forces’ distribution is shown in orange.

The classical method of TLA can be derived as a particular case of the MTLM, by imposing
a vanishing behavior of the hoop forces along each meridian. The most evident consequence
in terms of thrust is that the thrust itself is constant from the top to the bottom of the dome.

It is worth noting that, with classical TLA and MTLM, it is not possible to obtain
the same profile for the thrust line. Among the infinite set of thrust lines that can be
obtained using the slicing technique, we choose the one which returns as similar a profile
as possible to the one selected with the MTLM by fixing the points of passage of the thrust
line in the upper and lower part of the dome and considering a horizontal thrust value
Px75 = Px1 = 323.7 kN (see Figure 9).
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Figure 9. Equilibrium of the dome of San Francesco di Paola with TLA. In the dome section (on the left),
the thrust line is drawn in red and the vectors representing the weight of each voussoir in blue. In the force
polygon (on the right), the horizontal thrust is outlined in green and the vertical thrust in blue.

The result of the comparison of these two methods is that the vertical component of
the thrust is the same, due to the considered loads; additionally, the vertical component
of the thrust in the lower part has an almost similar value. However, the horizontal
component in the upper part of the dome through the TLA is significantly lower than
the one obtained with the MTLM, since there is a strong contribution of the hoop forces
in this part that is not considered by the classical TLA (see Table 1).

4.3.2. MEA

To apply the methodology introduced in Section 3.3.3 we consider the curve represented
in Figure 7 as the starting point to obtain the membrane shape. Figure 10 shows the membrane
obtained through the revolution of the thrust line about the vertical axis, and the corresponding
stress potential obtained through a numerical solution of Equation (5) by the LSM.

(a) (b)

Figure 10. Membrane Equilibrium Analysis: application to the dome of San Francesco di Paola:
(a) membrane shape; (b) stress potential.
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From Figure 10b we notice that the stress potential has the shape of a convex solid;
therefore, all the principal stresses are negative semidefinite, according to the definition of
the Pucher stresses.

In Figure 11 we show the principal value distribution of the Pucher stresses. We notice
that both principal stresses are negative in all the domain, fulfilling the requirements of
the Safe Theorem of Limit Analysis; therefore, the membrane chosen for the analysis is one
of the possible geometries that carry the loads acting on the dome. In Figure 12 we also
show the radial and hoop generalized stresses along a meridian.

(a) (b)

Figure 11. Membrane Equilibrium Analysis: minimum (a) and maximum (b) principal values of
the Pucher stresses.
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Figure 12. Radial and circumferential Pucher stresses along a meridian using MEA.

4.4. Geometrical Safety Factors

In this section, we show the geometrical safety factor computed with the different
methods. As mentioned in Section 3, for TLA it is easy to span all the possible curves
and find the one that is the closest to the midsurface of the vault.

For the case study of San Francesco di Paola, in Figure 13 we show the most internal
possible thrust line and the virtual intrados and extrados that mark the maximum pos-
sible thickness reduction in the vault. In this case, the maximum thickness reduction is
d = 62.4%, which corresponds to a geometrical safety factor GSF = 2.65.
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Figure 13. Thrust line obtained using TLA in the safest case.

The computation of the geometrical safety factor with MTLM requires a more compli-
cated optimization algorithm, capable of finding the best combination of hoop forces at
each voussoir to minimize the distance of the thrust line from the midsurface.

The higher flexibility of MTLM with respect to TLA allows for a higher geometrical
safety factor. Our optimization algorithm is able to reduce the overall thickness of the vault
of d = 80%, with a corresponding safety factor GSF = 5.00, as shown in Figure 14.
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Figure 14. Thrust line obtained using MTLM in the safest case.

Concerning MEA, the algorithm presented in the present paper does not permit
access to non-concave membrane surfaces. For non-concave surfaces, the problem could
be approached by assigning the stress potential, which is convex with the definition of
No-Tension material, and solving it for the shape, as recently shown in [44].

Therefore, we limit our study the evaluation of the geometrical safety factor with
MEA to concave shapes. We use a trial-and-error algorithm to explore some of the possible
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membrane surfaces to which the negative semidefinite stress tensor corresponds. Finally,
we obtain the shape shown in Figure 15, which fills into a thickness reduced by 67% with
respect to the original, which corresponds to a geometrical safety factor of GSF = 3.03.
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Figure 15. Thrust line obtained using MEA in the safest case.

5. Results and Discussion

In this section, we compare the results obtained from TLA, MTLM and MEA. Restricting
ourselves to the case of axis-symmetric structures (for which MTLM and TLA can be applied),
a first consideration can be made of the similarities of the thrust lines, which cannot coincide.
In fact, introducing hoop forces in the formulation modifies the thrust lines obtained with
the TLA, even when starting with the same thrust value at the top of the vault.

The similarities and differences in these methods can be evaluated by comparing
the thrust at the base of the dome and the radial and circumferential stress distributions,
in the case in which a similar thrust line profile is followed, and the optimized GSF
in the case in which the objective of the analyses is optimization.

Concerning the thrusts, with particular reference to graphical methods, in Table 1
we notice that, following a similar thrust line profile, for TLA, the horizontal thrust is
the same along the meridian, and, of course, the hoop forces are vanishing; on the contrary,
after adopting the MTLM, the radial thrust increases along the meridian due to the presence
of the hoop forces.

Concerning the stresses, MTLM and MEA can be compared after a suitable conversion of
the static entities is made. In MTLM, the computation is made in terms of forces, whereas MEA
is formulated in terms of generalized stress, and finally, using the Pucher stresses, which are
the projection of the membrane-generalized stress T onto the domain of the membrane geometry.

To compute the circumferential Pucher stress from the MTLM hoop forces, for each
block, i, we divide the force Hi by the lateral area of the block, and then we multiply it by
the vertical average thickness of the voussoir itself.

Concerning the radial stresses, we start from the contact force Pi along the meridian
between two blocks: we consider the component along the x-axis and divide this by
the contact area, and multiply again by the vertical thickness of the voussoir.

A comparison between the results, in terms of Pucher stresses, is summarized in Table 2
and shown in Figure 16.
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Figure 16. Plot of the projected generalized stresses obtained through MEA, MTLM and TLA.

Table 2. Data comparison between TLA, MTLM, and MEA in terms of projected stresses (Pucher
stresses) in the upper part of the dome (voussoir 75) and in the bottom part of the dome (voussoir 1).
All values are reported in kN/m.

Radial75 Radial1 Hoop75 Hoop1

MTLM 208 100 1258 0
TLA 401 118 0 0
MEA 201 117 1280 50

From Figure 16 we notice that, for the same (or similar) thrust line, there is a slightly
different stress distribution for the three methods, especially in the upper part of the dome
(small values of the radius). In fact, when hoop stresses are admitted (MTLM and MEA),
in the central part, high hoop stresses arise and the radial stress remains quite low. Some
differences remains between the two methods, due to the distribution of the load of
the lantern among the first voussoirs from the top (MTLM) and a ring around the lantern
for MEA. In fact, MEA cannot handle concentrated loads; therefore, the load of the lantern
must be spread over a finite area. TLA does not allow hoop stresses, and therefore, for
similar thrust lines with respect to the other two methods, there are different (higher)
values for the radial stresses near to the dome crown. At the impost, conversely, due to
the absence of hoop forces in all the methods, the radial stresses are very similar.

Since, with MTLM, it is possible to choose the hoop forces’ distribution, this method
allows the highest control on the thrust line shape, and, consequently, returns the highest
GSF value. On the contrary, since the thrust path obtained through TLA is controlled by
only two parameters, it is less flexible and, therefore, a lower GSF value is obtained.

MEA, in general, is the most complete method for the evaluation of the stability of
domes, but, for this kind of application, the results are inappropriate, since it cannot access
the double curvature thrust surfaces that can be accessed using simpler methods, such
as the MTLM.

6. Conclusions

In the present work, three Heyman-based methods are presented to assess the equilib-
rium of unreinforced masonry domes: the Thrust Line Analysis, the Modified Thrust Line
Method, and the Membrane Equilibrium Analysis. TLA accounts only for stresses in the ra-
dial direction, while MTLM and MEA combine the radial response with circumferential
stresses, and are able to model biaxial stress states.
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These methods were applied to the large hemispherical masonry dome of San Francesco di
Paola. The effectiveness of these three approaches was compared in terms of the corresponding
stress distributions and measured using the Geometric Safety Factor.

The geometrical safety factor obtained with TLA is 2.65, corresponding to a maximum
thickness reduction of 62.4%. On the other hand, MTLM provides a GSF equal to 5.00,
i.e., doubling the TLA value. In this case, the possible thickness reduction is about 80%.
The reason for this significant increase in the GSF with respect to TLA is that MTLM takes
the hoop forces arising in the dome into account, and, as shown in Section 3, is more flexible
with respect to TLA in terms of possible thrust surfaces.

Although the Membrane Equilibrium Analysis is the most sophisticated approach,
it returns a GSF equal to 3.03. The GSF obtained with MEA is not so high with respect to
one obtained with MTLM, because the version of MEA adopted in this work is limited
to concave membrane shapes. The adoption of MEA remains valuable and necessary for
geometries that cannot be studied using axial symmetry, such as, for the sake of example,
cloister vaults or cross vaults, but results are excessive for the geometry under investigation
in this work.

As is well known, TLA is a good starting point and a straightforward approach to as-
sessing the stability of axis-symmetric masonry structures, giving conservative solutions.
However, for the present case study, MTLM is the most effective approach, due to its
simplicity and ability to explore a wide set of possible thrust surfaces. The drawback is
that it cannot be applied to other vaulted structures or to different loading conditions, for
which the adoption of more sophisticated tools, such as MEA, is needed.
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