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Abstract: Researchers often deal with the synthesis of the kinematic structure of a robotic manipulator
to determine the optimal manipulator for a given task. This approach can lower the cost of the
manipulator and allow it to achieve poses that might be unreachable by universal manipulators in an
existing constrained environment. Numerical methods are broadly used to find the optimum design
but they often require an estimated initial kinematic structure as input, especially if local-optimum-
search algorithms are used. This paper presents four different algorithms for such an estimation
using the standard Denavit–Hartenberg convention. Two of the algorithms are able to reach a given
position and the other two can reach both position and orientation using Bézier splines approximation
and vector algebra. The results are demonstrated with three chosen example poses and are evaluated
by measuring manipulability and the total link length of the final kinematic structures.

Keywords: manipulator design; robot kinematics; synthesis of kinematic structure

1. Introduction

Nowadays, manufacturing industry, the most common type of robotic manipulator
has six serial axes (degrees of freedom—DoFs) that are arranged in a so-called universal
kinematic structure, e.g., the robots of ABB, KUKA, Fanuc, Yaskawa, and many others. In a
very simplified way, the typical process for the deployment of a robot is to analyse the
manufacturing process and workplace area first, followed by the choosing of a universal
robotic manipulator and simulating the process. If the manipulator can reach the desired
poses and fulfil the given task, further deployment can be considered.

However, using this universal kinematic structure is not always necessary, when a
manipulator with fewer axes is suitable to perform the given task, or even possible, if the
universal manipulator can face unavoidable collisions in an already existing environment.
Additionally, they might not fulfil the desireed advanced operation conditions, such as
manipulability [1] and kinematic reliability [2]. Therefore, researchers are focused on the
topic of the synthesis of the kinematic structure of manipulators, which means finding
such a kinematic structure that is optimal for a given task. This approach of deployment of
highly customised manipulators may lead to benefits like lowered energy consumption,
accelerated manufacturing process cycles, or deploying manipulators in highly dense-built
workplaces. An example of such a general structure is presented by Brandstötter et al., who
delivered the so-called curved manipulator (CuMa) [3] with possible modifications of its
structure during the operational process [4]. This is achieved by changing the temperature
in the links so they become flexible. A different approach to a deformable manipulator was
taken by Xu et al. [5], where the links are composed of a few components and it is possible
to change the orientation between them. Clark et al. [6] uses air pressure to change the
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kinematic structure of the presented malleable robot. The custom design of manipulators is
desired not only in the manufacturing industry, but for example, in healthcare for helping
with human upper limb rehabilitation [7] and shoulder joint rehabilitation [8].

There are two approaches to the synthesis of the kinematic structure of a manipulator.
Analytically, it was solved by Hauenstein et al. [9] in the synthesis of three-revolute spacial
chain for five poses. However, once a path becomes more complex and requires more
degrees of freedom (more manipulator axes), the numerical approach is applied utilising
optimisation algorithms. Among them, evolutionary robotics with genetic algorithms (GA)
are probably the most common. Chocron et al. [10] used an adaptive multi-chromosome
evolutionary algorithm to build a modular manipulator. Furthermore, GA can be used to
build a manipulator from adaptive modules to perform a desired task [11]. Pastor et al. [12]
compared straight, rounded, and curved mechanism links synthesised using GA. Val-
samos et al. created so-called pseudo-joints (links which can be modified) and proposed
a GA that tries to find the kinematic structure with the best manipulability [13]. It was
later verified in an experiment with a real manipulator [14]. The synthesis of a parallel
manipulator is addressed in [15]. As an example of non-industrial application, the work by
Zeiaee et al. [16] deals with the optimisation of an eight-DoFs upper-limb exoskeleton.

In addition to GAs, the global optimum of an objective function can be searched with
Simulated Annealing algorithm [17] or by a heuristic-guided tree search algorithm [18].
Another numerical method for finding the optimal manipulator for a given task is to search
for a local minimum of an objective function. To solve this, a nonlinear programming
(NLP) can be used, as it was implemented by Dogra et al. [19] for the design of a modular
manipulator. In the paper, an optimal kinematic structure was proposed based on the
minimisation of the joint torques. Another usage of NLP is trying to find an optimal design
minimizing the path length in joint space [20].

The results of the already described papers [19,20] seem promising in their application
of nonlinear programming to solve task-based custom manipulator design, however, there
is one unanswered question in their work. In general, nonlinear programming tradition-
ally requires that a starting point is given as part of the problem data, and comparative
numerical testing is done using these traditional starting points [21]. In the case of robotic
manipulators, if there is a given random path for a robotic manipulator, how should the
starting point (initial values, initial estimation) of its kinematic structure look like?

The work [19] mentions a set of input values without any detailed explanation of how
those values were determined. In [20], eight initial seeds are applied, but they are random
values, which might be a cause of why no solution was found at all in some cases. In [17],
they searched for a global optimum; however, the input values are also random, which may
extend the time of solving the objective function. Even in a book by Ghafil et al. [22] which
serves as an introduction to the optimisation of kinematic structures, the initial values for
all described methods are obtained randomly without any detailed discussion. Therefore,
a possible answer to the previously stated question will be addressed in this paper using
multiple approaches.

In this paper, a geometric analysis to estimate kinematic structures and related cal-
culations are proposed and discussed. The outcomes may avoid relying on randomness,
which in the case of local-optimum-search algorithms may more frequently lead to conver-
gence, making them reliable but still much faster than global-optimum-search methods.
Moreover, the results can also be used in the previously mentioned algorithms using GAs,
where they can serve as an optional first generation input, and in global-optimum-search
algorithms, where they can reduce the time needed for the optimisation. In addition to
that, the procedure may serve as an input for other custom manipulator design challenges
such as collision avoidance [23].

A Denavit–Hartenberg notation [24] (standard DH parameters) was applied in the
presented algorithms to obtain a general kinematic structure of a robot. The DH parameters
were widely used, however, they also bring some disadvantages in the case of general
structures. These are discussed later. Some algorithms behind the automatic placement of
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DH parameters have already been presented. In [25], a vector-algebra is applied to extract
the parameters. Corke [26] creates a string of elementary translations and rotations from
the user-defined base coordinate to the end-effector and factorises the string afterwards.
An approach by Rajeevlochana et al. [27] is using line geometry to obtain the parameters.
In addition to that, some researchers proposed their algorithms and they also identified
(and verified) the DH parameters with an external sensor device in simulation [28] or
experiments [29]. However, all of these algorithms were applied to already existing robots
or similar devices. On the other hand, the algorithms presented in this paper are here
to determine and “create” a non-existing manipulator (its kinematic structure) that can
achieve a freely given pose.

2. Materials and Methods

When an algorithm is searching for a local minima of a function, the results may
differ upon the choice of initial values. To find the optimal solution for two initial values
with different outcomes, the cost function has to be compared afterwards. More accurate
initial values can lead to fewer iterations that the algorithm needs, which can also save
computing time. In this section, four algorithms of automatic assignment of DH parameters
are presented, so they can serve as initial values for the synthesis of kinematic structure.
The inputs are the position of the base of a robot, its tool-center point (TCP) pose, and the
number of joints.

In this paper, we denote the transformation matrix between two frames as J with
axis vectors and position coordinates as shown in Equation (1). The ~n (normal) is the X
axis vector, the~o (orientation) is Y axis vector, the~a (approach) is Z axis vector, and the~t
(translation) is the position coordinate vector of a pose. J is a special Euclidean group of
rigid body displacements in three dimensions (SE3) representing 3D rigid-body motion:

J =

~n ~o ~a ~t

0 0 0 1

 (1)

We also use unit vectors of the X, Y, and Z axes. They are denoted as~i,~j, and~k:

~i =

1
0
0

; ~j =

0
1
0

; ~k =

0
0
1

 (2)

For visualisation and work with SE3 groups, we used the MATLAB®, and Robotics
Toolbox that was made by P. Corke. It is described in his book [30] and accessible as open
source Github repository [31].

DH parameters are the most suitable and easily applicable technique for kinematic
structures that have parallel or orthogonal axes. The typical procedure is that one has a
robot and places the coordinate frames following the convention [24]. However, what to do
when there is a given pose that is needed to be reached while no robot is chosen yet? This is
the problem for the synthesis of kinematic structure. There is one important issue related to
DH parameters. Between two general poses (right-hand rule following coordinate frames),
it is uncertain if the transformation matrix Ji−1,i from (i − 1)th pose to ith pose can be
achieved following the typical procedure as the multiplication of a rotation matrix of θi
around the zi−1 axis, the translation matrix of di along the zi−1 axis, the translation matrix
of ai along hte xi axis, and the rotation matrix of αi around the xi axis, as shown in the
following equations:

Rot(zi−1, θi) =


cosθ −sinθ 0 0
sinθ cosθ 0 0

0 0 1 0
0 0 0 1

 (3)
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Trans(zi−1, di) =


1 0 0 0
0 1 0 0
0 0 1 di
0 0 0 1

 (4)

Trans(xi, ai) =


1 0 0 ai
0 1 0 0
0 0 1 0
0 0 0 1

 (5)

Rot(xi, αi) =


1 0 0 0
0 cosα −sinα 0
0 sinα cosα 0
0 0 0 1

 (6)

Ji−1,i = Rot(zi−1, θi)Trans(zi−1, di)Trans(xi, ai)Rot(xi, α) (7)

It is clear that rotation and translation around and along the y axis are missing to
achieve all possible poses. In DH convention, it is mitigated by placing the joint coordinate
frames in a specific way and applying Equation (7), as explained in [24]. However, if there
are two general poses (i− 1)th and ith which do not follow DH convention, it is possible
to find a common perpendicular between their two zi−1 and zi axes. Please see Figure 1.
Rotation around zi−1 to the direction of the perpendicular is θi. di is the distance from the
xi−1 axis to the intersection point P of the perpendicular and zi−1 axis. The distance along
the perpendicular is equal to the ai distance between these two frames. Finally, the rotation
around the xi axis to the direction of zi is αi. If another displacement of di+1 is added and a
rotation θi+1 is applied, the previously unreachable (by four DH parameters) general pose
ith becomes achievable by four DH parameters of (i− 1)th joint and two DH parameters
di+1 and θi+1 of the ith joint. It can also represent an end-effector coordinate frame if the
(i− 1)th joint was the last joint. This approach is presented in detail in [27,29]. For the
following calculations, we enhanced a script made by Brodsky [32] to find a common
perpendicular and intersection points P and Q. This can be found in the Supplementary
Material of this paper.

We used 3 poses to demonstrate the strong and weak points of the four presented
algorithms to synthesise manipulators guiding their end-effector through the given position
or pose, so everyone can choose the right solution for its implementation. They are also
compared in Section 3 by manipulability and arm length. The first pose is a general one.
The second pose is also general, but with a small offset between its Z axis and the Z axis of
the base frame. The third pose has the parallel Z axis with the base Z axis. The poses are
visualised in Figure 2:

Pose(1) =


−0.50 −0.18 −0.84 −1.0
−0.06 0.98 −0.17 0.9
0.86 −0.02 −0.50 0.8

0 0 0 1

 (8)

Pose(2) =


0.81 −0.34 −0.46 −0.4
0.48 −0.02 0.87 0.6
−0.30 −0.93 0.14 0.7

0 0 0 1

 (9)

Pose(3) =


0 1 0 0.4
1 0 0 0.6
0 0 −1 0.7
0 0 0 1

 (10)
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Figure 1. The principle of obtaining DH parameters between two general poses. Standard DH
parameters are green; additional parameters are marked with blue colour.

Figure 2. The poses (red) chosen for the demonstration of the working principle. Base coordinate frame has a black colour.
Pose(1) is on the left, Pose(2) is in the middle, and Pose(3) is on the right.

Two of the four presented algorithms utilised Bézier curves (splines) which are easy
to implement between two given coordinate frames. For the presented calculations, only
four control points are required to define a Bézier curve. We used a script by Bai [33] to
calculate the curve. The control points P1−4 were calculated using the following equations,
where~tb is the base point coordinate,~tp is the pose point coordinate,~ab is the rotational
vector of the Z axis of the base,~ap is the rotational vector of the Z axis of the pose, and p is
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the parameter related to the Euclidean distance between the base and the pose. The Bézier
splines are visualised in Figure 3 for the chosen poses.

P1 =~tb (11)

P2 =~tb + p~ab (12)

P3 =~tp − p~ap (13)

P4 =~tp (14)

p =
||~tp −~tb||

2
(15)

Figure 3. Bézier splines (blue curves) between the poses and base; control points are shown as red circles.

The generated kinematic structures that have served as examples in this paper have
4 joints; however, the presented algorithms are general and can provide a solution from 3 to
an unlimited number of joints. In the following subsections, all 4 procedures are presented.
The types A and B only deal with the position (translational part) of a given pose, so they
do not fulfil the given orientation. However, this might be enough in some cases. The other
two types C and D are able to achieve a pose including orientation using the common
perpendicular approach, but in some specific poses it generates structures with joints in
collision. The A and C types are obtained using vector algebra only, and the B and D types
use Bézier’s curve approximation.

Three variables are input for all presented algorithms. It is the transformation of the
robot base, the transformation of the TCP pose, both with respect to the world coordinate
frame, and the desired number of joints. In our case, the base is an identity matrix. We
used 3 transformations of the poses presented before, and the number of joints is four,
as already said.
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2.1. Type A—The Nearest Distance to Achieve a Position

This simple structure is obtained by finding the distance between the poses projected
into the XY base plane. Only a positional vector of a pose is reached while the orientation is
not taken into account. The implementation of such a structure is easy and straightforward.
The idea is presented in Figure 4:

Figure 4. The schematic of type A estimation; the base frame is black, the pose frame is red, and the
end-effector frame is green and does not fulfil the orientation of the pose.

The first step is to find the length of a0..n—the distance between joints in the X axis
direction. The length is the projection of~tp, the pose position vector, in the XY plane of
the base, so only the X and Y coordinates are applied in Equation (16). n is the number
of joints:

a1..n =

√
(~tp,x −~tb,x)2 + (~tp,y −~tb,y)2

n
(16)

Then, find the length of d1—the offset of the joint along the Z axis. Only the Z axis
coordinates of the two position vectors are applied:

d1 =~tp,z −~tb,z (17)

The θ1..n are joint variables, and their offset is set to 0 degrees. The other parameters,
d2..n and α1..n can be set either to zero or they can be freely defined as ±values, for example.
We chose α1 = π/4, α2 = −π/4, etc. One must be careful in the case of an even/odd
number of joints—the sum of such tweaks needs to be equal to zero.

2.2. Type B—Joints on Bézier Curve to Achieve a Position

This method places joints between the base and the pose on a Bézier curve. To be
able to obtain DH parameters, the proposed algorithm is orienting the (i− 1)th joint (its
rotational matrix) in a way that the ith joint lies in the XZ plane of the previous joint.
The schematic is shown in Figure 5:

Using Equations (11)–(15), the Bézier spline is approximated between a given base
and a pose. The number of approximated points is equal to the number of joints n. Q1..n is
the set of these points–coordinates of each point with respect to the base frame.

Let us define a set J1..n of SE3 objects representing the translation and orientation of the
joints in the manipulator’s default position. As a first step, all J1..n are set to be equal to the
given base (in our case, an identity matrix). We also define an SE3 object Jn+1 representing
the given end-effector pose. Now, for joints J2..n, the following procedure is done.
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Figure 5. The schematic of type B estimation; the base frame is black, the pose frame is red, and the
end-effector frame is green and does not fulfil the orientation of the pose. Bézier spline is shown as a
light blue curve.

The ith joint is equal to the previous (i− 1)th joint:

Ji = Ji−1 (18)

The frame Ji is translated on the Bézier curve changing its translation vector~ti:

~ti = Qi (19)

The position vector~ti of Ji is expressed in the coordinate frame of the previous Ji−1
using its inverse matrix:

~t′ i = J−1
i−1

~ti (20)

A projection of the~ti vector in the XY plane of the Ji−1 frame is determined:

~t′′ i = ~t′ i −

 0
0

~t′ i,z

 (21)

The angle θi (DH parameter) between the unit vector ~i of the Ji−1 frame and the
projection of the~ti vector is calculated as

θi = tan−1

(
||~i× ~t′′ i||
~i · ~t′′ i

)
(22)

While using a right-handed coordinate frame, it is necessary to check if an angle is
rotating around an axis in the positive (counter clockwise) or negative (clockwise) direction.
To determine this, we used the projection property of the dot product between the two
vectors. In this case, if the dot product of the Xi axis is in the negative direction of the Yi−1
axis, the angle θi has to be multiplied by −1:

θi =

{
−θi, if~j · ~t′′ i < 0
θi, otherwise

(23)

Now, Ji can be updated using the matrix multiplication:

Ji = JiRot(zi−1, θi) (24)
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Thanks to the known translations, i and ai, between the frames (from the Bézier
curve approximation), and the calculated θi, only the angle αi is missing among the DH
parameters. The steps to determine it are similar as in the case of θ. Following the DH
convention, the ith and (i + 1)th frames are involved.

The position vector of Ji+1 on the Bézier curve is given:

~ti+1 = Qi+1 (25)

Position vector ~ti+1 of Ji+1 is expressed in the coordinate frame of the currently
determining frame Ji using its inverse matrix:

~t′ i+1 = J−1
i
~ti+1 (26)

A projection of the~ti+1 vector in the YZ plane of the Ji frame is calculated:

~t′′ i+1 = ~t′ i+1 −

~t′ i+1,x
0
0

 (27)

The angle αi is between the unit vector~k of the Ji frame and the projection of the~ti+1
vector, calculated as the inverse tangent fraction of the cross and dot products of those
two vectors:

αi = tan−1

(
||~k× ~t′′ i+1||
~k · ~t′′ i+1

)
(28)

Using a right-hand rule for coordinate frames, if the dot product of the Zi axis is in
the negative direction of the Yi+1 axis, the angle θi has to be multiplied by −1. Yi+1 is
calculated as a cross product of ~t′′ i+1 and~i vectors:

αi =

{
−αi, if (~t′′ i+1 ×~i) ·~k < 0
αi, otherwise

(29)

Now, the final form of Ji that fulfils the DH convention between (i− 1)th and ith can
be obtained:

Ji = JiRot(xi, αi) (30)

This procedure works smoothly for all joints. However, it will probably not be possible
to obtain such DH parameters between the last joint Jn and the given pose Jn+1 to reach
the pose with the right orientation. Therefore, this algorithm is extended as the type D
estimation in Section 2.4.

2.3. Type C—Achieving a Pose with Common Perpendicular

This algorithm finds a common perpendicular between the Z axis of the base and the
Z axis of the pose. The joints are placed on this perpendicular line, and the last joint is
oriented in the direction of the Z axis. Both the position and orientation can be achieved
using this approach, as Figure 6 shows.

At first, a common perpendicular and intersection points P and Q are determined
between the Zb and Zp axes using the script made by Brodsky [32]. However, his algorithm
was not providing good results if the 2 lines were parallel, so we enhanced it and added
some functionality to mitigate this issue.

The next step is to calculate the angle αsum between those two axes:

αsum = tan−1
( ||~ab × ~ap||

~ab · ~ap

)
(31)
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Figure 6. The schematic of the type C estimation; the base frame is black, the pose frame is red, and
the end-effector frame is green and coincident with the pose.

Again, when using a right-handed coordinate system, it is necessary to determine
whether the angle is positive or negative. We check the pose Zi+1 axis as a projection in the
base Yi axis:

αsum =

{
−αsum, if ~ob · ~ap < 0
αsum, otherwise

(32)

α1..n is the angle between the Z axes of particular joints:

α1..n−1 =
αsum

n− 1
(33)

αn = 0 (34)

Now, we can calculate the rest of the DH parameters. a1..n is the distance between the
joints. l is the length of a common perpendicular, and n is the number of joints:

a1..n−1 =
l

n− 1
(35)

an = 0 (36)

d0 is the distance from the base coordinate frame to the P-intersection point of the ~ab and
common perpendicular. dn is the distance from the Q, the intersection point of the ~ap and
a common perpendicular, to the pose coordinate frame. dn is also the translation of the
end-effector from the last joint:

d0 = (P− ~tb) · ~ab (37)

d1..n−1 = 0 (38)

dn = (~tp −Q) · ~ap (39)

2.4. Type D—Joints on Bézier Curve while the Last Lies on Common Perpendicular to Achieve
a Pose

This method extends type B estimation by adding a common perpendicular approach,
used in type C, between the two last joints. This assures reaching the pose including orien-
tation, as shown in Figure 7. The beginning steps are the same as in type C, but only from
J1 to Jn−1. The transformation of the last joint is determined using the following procedure.
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Figure 7. The schematic of the type D estimation; the base frame is black, the pose frame is red, the
end-effector frame is green and coincident with the pose. Bézier spline is shown as a light blue curve.

Again, a common perpendicular and the intersection points P and Q are found
between the joint Jn−1 and the TCP pose Jn+1 using the already presented ways. Jn is set
equal to Jn−1:

Jn = Jn−1 (40)

Angle θn between Xn−1 and Xn axes is obtained:

θn = tan−1

(
||~nn−1 × ~PQ||
~nn−1 · ~PQ

)
(41)

Right-hand rule check is performed:

θn =

{
−θn, if~on−1 · ~PQ < 0
θn, otherwise

(42)

Jn is rotated around Zn−1 axis afterwards:

Jn = JnRot(zn−1, θn) (43)

Translation of the Jn along the Zn and Xn is obtained by changing its translational
vector ~tn, and it is equal to the coordinates of point Q:

~tn = Q (44)

Angle αn between Zn and Zn+1 axes is calculated:

αn = tan−1
(
||~an ×~an+1||
~an ·~an+1

)
(45)

Right-hand rule check, if the dot product of Zi+1 axis is in the positive direction of the
Yi axis, the angle αn has to be multiplied by −1:

αn =

{
−αn, if ~on ·~an+1 > 0
αn, otherwise

(46)

The final transformation matrix of the last joint Jn is obtained:

Jn = JnRot(xn, αn) (47)
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From this point, when all frames J1..n representing the joints are known, it is possible
to derive the DH parameters between them.

3. Results

This section presents the kinematic structures generated by the presented algorithms
for the three poses defined earlier (Figure 2). The results are discussed and later compared
by manipulability measure and manipulator length. A table with calculated DH parameters
is also included. The visualisation of the final kinematic structures is shown in Figures 8–10.

The types of estimation A and B are not able to reach a pose in terms of orientation
in general; however, in some cases (as shown in Figure 10b) the real solution was found
for the type B. In addition, if compared with a similar D result (Figure 10d) for Pose(3),
solution B provides shorter links. Furthermore, the A and B types are generated in a way
where no collision of joints should occur.

(a) (b)

(c) (d)

Figure 8. Initial estimation results for Pose (1): (a) type A estimation; (b) type B estimation; (c) type C estimation; and (d)
type D estimation.

The type C may perform very well if the Z axes of the base and pose are parallel,
as shown in Figure 10c; on the other hand, if the axes are very close to each other (the
perpendicular distance is short), the joints are in collision, as shown in Figure 9c.
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Placing joints on an approximated spline provides the most general result of the
provided algorithms, as shown in Figures 8d and 9d, but it is struggling with parallel
axes—see Figure 10d. This could be mitigated by tuning the Bézier curve driven point
related to the pose and placing the joints not in a plane that is defined by the two parallel
Z axes.

(a) (b)

(c) (d)

Figure 9. Initial estimation results for Pose (2): (a) type A estimation; (b) type B estimation; (c) type C estimation; and (d)
type D estimation.
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(a) (b)

(c) (d)

Figure 10. Initial estimation results for Pose (3): (a) type A estimation; (b) type B estimation; (c) type C estimation; and (d)
type D estimation.

3.1. Resulting DH Parameters

For a better evaluation, we include Table 1 with the generated DH parameters for
Pose(1). The angles θ are considered as variables with zero offset.
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Table 1. The DH parameters of manipulators for Pose(1).

Joint di (m) ai (m) αi (rad) Joint di (m) ai (m) αi (rad)

1 0.8 0.34 0.79 1 0.64 0.29 −0.39
2 0 0.34 −0.79 2 0.32 0.56 −1.48
3 0 0.34 0.79 3 0.46 0.38 0
4 0 0.34 −0.79 4 0 0 −0.28

a Type A estimation b Type B estimation

Joint di (m) ai (m) αi (rad) Joint di (m) ai (m) αi (rad)

1 1.27 0.36 −0.7 1 0.64 0.29 −0.40
2 0 0.36 −0.7 2 0.32 0.55 −1.48
3 0 0.36 −0.7 3 −0.33 0.30 −0.29
4 0.93 0 0 4 0.83 0 0

c Type C estimation d Type D estimation

3.2. Manipulator Length Comparison

In general, longer links of a manipulator demand more powerful motors because of
higher torques. In Figure 11, there is a bar plot comparing the lengths of the resulting
manipulators. The length was determined using Equation (48), where ai and di are DH
parameters of ith link. n is the number of joints:

L =
n

∑
i=1

√
a2

i + d2
i (48)
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Figure 11. Comparison of the length of generated manipulators for every pose.

3.3. Manipulability Comparison

To compare the results, we decided to evaluate the manipulability of the calculated
kinematic structures. This scalar measure was obtained using the Yoshikawa algorithm [1],
which describes how spherical the end-effector velocity ellipsoid is. It differs between 0
and 1, where the value 1 shows the best manipulability in all axes. If the value is close to 0,
the mechanism might be dealing with singularities.

The results are shown for both translational and rotational motions in Figure 12 as a
logarithmic graph, because the measure differs significantly between particular kinematic
structures. It should be kept in mind that the presented manipulators have less than six
DoFs, which is one of the reasons why the manipulability measure by Yoshikawa evaluates
them with low numbers.

As expected, the type A kinematic structure has to deal with singularities and the
manipulability tends to be the lowest for the given poses. Type B has almost the same



Appl. Sci. 2021, 11, 3548 16 of 19

translational manipulability as type D, but the last two joints are in a singular position,
so the rotational manipulability drops in the case of type B kinematic structure. Type C
performs better than types A and B. In the case of general poses Pose(1, 2), type D provides
the highest manipulability measures. However, for Pose(3) when Z axes are parallel,
the manoeuvrability of the type D algorithm drops under the values of type C.
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Figure 12. Logaritmic graph comparing the manipulability measures for given poses (1–3): (a) for translational motion; and
(b) for rotational motion.

4. Discussion

The outcomes of this paper are aimed to be utilised in the synthesis of kinematic
structures of robotic manipulators. Other applications are also possible, for example,
in rapid kinematic analysis and simulation to evaluate kinematic options if only one
position or pose on a trajectory is desired to be reached. However, only topics related to
the synthesis problem are going to be discussed here.

This paper provided four algorithms to estimate the initial value of a kinematic
structure for later implementation in optimisation algorithms. As mentioned previously,
especially in algorithms searching the local minimum of an objective function, every initial
guess can provide different results. Therefore, we decided to present the types (A and B) of
estimation even though they do not fulfil the given pose in terms of orientation. The reason
is that an optimisation algorithm may overcome this issue later and the solution could
achieve the pose on a given trajectory with a better final value of the objective function than
with the other presented types (C and D). This always depends on the type and properties
of the trajectory. Therefore, we suggest implementing all four estimation types into an
optimisation algorithm and compare the results afterwards.

If one would like to know which one of the four structures is the best, this question is
not easy to answer. We chose three poses to demonstrate the advantages and disadvantages
of particular algorithms and compared the final structures for these poses by manoeuvra-
bility and length. The type D provides the most general structure that can reach any pose,
but one must be careful in cases when some axes of the base and the pose are parallel,
for example. We suggest to always visualise all initial structures for better evaluation.

The presented algorithms are based on the Denavit–Hartenberg convention, generat-
ing DH parameters. During this work, a question arose, of how suitable the DH convention
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is for general structures and especially for their synthesis for given trajectory. As mentioned
previously, it is possible to find DH parameters between two coordinate frames using the
common perpendicular approach, but it is required to “borrow” another two DH parame-
ters from the next joint and to add them to the already existing four parameters. This is
obvious since we need six parameters (three translations and three rotations) in general
to describe the motion of a frame in Euclidean space. Therefore, using an optimisation
algorithm to synthesise a manipulator that fulfils the DH convention may be limiting.
The frames representing joints cannot freely rotate and translate wherever the algorithm
tends to, but they have to follow the XZ planes in which the common perpendiculars be-
tween neighbouring joints lie. On top of that, the algorithm may not find the global or local
minimum because of this limit at all. The reason is that traditionally DH parameters serve
for the description of existing robots and once they are obtained, some local coordinates of
the joints may be located outside of the rigid body along the Z axis, and although they are
still closely tied to the particular joint and representing its kinematics, they are not repre-
senting the real (physical) position of the joint. On the other hand, in terms of synthesis
when a rigid body does not exist yet, the location (transformation) of the coordinate frames
of joints is the only known and crucial parameter and its variability should not be limited
during the synthesis process anyhow.

The comparison of the synthesis of kinematic structure using DH convention and
other standard approaches, such as screw theory [34] for instance, will be an interesting
topic for future research. However, this matter has no impact on the work presented in this
paper. The kinematic structures obtained using the four algorithms may be translated into
any other standard description of the structure of a manipulator.

5. Conclusions

This paper presents four mathematical algorithms to find an initial estimation of a
kinematic structure of a serial robotic manipulator. The input values are the number of
joints, the position of the base of the manipulator, and the target pose of its TCP. The outputs
are the standard DH parameters of a kinematic structure that can reach the given pose
either by position or by position and orientation. The presented methods are applicable in
the topic of synthesis of the kinematic structure of robotic manipulators, where they can
serve as an initial guess of a structure.

The examples of three poses for all four algorithms are shown and compared using
the manipulability measure and the arm length. However, it is not easy to determine which
method out of these four is the best as it is always depending on the input, especially
the TCP pose. The manipulability measure indicates that the D type algorithm, which
can fully satisfy any given pose, provides the best manipulability in general, because it
avoids placing joints on a single line and places them on a Bézier curve instead. In addition
to that, the joints also tend to prevent collisions. On the other hand, if the given pose
is representing a specific case, as a parallel axis or axes with a base frame axis or axes,
one should be always watchful and comparison with the other presented algorithms is
suggested. As expected, algorithm types A and B achieved the best results in the case of
the arm length measure, when only a position is desired. However, in some cases, the C
and D algorithms may fully achieve a pose with a manipulator with similarly long links.

Future steps are to implement this method in an optimisation algorithm and to observe
if the convergence is faster or if the obtained result and the values of objective functions
are better.

The algorithms were tested in MATLAB and the scripts are available as Supplementary
Material for this paper or with eventual updates as an open source package on a public
repository [35].

Supplementary Materials: The source code of algorithms presented in this paper is available as
open source repository on the Github page of the Department of Robotics, VSB-Technical University
of Ostrava, Czech Republic: github.com/robot-vsb-cz/initial-estimation accessed on 15 April 2021.

github.com/robot-vsb-cz/initial-estimation
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