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Abstract: In this paper, a wideband-narrowband switchable tapered slot antenna (TSA) with a
compact meander line resonator for an integrated microwave imaging and hyperthermia system
was proposed. A compact meander line resonator, which exhibited band-pass characteristics and
provided narrowband characteristics by using one PIN diode, was fabricated beneath the tapered
slot of the wideband TSA to minimize the degradation of the wideband characteristics. Moreover,
the electromagnetic energy was transferred to the meander line resonator with a coupling effect
to ensure effective frequency switching. By adapting a PIN diode on the meander line resonator,
frequency switching could be achieved. In this way, the proposed antenna could operate in a real-
time frequency switching mode between the ultra-wideband (UWB; 3.1~10 GHz), which is used for
microwave imaging, and the 2.45 GHz band (industrial, scientific, and medical, ISM band), which is
used for microwave hyperthermia. Frequency and time-domain results proved the applicability of
the proposed antenna to an integrated breast cancer detection and treatment system.

Keywords: tapered slot antenna; frequency reconfigurable antenna; wideband to narrowband
switching; tumor treatment; microwave imaging; hyperthermia

1. Introduction

Breast cancer treatments are being developed rapidly to reduce the dangerous ra-
diation associated with conventional methods [1]. The early detection of breast cancer
has received significant attention among research groups, and common techniques are
based on X-rays, magnetic resonance imaging (MRI), and computer tomography (CT) [2].
However, these techniques have numerous drawbacks such as ionizing radiation, high cost,
health risks, and so on. Radar-based microwave imaging is an effective tumor detection
method. In this method, malignant tissues within the breast can be detected because of
significant differences in the dielectric properties between normal breast cells and tumor
cells. These images can be produced by employing ultra-wideband (UWB) antennas [3–7].
These antennas transmit and receive short-duration pulses and detect the scattered signal
differences between normal and malignant tissues.

The surgical operation, radiotherapy, chemotherapy, and hyperthermia are the main
methods to treat breast cancer. Among these, a microwave hyperthermia system for cancer
treatment is reliable, non-invasive, cost-effective, and painless in comparison to surgical
operations. Furthermore, hyperthermia has a synergistic effect when used in combination
with radiation oncology or chemotherapy. Non-invasive hyperthermia, which employs
a microwave antenna, is a reliable treatment method to achieve effective breast tumor
necrosis [8]. In this method, electromagnetic energy (EM) is radiated from a narrowband
antenna and concentrated on the tumor region, where heating is applied as a therapeutic
treatment [9–11].

However, as the microwave diagnosis system operates separately from the treatment
system, the process is complicated, time-consuming, and expensive. The integration of
these two systems simplifies the process and provides a comfortable treatment environment
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for patients. To implement such an integrated system, the characteristics of the two
different systems must be incorporated into a single antenna. However, as the allocated
wideband frequency for microwave imaging and narrowband frequency for hyperthermia
are different, frequency reconfigurable characteristic is essential for the antenna. Frequency
reconfigurable antennas have been investigated widely in terms of switching the wide- to
narrowband with PIN diode switch. The research of wideband to narrowband switching
antennas was presented over past years [12–17]. In [12], the ring slot resonators were
perturbed in the antenna feed line with PIN diodes. In [13,14], the frequency notched
and narrowband characteristics were realized by applying the ring slots and split ring
resonators (SRR) in the feeding area. In [15,16], the C-, T-shaped slots and ring slots
were notched on the flared slot of a tapered slot antenna (TSA) for wide to multiband
switching. In [17], the C-slot patch antenna was designed on the dual patch element in
order to achieve reconfigurability. In these papers, however, as the narrowband structures
for frequency switching were inserted directly on the antenna surface or feeding area
of the wideband antenna, the wideband performances of the antenna degraded, and
the design complexity increased because at least two PIN diodes were used to obtain
frequency switching and wideband characteristics. Furthermore, the narrowband structure
must be compact in size to minimize interference with the wideband antenna. However,
existing narrowband structures are electrically large because of the resonance length of
their operating frequencies.

In this paper, a wideband to a narrowband switchable antenna with a compact mean-
der line resonator was proposed for an integrated microwave imaging and hyperthermia
system for breast cancer detection and treatment. The conventional wideband TSA is
designed to operate in the 3.1–10 GHz (UWB) frequency band for microwave imaging. The
narrowband operation for hyperthermia can be achieved with meander line resonators
with a PIN diode switch. In the proposed structure, the frequency switching mechanism
was simplified by using one PIN diode. To minimize the degradation of the wideband
characteristic of conventional TSA, the meander line resonator was designed to be compact
on the back layer of the TSA. Furthermore, as the electromagnetic energy was transferred
from the tapered slot of the TSA to the meander line resonator in the back layer with
a coupling effect, effective frequency switching was made possible. The frequency and
time-domain performance of the proposed antenna were discussed to demonstrate its
applicability as a real-time breast cancer detection and treatment system.

2. Design of the Proposed Frequency Switchable Tapered Slot Antenna

The configuration of the proposed system is presented in Figure 1. The system
consisted of an external microwave radiator with an artificial cylindrical breast phantom.
All simulation and experimental results were based on the configuration of Figure 1. To
verify the electromagnetic effects of the proposed antenna on the human body, an artificial
breast phantom was formed with homogeneous material that takes into account the fatty
component (εr = 5.14, σ = 0.137 S/m) of the human breast [18]. The external radiator
was in direct contact with the breast phantom to achieve maximum electromagnetic wave
transmission.

2.1. Design of the Wideband Tapered Slot Antenna

The conventional wideband TSA, which is suitable for a microwave imaging system,
is shown in Figure 2. The conventional TSA was printed on an 0.8-mm-thick FR-4 substrate
(εr = 4.3, tan δ = 0.025) over an area of 80 mm × 40 mm. In order to reduce the reflection of
the electric field at the boundary between the proposed antenna and breast phantom, the
FR-4 substrate was chosen because the dielectric constant of the substrate is similar to the
dielectric constant of the breast phantom.
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Figure 2. Geometry of the fundamental tapered slot antenna (TSA): (a) front side, (b) back side.

The exponential slot is guided by the following equation;

Y = C1eRx + C2, C1 =
y2 − y1

eRx2 − eRx1
, C2 =

eRx2 y1 − eRx1 y2

eRx2 − eRx1
(1)

where R is the exponential rate and x1, x2, y1, and y2 indicate the start- and endpoints
of the slotline [19]. A microstrip-to-slotline transition technique was applied to achieve
stable wideband characteristics [20,21]. To achieve a wideband transition, the microstrip-
radial-open stub and slotline-round-short stub present virtual short and open circuits,
respectively. The designed antenna interacted with the high dielectric human breast, so
impedance characteristics had to be enhanced in order to maximize power transformation.
Therefore, we designed flared slots to enhance the reflection coefficient in 3.5–5 GHz. The
flared slots were designed near the input aperture of the tapered slot, where the current
flow was strong, for effective input impedance control. The step impedance can be changed
by controlling the exponential rate of the flared slots. After fine-tuning, the impedance
matching characteristic was partially enhanced in the 3.5–5 GHz, as shown in Figure 3.
A full-wave simulation was performed with Microwave Studio of Computer Simulation
Technology (CST). As a result, the proposed TSA achieved optimal wideband operation in
the 3.1–10 GHz.
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2.2. Design of the Narrowband Resonator

The narrowband characteristic in wideband TSA can be achieved by inducing current
to the narrowband resonator in the back layer of the TSA. Figure 4a–d shows the typical
shapes for frequency switching; bent dipole, square ring, round ring, and meander line.
In terms of losses and size, the narrowband resonator must have low losses and be small
in size. To verify the resonator characteristics, a radio frequency (RF) signal was induced
between the vertical slot on the ground plane, and the coupling energy was induced to the
resonator on the top layer. Table 1 shows the results for the simulated insertion loss (S21)
and the size of resonators, respectively. The S21 results were similar but slightly lower for
the round ring and meander line. Moreover, the size of the meander line resonator was
smaller than the other shapes. Therefore, we selected the meander line as a narrowband
resonator, which was suitable for electrically small antennas with closely coupled element
shapes [22].
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Table 1. Characteristics of narrowband resonators.

Shapes Insertion Loss (S21), dB Size (λr: Effective Wavelength at 2.45 GHz)

Bent dipole −1.71 15 mm × 16.25 mm (0.25λr× 0.27λr)
Square ring −1.67 10.5 mm × 10.5 mm (0.178λr× 0.178λr)
Round ring −1.65 7.8 mm × 7.8 mm (0.132λr× 0.132λr)

Meander line −1.65 7.6 mm × 7.3 mm (0.129λr× 0.124λr)

The frequency response of the meander line structure is defined by the width, the
number of turns, and the gap size of the meander line, which can be represented by an
equivalent lumped circuit model [23,24]. In Figure 5a, the meander line resonator, which
was designed on the back of the slotline, induces a coupling current to achieve band-pass
characteristics at 2.45 GHz. The meander line resonator is represented by the LC equivalent
sub-circuit and will be discussed later.
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acteristics of the TSA at 2.45 GHz, which is the resonant frequency of the meander line res-

Figure 5. Meander line resonator with band pass characteristics: (a) Geometry of the meander line
structure and (b) S-parameter characteristics.

The meander line structure was based on the cascade connection of several individual
line segments. The equivalent lumped circuit of the transmission line segments could be
calculated using the T-equivalent network from the equations provided by [23] to reason-
ably approximate relative changes in the resonant frequency. Changes in the narrowband
resonance in terms of the number of turns of the meander line and line length are repre-
sented in Figure 6a and b, respectively. For the proposed antenna, both a compact size
of 6.8 mm × 8.1 mm (0.11λr × 0.13λr) and band-pass filter operation could be achieved
by adopting the meander line structure, the S-parameter results of which are shown in
Figure 5b, which verified the band-pass operation at 2.45 GHz.
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2.3. Frequency Switchable Tapered Slot Antenna with Meander Line Resonator

To design the frequency switchable antenna, a meander line resonator was printed on
the back layer of the wideband antenna, as shown in Figure 7a. The middle point of the
symmetric meander line resonator was placed at a point corresponding to the middle of the
flared slot. When the current flows alongside the flared slot, an E-field is formed between
the two plates of the slot, and EM energy is transferred to the meander line resonator. The
combined equivalent circuit model of the TSA and meander line resonator is shown in
Figure 8.
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Figure 8. The equivalent circuit model of the meander line resonator with TSA.

The flared slot of the TSA has various frequency responses that depend on position D
of the meander line resonator. The higher band operation is related to the narrow end of the
flared slot, whereas the lower band operation is related to the wide end of the flared slot.
Therefore, the proposed antenna achieved optimal frequency switchable characteristics
by placing a meander line resonator at the optimal point to compensate for the reactance
component. The maximum reactance compensation is related to the impedance matching
characteristics of the TSA at 2.45 GHz, which is the resonant frequency of the meander
line resonator. Changes in the reflection coefficient for different positions of the meander
line resonator in the narrowband mode are presented in Figure 7b. It can be observed that
for D = 33 mm, the image impedance of the meander transmission line ZTL is matched
to the characteristic impedance of the slotline ZSLOT . As a result, the maximum EM
energy transfer between the flared slot and the meander line resonator occurred, and
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the conventional traveling-wave mode changed to the resonance mode in the meander
line resonator.

3. Simulation and Measurement Results

As mentioned earlier, a meander line resonator was printed on the backside of the
TSA. To achieve frequency switchable characteristics, an SMV 1231 PIN diode switch was
inserted in the middle of the meander line resonator to control the current induced by the
flared slot, as shown in Figure 9a. In Figure 9b, the measurement configuration with a
fabricated breast phantom and supporting structure is represented. The DC biasing line
was connected to the DC power supply through the inductors for RF choking, and the bias
voltage was 0.8 V in order to activate the diode.

Appl. Sci. 2021, 11, 3606 7 of 12 
 

dering effects, and the variation of dielectric properties of the RF-4 substrate within toler-

ance levels. However, the measured reflection coefficient was acceptable for the entire fre-

quency band. 

  
(a) (b) 

Figure 9. Fabricated frequency switchable TSA: (a) front and back, and (b) antenna measurement 

configuration with the fabricated breast phantom and supporting structure. 

  
(a) (b) 

Figure 10. The simulated and measured reflection coefficients: (a) wideband mode for microwave imaging and (b) nar-

rowband mode for microwave hyperthermia. 

On the other hand, when the PIN diode was in the ON state, the EM energy was 

transferred to the transmission line between the meander lines and the current induced in 

the meander line resonators. In this case, the TSA operated as a narrowband antenna, as 

shown in Figure 10b. In Figure 10b, several resonances are shown in other frequency bands 

caused by the harmonics of the meander line. Therefore, multiple resonances occurred even 

in the narrowband mode because of the band-pass characteristic of meander line resonators. 

However, in this paper, for microwave hyperthermia we only used 2.45 GHz as a power 

source. Current distributions are presented in Figure 11, verifying the resonance and trav-

eling-wave modes, both of which depended on the PIN diode. Table 2 compares the pro-

posed antenna with the existing research in terms of the type and size of the wideband 

antenna, the number of switching elements, and the shape and size of the narrowband 

structure. To compare the electrical size of the narrowband structure with other papers, 

the resonance frequency and relative dielectric constant of the substrate were considered 

to calculate the size of the narrowband structure in λr. The results suggested that the pro-

posed antenna exhibits a frequency switching characteristic with the smallest number of 

PIN diodes as well as the smallest electrical size for the narrowband structure. 

Figure 9. Fabricated frequency switchable TSA: (a) front and back, and (b) antenna measurement configuration with the
fabricated breast phantom and supporting structure.

When the PIN diode was in the OFF state, the transmission line that connected the two
sides of the symmetric meander line resonator was terminated, and the current was not
induced. In this case, the proposed antenna operated as a conventional wideband antenna
in the frequency range of 3.1–10 GHz, as shown in Figure 10a. The simulated reflection
coefficients both with and without the meander line were compared to verify that the
designed meander lines did not degrade the wideband impedance matching characteristic.
There were mismatches for the reflection coefficient between the simulated and measured
results around 4 and 6.5 GHz. It could be seen that there were some deviations in the
measurement condition, such as antenna fabrication errors, coaxial cable utilization in the
experiment, soldering effects, and the variation of dielectric properties of the RF-4 substrate
within tolerance levels. However, the measured reflection coefficient was acceptable for
the entire frequency band.

On the other hand, when the PIN diode was in the ON state, the EM energy was
transferred to the transmission line between the meander lines and the current induced in
the meander line resonators. In this case, the TSA operated as a narrowband antenna, as
shown in Figure 10b. In Figure 10b, several resonances are shown in other frequency bands
caused by the harmonics of the meander line. Therefore, multiple resonances occurred even
in the narrowband mode because of the band-pass characteristic of meander line resonators.
However, in this paper, for microwave hyperthermia we only used 2.45 GHz as a power
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source. Current distributions are presented in Figure 11, verifying the resonance and
traveling-wave modes, both of which depended on the PIN diode. Table 2 compares the
proposed antenna with the existing research in terms of the type and size of the wideband
antenna, the number of switching elements, and the shape and size of the narrowband
structure. To compare the electrical size of the narrowband structure with other papers,
the resonance frequency and relative dielectric constant of the substrate were considered
to calculate the size of the narrowband structure in λr. The results suggested that the
proposed antenna exhibits a frequency switching characteristic with the smallest number
of PIN diodes as well as the smallest electrical size for the narrowband structure.
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Figure 11. Simulated current distributions: (a) resonance mode at 2.45 GHz with the PIN diode in
the ON state and (b) traveling-wave mode at 5, 7, and 9 GHz with the PIN diode in the OFF state.
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Table 2. Comparison with existing work.

Ref.
Wideband Antenna Type and

Size
(mm×mm)

No. of Switching
Elements Shape for Narrowband Size of Narrowband Structure in λr

Frequency Range—Wideband and
Narrowband (GHz)

[12] Uniplanar monopole antenna
(60 mm ×80 mm) 2 PIN diodes 2 varactors Ring slot resonators 0.23λr×0.23λr

(WB)1.33–6,
(NB) 2.55, 2.6, 2.8, 3.2

[13] CPW fed circular monopole
(50 mm ×47 mm) 2 PIN diodes Split ring resonators Low band: 0.15λr×0.15λr

High band: 0.14λr×0.14λr

(WB)2.5–11,
(NB) 6.02, 9.18

[14] TSA
(35.8 mm ×54 mm)

2 PIN diodes for
frequency switching Split ring resonators 0.34λr×0.34λr

(WB) 3.1–12,
(NB) 6.35

[15] TSA
(166 mm ×141 mm) 4 PIN diodes C-, T-shaped slots C-shape: 0.5λr

T-shape: 1.85λr

(WB) 1.04–3.76,
(NB) 0.97–1.24, 1.63–2.08, 2.64–3.71

[16] Vivaldi antenna
(144 mm ×120 mm) 6 PIN diodes Ring slot resonators

Low band: 0.16λr×0.16λr
Mid band: 0.32λr×0.32λr
High band: 0.16λr×0.16λr

(WB) 1–3.2,
(NB) 1.1, 2.25, 3.1

[17] Patch antenna
(50 mm ×50 mm) 2 PIN diodes C-shaped slots Low band: 0.63λr×0.49λr

High band: 0.86λr×0.61λr

(WB) 5–7,
(NB) 5, 5.5, 6.2

This work TSA
(40 mm ×80 mm) 1 PIN diode Meander line 0.11λr×0.13λr

(WB) 3.1–10,
(NB) 2.45
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To verify the radiation characteristics of the proposed antenna in the breast phantom
for a microwave imaging system, time-domain results were analyzed. In a microwave
UWB radar-based imaging system, high-quality image reconstruction can be achieved
when the antennas transmit and receive short-duration microwave pulses through a lossy
material. In this process, a radiated pulse from the transmitting antenna passes through
the breast phantom with low distortion and high efficiency. The Tx and Rx TSAs face each
other through the phantom diameter (100 mm), as shown in Figure 12a. The radiated and
received pulses both with and without the meander line resonator are shown in Figure 12b.
By comparing the shapes between the transmitted and received pulses, it was evident that
the proposed TSA exhibited low-pulse distortion characteristics, and the meander line
resonator did not affect the pulse characteristic.
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A figure of merit for the transmitted and received signal was the fidelity factor (F),
which is defined as the maximum magnitude of the cross-correlation between the observed
signal at a certain distance and the excitation signal [3]:

r̂(t) =
r(t)[∫ ∞

−∞

∣∣∣r(t)2dt
∣∣∣]1/2 and f̂ (t) =

f (t)[∫ ∞
−∞

∣∣∣ f (t)2dt
∣∣∣]1/2 (2)

Equation (2) means the signals which are normalized to have unit energy where f (t) is
the transmitted signal at the antenna terminal, and r(t) is the received E-field in the time
domain.

F =
max

τ

∫ ∞

−∞
f̂ (t)r̂(t + τ)dt (3)

The fidelity factor, F, is represented in Equation (3), which is determined by the peak
of the cross-correlation function of the signals. The fidelity factor has a value between 0
and 1. Especially for microwave systems, the fidelity factor value must be over 0.5 [3]. The
calculated fidelity factor for the proposed TSA was 0.95. This was a reliable result, which
confirmed the suitability of the proposed TSA for microwave imaging systems.

The experimental setup for the time-domain signal acquisition is presented in Figure 13.
The dielectric permittivity of a breast cancer cell is almost 10 times larger than the dielectric
permittivity of a normal breast cell [18]. A cylindrical cancer cell in the middle of the
breast phantom is presented in Figure 13a, the radius of which is 5 mm. As a result of the
difference between the dielectric permittivities, a scattering effect occurred when the E-field
passed through the breast phantom. The differences of the backscattered time-domain
signals, which were measured both with and without a cancer cell, are presented in Figure
14 for reflected and transmitted signals. The UWB signal was radiated using a stepped
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frequency sweep, and the backscattered signals reflected from the tumor were collected by
the receiving antennas at different locations. For each position, the recorded signals from
the tumor reflection could be extracted from the overall signal by subtracting the original
signal. The collected, scattered signals were converted to the time domain signal by the
inverse Fourier transform and applied to an imaging algorithm developed by [7]. When
the transmitted signal progresses over time, the skin reflection was identical in both cases.
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Therefore, the scattered signals between the tumor cell and homogeneous breast
phantom were recorded by the receiving antennas, and these signals were used to infer
the existence and location of the arbitrary target. The detected signal differences shown in
Figure 14 could be calculated and applied to the UWB multi-static radar-based microwave
imaging system to define the tumor cells.

To operate as a hyperthermia system, Figure 15 shows the required configuration
of the temperature measurement setup, block diagram of the temperature measuring
system (which was composed of the RF signal generation and amplification, as well as
RF power division and excitation), and the temperature observation [9,10]. The proposed
antenna must exhibit equal polarization characteristics to achieve an effective E-field
synthesis in the target area. For hyperthermia application, the specific absorption rate (SAR),
which is proportional to the square root of the E-field, is analyzed to verify the radiation
characteristics in the breast phantom [9]. In Figure 16a, the variation of the normalized
SAR with the number of antennas is presented to verify the EM energy concentration at the
center of the breast phantom (x = 0 mm), from which it was evident that the SAR increases
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by increasing the number of antennas to the target position. To verify the thermal effect for
tumor necrosis, the effective treatment area (ETA) was defined [9]. The ETA was regarded
as a region in which the tumor satisfied the thermal requirement of the temperature rise, 7–
10 ◦C. The temperature increase measured inside the breast phantom, heated by a 12-array
antenna for 1 h, is shown in Figure 16b. The red circular region signifies the ETA, which
covers the tumor size.
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4. Discussion 

In this paper, a frequency switchable tapered slot antenna with a meander line resonator 

was proposed. The wideband TSA operates in the UWB (3.1–10 GHz) for microwave imaging. 

A compact meander line resonator with band-pass characteristics was designed and printed 
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quency switchable characteristics were made possible because of a PIN diode switch. Sim-

ulated and measured results demonstrated that the proposed TSA operated selectively in 

different modes at two different frequency bands. For hyperthermia, the designed antenna 

exhibited effective EM energy concentration with a thermal treatment effect. The time-do-

main analysis was also conducted to demonstrate the antenna’s microwave imaging capa-

bility. Consequentially, the proposed TSA was expected to be useful in the integrated bio-

medical system. 
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Figure 16. (a) Comparison of normalized SAR in terms of the number of antennas along the x-axis of the breast phantom,
and the (b) measured temperature distribution inside the breast phantom with 12 antennas.

4. Discussion

In this paper, a frequency switchable tapered slot antenna with a meander line res-
onator was proposed. The wideband TSA operates in the UWB (3.1–10 GHz) for microwave
imaging. A compact meander line resonator with band-pass characteristics was designed
and printed on the back of the TSA to minimize the degradation of the wideband character-
istic and the additional frequency response at 2.45 GHz for hyperthermia. By positioning
the meander line beneath the flared slot, which was propagating the area of TSA, the maxi-
mum EM energy transfer between the flared slotline and the meander line resonator was
achieved. Frequency switchable characteristics were made possible because of a PIN diode
switch. Simulated and measured results demonstrated that the proposed TSA operated
selectively in different modes at two different frequency bands. For hyperthermia, the
designed antenna exhibited effective EM energy concentration with a thermal treatment
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effect. The time-domain analysis was also conducted to demonstrate the antenna’s mi-
crowave imaging capability. Consequentially, the proposed TSA was expected to be useful
in the integrated biomedical system.
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