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Abstract: In order to improve the measurement speed and prediction accuracy of unconventional
reservoir parameters, the deep neural network (DNN) is used to predict movable fluid percentage of
unconventional reservoirs. The Adam optimizer is used in the DNN model to ensure the stability and
accuracy of the model in the gradient descent process, and the prediction effect is compared with the
back propagation neural network (BPNN), K-nearest neighbor (KNN), and support vector regression
model (SVR). During network training, L2 regularization is used to avoid over-fitting and improve
the generalization ability of the model. Taking nuclear magnetic resonance (NMR) T2 spectrum data
of laboratory unconventional core as input features, the influence of model hyperparameters on
the prediction accuracy of reservoir movable fluids is also experimentally analyzed. Experimental
results show that, compared with BPNN, KNN, and SVR, the deep neural network model has a
better prediction effect on movable fluid percentage of unconventional reservoirs; when the model
depth is five layers, the prediction accuracy of movable fluid percentage reaches the highest value,
the predicted value of the DNN model is in high agreement with the laboratory measured value.
Therefore, the movable fluid percentage prediction model of unconventional oil reservoirs based on
the deep neural network model can provide certain guidance for the intelligent development of the
laboratory’s reservoir parameter measurement.

Keywords: deep learning; NMR T2 spectrum; movable fluid percentage; deep neural network;
unconventional reservoir

1. Introduction

The fluids in unconventional oil reservoirs can be divided into two categories accord-
ing to their existence states: one is bound fluid (immovable fluid), and the other is free
fluid (movable fluid) [1]. The bound fluid exists in the extremely tiny pores and walls of
the larger pores. The bound fluid in the smaller pores is difficult to flow due to the large
capillary force; the fluid in the middle of the larger pores is subject to the smaller capillary
force. It can flow under a certain driving pressure, so it is called movable fluid. The
presence of boundary fluids often leads to the reduction of seepage space in the reservoir
pores and the increase of seepage resistance. The more movable fluid in the reservoir,
the stronger seepage capacity of the corresponding reservoir, and more oil and gas re-
sources can be recovered [2]. In conventional reservoir evaluation, researchers generally
use porosity and permeability as the characterization parameters of reservoir physical
properties. However, the experimental evaluation of movable fluids and unconventional
reservoir core experiments show that: there is a good positive correlation between the oil
displacement efficiency and the percentage of movable fluid [2], which also proves that
movable fluid percentage can better reflect the development potential of unconventional
reservoirs than permeability. At present, the most reliable measurement of the movable
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fluid percentage of the reservoir is the core nuclear magnetic resonance technology [3]. The
current disadvantages of this technology are the long experimental period and the large
amount of manpower required, which make it difficult to synchronize the evaluation of
the reservoir with the development and deployment of the oil field.

In recent years, with the development of science and technology, artificial intelligence
methods have been increasingly applied to the petroleum industry: Yushu and Qidi used
the XGBoost algorithm to identify complex carbonate rock lithology with an accuracy rate
of 88.18% [4,5]. Mohamed used machine learning methods to study lithology classification,
and concluded that the classification accuracy of supervised learning algorithms was better
than that of unsupervised algorithms [6]; Liuqing predicted the porosity of sandstone
reservoirs based on deep neural network and logging data. The correlation between the
predicted value of the model and the actual porosity is as high as 0.9725 [7]. Yuyang
combined the NMR transverse relaxation time spectrum and mercury intrusion data to
intelligently predict the permeability of sandstone reservoirs through BP neural network
and achieved a good prediction accuracy [8]; Dongxiao realized the automatic generation
of logging curves based on cyclic neural network [9]. Ye predicted unconventional reservoir
saturation based on NMR logging data and machine learning methods [10]. Deep learning
was first proposed by Hinton in 2006. The ability to achieve complex nonlinear fitting
through artificial neural networks with multiple hidden layers had greatly improved the
prediction and classification accuracy of artificial intelligence models [11]. NMR logging
data are affected by many factors in the reservoir, and the effective information contained
in NMR logging often has large deviations. In order to improve measuring speed and
accuracy of the movable fluid percentage of unconventional reservoirs, this article is based
on the deep learning method and the unconventional reservoir core NMR T2 spectrum
data of laboratory measurement to predict movable fluid percentage of unconventional oil
reservoirs.

2. Data Source and Experimental Methodology
2.1. Correlation Analysis between NMR T2 Spectrum and Percentage of Movable Fluid

By comparing and studying the NMR T2 spectrum of oil-saturated cores with different
degree of tightness in Figure 1, it was found that: (1) with the increase of reservoir tightness,
the left peak of the NMR T2 spectrum of oil-saturated cores gradually rose and shifted to the
left, the right peak gradually decreased or even disappeared; (2) the proportion of movable
fluid in the reservoir gradually decreased, and the boundary fluid gradually increased.
Through the above comparative studies, there was a strong correlation between the shape
characteristics of the oil-saturated core NMR T2 spectrum of unconventional oil reservoirs
and movable fluid percentage of reservoirs. Therefore, this article predicted the percentage
of movable fluid in unconventional oil reservoirs based on the shape characteristics of the
oil-saturated core NMR T2 spectrum.

2.2. Data Source and Preprocessing

In this paper, a total of 580 unconventional reservoir cores NMR T2 spectrums and
the corresponding movable fluid percentage were collected, all of which were obtained
through the laboratory measurement. The movable fluid percentage of the reservoir was
predicted based on the shape characteristics of the core NMR T2 spectrum of unconven-
tional oil reservoirs. By discretizing the NMR T2 spectrum of the core, the horizontal axis
T2 relaxation time of each discrete point was fixed. At this time, all discrete points’ T2 distri-
bution values could represent the shape characteristics of the core NMR T2 spectrum [11].
The result of the discretization processing of different cores’ NMR T2 spectrum is shown
in Figure 2. In the unconventional reservoir NMR T2 spectrum, T2 distribution values of
discrete points with a relaxation time greater than 1000ms is basically 0. Therefore, for the
nuclear magnetic resonance T2 spectrum of each core, collecting T2 distribution values of
the first 55 discrete points could completely extract the shape characteristics of the core
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NMR T2 spectrum. Before model training, the data needed to be standardized. The specific
standardized processing methods were as follows:

ai =
xi − µ

σ
, (1)

where: ai and xi are the parameter value after standardization and the original parameter
value, µ is the average value of input parameters, and σ is the standard deviation of input
parameters.
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Figure 1. NMR T2 spectrums of cores with different tightness.
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Figure 2. Discretization of the core NMR T2 spectrum. (1) Core sample 1; (2) Core sample 2.

The original data set was divided into a training set and a test set. The training set
was mainly used for model learning, and the test set was used for evaluating the effect
of model learning. The training set contained 500 cores NMR data, and the test dataset
contained 80 cores NMR data.



Appl. Sci. 2021, 11, 3589 4 of 11

2.3. Principles of Deep Neural Networks
2.3.1. Feedforward Algorithm of Deep Neural Networks

In the deep neural network, the final output value of the model is obtained by complex
nonlinear operations on the input vector, weight vectors and bias vectors [12]. Assuming
that the deep neural network has a total of six layers of neurons, this article took the i-th
neuron in the L-th layer as an example for calculation: zL

i = ∑
Ml−1
j=1 w(L)

ij a(L−1)
j + b(L)

i

a(L)
i = fL

(
z(L)

i

) (2)

where: zL
i represents the input value of the i-th neuron in the L-th layer, w(L)

ij is the weight

of a(L−1)
j connected to zL

i , b(L)
i is the bias of a(L−1)

j connected to zL
i , a(L)

i is the output value
of the i-th neuron in the L-th layer, fL(·) represents the activation function of the i-th neuron
in the L-th layer, when L = 6, a(L)

i represents the output vector.

2.3.2. Back Propagation Algorithm of Deep Neural Networks

The backpropagation algorithm was used to calculate the partial derivative of the
loss function ζ(y, ŷ) to the model parameters, which was used to update the model’s
parameters. Because the calculation of ∂ζ(y,ŷ)

∂w(l)
ij

involves the partial differentiation of the

vector to the matrix, the calculation process is cumbersome and complicated, so the back-
propagation algorithm obtained according to the chain rule could be greatly simplified the
calculation process [13]. The meaning of the backpropagation algorithm is: the error term
of the l-th layer was obtained by multiplying the weight of the error term of the neurons of
the (l + 1)-th layer and the gradient of the activation function of the neurons of the l-th
layer [14]. The Equation (3) is the calculation formula of the sensitivity error term of the
l-th layer neurons. After calculating the sensitive error term of the l-th layer, the partial
derivative of the loss function to the weight and bias of the neuron of the l-th layer could
be obtained to achieve the parameter update. Equations (3)–(5) are the calculation formula
for the above process.

δl =
∂ζ(y, ŷ)

∂z(l)
= f ′l

(
z(l)
)⊙((

W(l+1)
)T

δ(l+1)
)

, (3)

∂ζ(y, ŷ)
∂W l = δl

(
a(l−1)

)T
, (4)

∂ζ(y, ŷ)
∂b(l)

= δl , (5)

where: l represents the l-th neuron layer, δl the sensitive error term of the l-th neuron
layer, a(l−1) is the output value of the (l-1)-th neuron layer, and f ′l (·) presents the deriva-
tive of activation function of the l-th neuron layer, � represents the vector product, W l

represents weights value of the l-th neuron layer, and b(l) represents all the biases of the
l-th neuron layer.

2.3.3. Adam Optimization Algorithm

In the deep neural network’s training process, Adam was selected as the optimizer
for model parameter update. Adam is a fusion of momentum method [14] and RMSprop
algorithm [15]. It not only uses momentum as the direction of parameter update, but also
adjusts the learning rate adaptively to ensure the accuracy and stability of the gradient
descent during training [16]. The Adam optimizer calculates the exponentially weighted
average of the gradient square g2

t on the one hand (similar to the RMSprop algorithm), and
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on the other hand calculates the exponentially weighted average of the gradient gt (similar
to the momentum method). The Adam optimization is expressed by:{

Mt = β1Mt−1 + (1− β1)gt
Gt = β2Gt−1 + (1− β2)gt × gt

, (6)

where: β1 and β2 are the attenuation rates of the two moving averages, usually β1 =
0.9, β2 = 0.99, Mt is the exponentially weighted average gradient, and Gt is the square of
the average gradient.

When M0 = 0, G0 = 0, the value of Mt and Gt will be smaller than the true mean and
variance at the beginning of the iteration, especially when β1 and β2 are both close to 1, the
deviation will be greater, so the deviation should make corrections: M̂t =

Mt
1−βt

1

Ĝt =
Gt

1−βt
2

, (7)

where: M̂t and Ĝt are deviation correction values of the exponentially weighted average
gradient and the average gradient, β1 and β2 are attenuation rates of the two moving
averages, and t is the time step.

Finally, the modified gradient value was used to update parameters of the model, and
the update formula is:

θ = θ− α√
Ĝt + ε

M̂t, (8)

where: α is the learning rate, ε is the constant of stable value, ε = 1× 10−8, θ represents
parameters of the model.

2.4. Experimental Comparison Models
2.4.1. BP Neural Network Model

Back propagation neural network (BPNN) is a forward-propagation neural network
model trained based on the back error propagation algorithm. Through training, it learns
the inherent feature relationship between the input vector and the output vector, and
continuously updates the model weights through the gradient descent algorithm to achieve
non-linear mapping between input features and output values [14]. The BPNN model in
this experiment consisted of an input layer, a hidden layer, and an output layer. The neuron
node of input layer was set to 55, the number of hidden layer neurons was 200, the output
layer neuron node was set to 1, and the learning rate was set to 0.005. The Relu(Rectified
Linear Units) function is used as the activation function of the hidden layer. The maximum
number of training iterations was 1000 times.

2.4.2. K-Nearest Neighbor Regression Model

The K-nearest neighbor (KNN) model is a simple supervised learning algorithm. The
input of the K-nearest neighbor method is the feature vector of the instance, it corresponds
to the point in the feature space, and the output is the predicted value of the instance [17].
When the K-nearest neighbor model is used as regression model, it is assumed that a
training data set is given, and the label value of each data has been calibrated; The KNN
model calculates the average value of label values of the K nearest neighbor training
instances of the new instance as the output of the model. In this experiment, the K value of
the KNN model was set to 10, and the method of calculating the distance between different
instances was the Euclidean distance.

2.4.3. Support Vector Regression Model

Support vector regression (SVR) model is one of the most widely used models in
machine learning. It was proposed by former Soviet Union scientists Vladimir Vapnik and
Alexey Chervonenkis in 1963 and 1995 respectively [18]. For a sample data (x,y), general
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regression models are usually based on the direct difference between the model’s predicted
value f(x) and the true label value y to calculate the loss. Only when the predicted value
f(x) is completely equal to the y value, the regression model’s loss function is 0. There is
a big difference between the SVR model and the general regression model, which is SVR
allows a maximum deviation of ε between the predicted value f(x) and y. Only when the
direct deviation between f(x) and y is greater than ε, SVR will calculate the error between
the two. It is equivalent to taking f(x) as the center and establishing an interval band with
a width of 2ε. When the predicted value of the sample falls within the interval band,
the prediction is considered accurate [19]. SVR tries to find the optimal hyperplane to
minimize the deviation from all sample points to the optimal hyperplane. Seeking the
optimal hyperplane is equivalent to finding the maximum interval. In this experiment, the
support vector regression model used the radial basis function as the kernel function, the
regularization constant C was set to 5 and gamma was set to 0.02.

2.5. Model Evaluation Method

This article used the root mean square error function (RMSE) and the R2 coefficient to
measure the prediction accuracy of the model. The R2 coefficient is a method to measure
the correlation between true values and predicted values. The formula is as follows:

R2 = 1− ∑m
i=1( f (xi)− yi)

2

∑m
i=1(yi − y)2 (9)

where: f (xi) represents the predicted value of the i-th sample’s the movable fluid percent-
age, yi represents the true movable fluid percentage of the i-th sample, and y represents
the average value of true movable fluid percentage of all samples.

RMSE reflects the error between the true movable fluid percentage of the reservoir
and the predicted movable fluid percentage. The formula is as follows:

RMSE =

√
∑N

i=1(yi − f (xi))
2 × 1

N
, (10)

where: yi is the true movable fluid percentage of the i-th sample, f (xi) is the predicted
movable fluid percentage of the i-th sample. N is the total number of samples.

3. Optimization of Deep Neural Network’s Hyperparameters

This experiment used Tensorflow developed by Google as the implementation plat-
form. Tensorflow supports automatic derivation and doesn’t need to manually write the
derivation code, and the neural network’s structure can be freely designed [20]. Hornik
found that any function can be approximated when using a neural network with more
than three layers through research [21]. In the training process of the model, it is necessary
to optimize the hyperparameters, otherwise the model is prone to high deviation or high
variance. In this experiment, L2 regularization was selected as a method to prevent the
model overfitting, and the regularization coefficient was set to 0.01. Relu was selected as
the activation function to accelerate the update of parameters

3.1. Optimization of Learning Rate

The learning rate is an important hyperparameter in deep neural networks’ training.
In the gradient descent method, the value of the learning rate is very critical. If the learning
rate is too large, the model cannot converge, and if the learning rate is too small, the
convergence speed of the model is too slow. The experiment began to set DNN model
parameters based on experience, given the hidden layer n = 2, the neural network structure
was 55-200-160-1, and the number of training times was 1000. Figure 3 shows changes of
RMSE in training set under different learning rates during training. When the learning rate
was 0.01, the model’s training error value dropped rapidly in the early stage of training,
and it could also converge at the end of training. Compared with other curves, the root
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mean square error curve with a learning rate of 0.01 was smoother and had less fluctuation,
so 0.01 was selected as the optimal learning rate for this experiment.
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Figure 3. The change curves of root mean square error (RMSE) on training dataset under different
learning rates.

3.2. Optimization of Hidden Layer Neuron Nodes

In order to determine the optimal number of neuron nodes in the hidden layer, this
article used a grid search method to optimize the number of neuron nodes. Grid search
is a method to find a suitable set of hyperparameter configurations by trying all the
combinations of hyperparameters. Assuming that there are a total of K hyperparameters,
and the K-th hyperparameter can take mk values, then the total number of configuration
combinations is m1 × m2 × · · · × mk. When there are too many hyperparameters or when
a certain hyperparameter takes more values, the number of hyperparameter configuration
combinations will increase explosively, which leads to a significant increase in the time
cost for the optimal number of hidden layer neuron nodes. In order to reduce the time for
searching the optimal number of hidden layer neurons, this paper adopted the following
two methods:

(1) Set the possible value of each hyperparameter at an interval of 20, and the value
range of each hyperparameter was 20 to 300. Taking the neuron node of the first hidden
layer as an example, the possible values of the neuron node were 20,40,60,· · · · · · ,300.

(2) On the premise that the values of the hyperparameters that were optimized by
grid search are fixed, the values of other hyperparameters were further optimized. Taking
the optimization of the number of neuron nodes in the third hidden layer as an example,
it was assumed that the optimal number of neuron nodes in the first and second hidden
layer after grid search was 200 and 160. When optimizing the neuron node of the third
hidden layer, the neuron node of the first hidden layer was set to 200 and the neuron node
of the second hidden layer was set to 160, then the grid search method was used to select
the optimal neuron node of the third hidden layer. The method for optimizing the number
of neurons in other hidden layers was similar to the above process.

After grid search optimization, the optimal structure of DNN models with different
hidden layers was finally obtained as shown in the Table 1:
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Table 1. The number of optimal neurons in different hidden layers.

Number of Hidden Layers The Number of Neurons in Each Hidden Layer

n = 2 200-160

n = 3 200-160-120

n = 4 200-160-120-80

n = 5 200-160-120-80-60

n = 6 200-160-120-80-60-20

n = 7 200-160-120-80-60-20-20

3.3. Optimal Number of Hidden Layers

In order to explore the inherent relationship between the prediction accuracy of
movable fluid percentage of unconventional reservoirs based on the DNN model and the
depth of the neural network, this experiment carried out a sensitivity analysis between the
prediction accuracy and the depth of the neural network. Learning rates of experimental
models with different hidden layers were all set to 0.01. The number of hidden layer
neurons in different experimental models is shown in Table 1. It can be seen from Figure 4
that as the number of hidden layers increased, the prediction error of the deep neural
network model on the test dataset continued to decrease, and the R2 correlation coefficient
continued to increase. When n = 5, the prediction result of the deep neural network model
on the test dataset after training was the best (RMSE = 2.901, R2 coefficient = 0.9753). This
is because the complexity of the model increased as the depth of the model increased, the
DNN model’s ability to fit the mapping relationship between input features and output
parameters was also increasing. When the number of hidden layers of the deep neural
network exceeded 5, the prediction effect of the model began to deteriorate. When n = 7,
the prediction accuracy of the model was even lower than that of n = 3. This is because the
complexity of the model was too high, which led to the model’s ability to fit the training
set too strong. The model’s strong ability to fit the training set led to the deterioration of
the model’s robustness, which made the DNN model’s prediction accuracy on the test set
worse. Based on the prediction accuracy of the model in Figure 4, a deep neural network
with five hidden layers was selected as the best model to predict percentage of movable
fluid of unconventional reservoirs.
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Figure 4. Prediction effect of DNN models under different hidden layers on test dataset.

4. Experimental Result
4.1. Training and Evaluation Results of Different Models

Deep neural network and three contrast regression models were used to predict
the percentage of movable fluid in unconventional reservoirs. The prediction results are
shown in Table 2. Because the K-nearest neighbor model did not have an explicit training
process [22], so KNN model could not express the RMSE and R2 coefficients on the training
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set. It can be obtained from the data in Table 2: whether it was on the training set or the
test set, the deep neural network achieved better prediction results than the other three
comparison models. Compared to the BPNN model, KNN model, and SVR model, the
prediction errors of the deep neural network model on the test dataset were reduced by
45.89%, 61.74% and 61.84%, and the predicted correlation coefficients R2 were increased
by 6.51%, 17.29% and 17.40%. In summary, the deep neural network model had a good
ability to extract the shape features of the core NMR T2 spectrum. After models learned
the training set data, the DNN model had the smallest prediction error (RMSE = 2.901) and
the highest prediction correlation coefficient (R2 = 0.9745) for the test dataset, which also
showed that the DNN model had the best robustness.

Table 2. Evalution results of different models.

Model Data Set RMSR R2 Correlation Coefficient

DNN
Training set 1.487 0.9926

Testing set 2.901 0.9745

BPNN
Training set 4.359 0.9371

Testing set 5.362 0.9158

KNN
Training set —— ——

Testing set 7.583 0.8316

SVR
Training set 5.822 0.8878

Testing set 7.602 0.8308

4.2. Application Results of the Deep Neural Network Model

In order to further verify the prediction effect of the deep neural network model on
the percentage of movable fluid in unconventional reservoirs, we performed the prediction
of the percentage of movable fluid in 10 unconventional reservoir cores from Changqing
Oilfield. Firstly, the core was saturated with oil, and the nuclear magnetic resonance T2
spectrum data of the saturated oil core were measured by the laboratory’s nuclear magnetic
resonance instrument. Then the laboratory method of measuring the core movable fluid
percentage was used to measure the true movable fluid percentage of this 10 cores. Secondly,
the trained deep neural network used the nuclear magnetic resonance T2 spectrum data
of oil-saturated cores to predict the percentage of movable fluid. The predicted value of
the model and the true value obtained in the laboratory are shown in Figure 5. From the
Figure 5, it can be drawn: (1) the prediction result obtained by the deep neural network
model (DNN) was the closest to the result measured by the laboratory method, followed
by the BP neural network model, and the worst prediction model was the SVR; (2) on the
whole, the predicted value of the machine learning model was greater than the movable
fluid percentage measured in the laboratory; (3) compared with the BPNN, KNN, and
SVR models, the prediction RMSE of the DNN model was reduced by 39.65%, 51.18%,
and 54.35%.
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Figure 5. Prediction results of different models.

5. Conclusions

1. The deep neural network model achieved the complex non-linear mapping from the
core NMR T2 spectrum to the movable fluid percentage, and the prediction effect of DNN
model was compared with that of BPNN, KNN and SVR model. The experimental results
demonstrated that for the 10 core data of Changqing Oilfield, the R2 correlation coefficient
between the predicted value of the DNN model and the real movable fluid percentage of
core is as high as 0.9632. The prediction RMSE of the DNN model is reduced to 2.447, and
a good prediction effect is achieved.

2. Compared with the method of predicting unconventional reservoir saturation based
on logging data, the method proposed in this article to predict the percentage of movable
fluid in unconventional reservoirs based on laboratory NMR data has achieved better
prediction results and faster prediction speed. Therefore, this method can provide certain
guidance for the intelligent development of laboratory reservoir parameter measurement.

3. The study found that the prediction accuracy of DNN model gradually decreased
when the number of hidden layers of the deep neural network model was greater thanfive.
The reason for the above phenomenon may be that there are fewer training data and the
model’s overfitting in the later stage of training. In the future research work, the above two
aspects will be optimized: (1) increasing the core NMR data of the training set; (2) taking a
variety of methods to solve the overfitting in the later stage of model training.
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