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Abstract: The design of robust yet simple communication mechanisms, that allow the cooperation
through direct interaction among robots, is an important aspect of swarm robotics systems. In this
paper, we analyze how an identical continuous-time recurrent neural network (CTRNN) controller
can lead to the emergence of different kinds of communications within the swarm, either abstract
or situated, depending on the problem to be faced. More precisely, we address two swarm robotics
tasks that require, at some extent, communication to be solved: leader selection and borderline
identification. The parameters of the CTRNN are evolved using separable natural evolution strategies.
It is shown that, using the same starting conditions and robots’ controllers, the evolution process
leads to the emergence of utterly diverging communications. Firstly, an abstract communication,
in which the message carries all the information, results from evolution in the leader selection task.
Alternatively, a purely situated communication, meaning that only the context is communicative,
emerges when dealing with the borderline identification problem. Nonetheless, scalability and
robustness properties are successfully validated.

Keywords: swarm robotics; minimal communication; situated communication; abstract communication;
artificial neural networks; continuos-time recurrent neural network; separable natural evolution strartegies

1. Introduction

Swarm robotics (SR) [1] is the research field that, combining aspects of artificial intel-
ligence and robotics, studies the use of many simple distributed robots that collectively
cooperate in order to solve complex tasks. The tasks addressed by swarm robotics can be
either intrinsically collective problems, that can uniquely be solved through interaction,
or single agent problems whose results can be boosted in multi-agent setups. SR is widely
inspired by how biological swarms work in nature [2], exposing the emergence of complex
collective behaviors from local interactions. Some examples remarkably recurrent in swarm
robotics are ant colonies, bee colonies, flocks of birds, fish schools or slime molds, among
others. In [3], the authors defined a set of conditions that a robotics system must fulfill in
order to be considered a swarm robotics system: Autonomy, large swarm sizes, homogene-
ity, inefficiency and simplicity of single agents, local communication and sensing of the
environment. Moreover, apart from efficiency in solving the task, scalability, robustness
and flexibility are highly desirable properties in SR systems (see [3]).

In contrast to behavior-based design methods, automatic design methods find suitable
robot’s controllers through an optimization process. The most important and widely used
example of automatic design method is Evolutionary Robotics (ER) [4], and in particular,
Evolutionary Algorithms (EA) to evolve the parameters of Artificial Neural Networks
(ANN). The optimization of ANN parameters by means of evolutionary computation is
called neuroevolution, see e.g., [5]. Nonetheless, the use of Recurrent Neural Networks
(RNN) is of special interest in swarm robotics. The main reason is that they allow action
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generation not only based on current stimuli being measured but also based on past expe-
rience and events. Specifically, Continuous-Time Recurrent Neural Networks (CTRNN),
see [6], have been employed as neuro-controllers in multiple works [7–10]. In [7], a CTRNN
is evolved using a generational EA for the flocking of a swarm. They designed a fitness
function that reflects cohesion, separation and alignment of the swarm, as in Reynolds’
rules. Tuci et al. [8] also optimize CTRNN controllers using an EA. In this case, they
address a foraging problem, with a single nest and a single food area, in which robots
have to decide whether they assume the role of foraging or nest patrolling. Moreover the
task that they define imposes role switching within simulation to be completed correctly.
Gutiérrez et al., proposed in [9] the evolution of CTRNNs using a generational genetic
algorithm for the task of heading alignment of robots. The study is firstly analyzed in
simulated environments and validated with real robots. In [10] the authors use a simple
EA with roulette wheel selection and a CTRNN controller in order to solve the problem
of cooperative transportation of heavy objects. The works listed above, in the context of
evolutionary computation tools applied to the optimization of ANNs, are either Genetic
Algorithms (GA) or Evolutionary Algorithms (EA) [11]. Other algorithms from evolution-
ary computation have also been employed in swarm robotics and collective robotics, such
as differential evolution [12] or neuroevolution of augmenting topologies (NEAT) [13,14].
Besides, a family of algorithms that has gained research interest in the context of single
agent controllers are Natural Evolution Strategies (NES) (see [15]). NES algorithms have
recently proved to be competitive alternatives to deep reinforcement learning, tested in
known benchmark problems such as Atari games or humanoid locomotion (see [16,17]). In
NES, the population individuals are randomly sampled from a search distribution whose
parameters are optimized in order to maximize the expected fitness (see Section 3.3), fol-
lowing the natural gradient direction. However, up to our knowledge, NES algorithms
have not been applied to the field of swarm robotics yet. In this paper we explore the use of
Separable Natural Evolution Strategies (SNES, see [18]), in order to evolve CTRNN neural
controllers for different tasks.

Another critical design step in swarm robotics is the communication mechanics of
the group. Communication within the swarm refers to any kind of interaction among
robots in which information about states, actions or intentions of agents is shared across
the swarm. According to [19], inter-agent communication in swarm robotics can be split
into: Stigmergy, Interaction via state and Direct communication. Additionally, a different
division can be provided if the communication technology is considered. Although not
very common, long range communications, based on RF systems, have been used in swarm
robotics when direction awareness is not an issue and long range global communication is
required (see [20–22]). Middle range communication has also been addressed by means of
sound (e.g., [23]) using speakers and microphones to produce and capture sound beeps. In
both options, several of the exposed studies break the principle of locality presented at the
beginning of the section. Therefore, minimal and short range communications are typically
desirable in swarm robotics. For this type of communications, infrared (IR) technology
is commonly employed (see [24]). IR sensors and emitters can be used for both distance
estimation to solid objects [10,13,25,26], direct communication [27] or both [9]. Apart from
its short coverage, IR technology presents several issues such as interferences, ambient light
distortion, communication death zones, impossibility to send and receive at the same time
or low data rates (see [25,28] for further details). However, it equally provides numerous
advantages that make IR technology highly suitable for local communication in swarms of
robots. Firstly, it is highly inexpensive and extremely low consuming, which, provided that
swarm sizes can be arbitrarily large and individual robots are notably simple, are utterly
desirable features in swarm robotics. Moreover, it allows a directionality awareness in the
communication, as in-board IR communication in mobile robots is equipped with a set of
receiver and emitters surrounding the robot perimeter. The knowledge of the direction
from where neighboring robots are interacting with the agent is highly desirable in most
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applications and, more importantly, indispensable in many cases. Generally speaking, IR
communication fulfills all previously exposed requirements for swarm robotics.

Another distinction can be highlighted in the case of semantics. Essentially, we can
differentiate between direct communication semantics and codes that are handcrafted by
the researcher and communication semantics that arise from automatic controller design
methods (e.g., ER). In the latter scenario, it is said that communication emerges. Clearly,
the researcher still has to design and establish the communication means and resources,
albeit the semantics and the information relevant to the emerged communication is a result
from optimization processes. Within this context, the taxonomy previously described
according to [24] can be reformulated as follows (see [29]):

- Abstract communication: is a type of communication in which only the message content
carries information. The environmental context associated to the message is either not
processed or not relevant in the emerged communication. See e.g., [30,31] and some of
the experiments of [32].

- Situated communication: refers to communication scenarios in which both the message
content and its corresponding environmental context carry information within the
communication. Environmental context can be, for instance, the signal strength from
which the distance can be estimated or the direction from where the message was
received. Some examples of situated communication are [9,33].

Another important question when designing communication systems in SR, guided
by an evolution process, is whether it is possible or not to solve remarkably different tasks
using the same robot controller. Moreover, can evolution lead to the emergence of different
communication semantics depending on the task to be solved? In this paper, we address
these questions. More precisely, the main motivation of this study is to assess if, using
evolutionary computation, it is possible to achieve the emergence of opposed communica-
tion semantics (e.g., situated and abstract semantics) depending on the task to be solved
and using the same neural controller architecture, with different optimization trajectories.
In order to verify this concern, we propose two independent swarm robotics problems that
require, at first sight, different communication semantics. The tasks are the election of a
single leader of a swarm of static robots and the identification of the shape or borderline of
a swarm of static robots. It can be expected beforehand that an abstract communication
emerges when solving the leader selection problem. Alternatively, the borderline identifi-
cation task requires, a priori, context information in order to be fulfilled. We consider that
the proposed tasks are remarkably suitable benchmark experiments, in order to validate
the previously mention hypothesis of communication emergence, due to the following
reasons: (i) their successful completion requires communication, (ii) the required semantics
of both problems are expected to be different and (iii) both tasks can be addressed using the
same artificial neural network as robot’s controller (because the robot sensors and actuators
are common to both experiments). Thereafter, the main contributions of this paper are
the following:

- We analyze and successfully verify that the same CTRNN controller model, evolved
using separable natural evolution strategies, can lead to the emergence of different
kinds of communications, either abstract or situated, depending on the problem to be
faced. Specifically, we validate the previous statement for the tasks of leader selection
and the borderline identification in a swarm of simulated static robots.

- A minimal communication system, at disposal of the robots’ neural network, is pro-
posed for solving the experiments and validating the hypotheses. The communication
system allows robots to communicate directly, using an a priori meaningless message,
or indirectly, by means of the corresponding environmental context information.

- Apart from observing the communication semantics that emerge as a result of evo-
lution in the proposed tasks, the resulting solutions are subject to a scalability and
robustness analysis. In both cases, the obtained swarm robotics system fulfills both
properties up to a considerable limit.
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- SNES algorithm is used to evolve the parameters of the neural controllers. Up to our
knowledge, NES algorithms have not been applied to the field of swarm robotics, and,
even though an exhaustive comparison should be carried out in the future, they are a
noticeable alternative to other more widely explored automatic design methods in SR.

The remaining of the document is structured as follows. Section 2 provides a review
of the related work. Additionally, Section 3 explains the simulated robots, the designed
minimal communication system, the robot’s neural controller that maps stimuli to actions
and the evolution process employed to optimize the controllers. Thereafter, Section 4
describes the proposed tasks to be solved. The results obtained after evolution are exposed
in Section 5. Section 6 concludes the paper. Finally, the source code developed and used
for this paper is available at https://github.com/r-sendra/SpikeSwarmSim accessed on
22 Janunary 2021.

2. Related Work

The first experiment that is considered is the leader selection and preservation in a
swarm of static robots. The leader selection is an interesting problem in swarm robotics as
the existence of a leader of the group, or from a more general perspective different assigned
roles in the swarm, eases the resolution of multiple collective tasks, such as flocking [34,35],
foraging [8], coordinated movement [36] or goal navigation [37] among others. The election
of a swarm leader has been treated in several works [27,30,32,38]. Firstly, the leader
selection procedure in [38] avoids the usage of direct communication among robots as it
only employs the positions of other agents in the neighborhood. A robot becomes a leader
whenever all the other robots in its vicinity lie on the same quadrant, considering the robot’s
position as the origin of coordinates. In [30], the authors designed a voting algorithm based
on local communication in a static swarm for the leader election, among other cooperative
tasks. The results of their experiments successfully show consensus in the selection in
most cases. Alternatively, one of the multiple experiments in [32] is the leader election.
They employ Wave Oriented Swarm Paradigm (WOSP) techniques in order to trigger the
emergence of collective behaviors, such as leader election, with local binary information
exchange. The controllers are also handcrafted as outstandingly simple and compact finite
state machines. Neither evolution nor neural controllers are explored in these papers.
On the contrary, in [27], the leader selection and role allocation problems are faced using
neural controllers and evolutionary computation. The swarm members communicate
locally through a communication system and a robot can assume the role of leader by
directly maximizing its communication output. In contrast with [27], in our study, we
decouple CTRNN outputs for elaborating the communication message and claiming the
leadership. Thus, the fitness function does not directly promote or reward the use of the
communication channel.

The borderline identification of a swarm is a relevant problem in the context of
collective tasks such as flocking, aggregation or shape formation. The awareness of the
limits of the swarm can refine these tasks and potentially aid the avoidance of swarm
disconnection. Additionally, the identification of the swarm shape can be harnessed for the
estimation of areas (e.g., estimation of the burned area in forest fires). Varughese et al. [32]
have treated the problem of boundary identification in the context of swarm robotics. They
use minimalistic robot behaviors and binary communication using Wave Oriented Swarm
Paradigm (WOSP).

Even though the tasks that are addressed and solved in this paper are remarkably
important, the main motivation and contribution of this study is the following. We suc-
cessfully verify that the same CTRNN controller model, optimized using evolutionary
computation, can lead to the emergence of different kinds of communications, either ab-
stract or situated, depending on the problem to be faced. In the case of the leader election
problem, an abstract communication emerges while purely situated semantics arise in the
case of the borderline identification task. The authors in [39] also addressed this problem,
applied to other SR experiments. They compare the optimization of Probabilistic Finite
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State Machines (PFSM) and evolutionary algorithms applied to ANN in three different
tasks. In both algorithms, the robots are endowed with the capability of broadcasting and
receiving messages, whose semantics are initially undefined. They also evolved artificial
neural networks using an evolutionary algorithm and the resulting solutions are compared
with the behavior and communication of the optimized PFSMs. They report that the
optimization of PFSM controllers can generate diverse message semantics in response to
the problem to be solved, albeit the emergence of communication was not reached through
their evolution process.

3. The Robots and the Communication

The simulated environment is a 10 m × 10 m square area where the robots of the
swarm are placed. The set of robots belonging to the environment is denoted as R and,
hereafter, we refer to a generic robot as r ∈ R. Robots are modelled as static point particles,
represented by a position xr and a time dependent heading orientation θr(k). Owing to the
fact that the simulated robots are static and their maximum communication range is about
80 cm (see Section 3.1), we consider that a 10 m × 10 m environment is large enough. More
precisely, these dimensions allow the allocation of, at least, swarms of 50 static robots of
10 cm radius, while maintaining inter-robot distances in the range 30–80 cm. The simulated
robots of the experiments treated in this paper are equipped with IR transmitters and
receivers. IR transmitters and receivers allow the communication and interaction among
agents in order to solve the proposed tasks. Alternatively, a LED actuator is used by
the robots to notify their actions. The robots’ controller, responsible for the mapping of
the measured stimuli to actions, is based on a continuous-time recurrent neural network
(see Section 3.2) evolved using separable natural evolution strategies (see Section 3.3).

3.1. The Minimal Communication System

The communication system proposed in this paper, inspired by how mobile robots
communicate using IR technology, is minimal because of the following main reasons:

- The communication is local, with a remarkably small communication range. This
means that two robots can communicate if their distance is lower than a threshold.
The communication range is fixed to 80 cm (see [40]).

- Only one message can be received at each time instant. This means that, regardless
of the number of neighbors, the robot and, thus, the CTRNN is only aware of one
neighbor at each simulation step.

- The possible directions of message reception or the number of IR sectors are restricted
to 4 sectors, highly complexifying the tasks.

- The received context corresponds uniquely to the current received message.

Robots’ controllers are fed by the received message and its context and elaborate a
new two-dimensional message to be isotropically broadcasted using the IR transmitter.
Before transmitting the message, it is subject to a quantization mapping that converts the
raw message content to one symbol in the set C (see Equation (1)).

C =
{

0,
1

K− 1
, . . . ,

K− 2
K− 1

, 1
}M

(1)

where M = 2 is the dimension of the message and K = 4. This leads to 16 possible symbols
in the communication. A symbol in C is randomly sampled assigning higher probabilities
to the nearest symbols and lower probabilities to the symbols that are more distant. As
proved in Section 5, 16 symbols are enough for the addressed applications and using the
algorithms and techniques of this paper. It is shown how, even though there are 16 available
symbols, the emerged communication uses, at most, only two of the symbols.

Alternatively, the IR receiver is sectorized, meaning that the coverage is split into
equiareal sectors so that the agent can distinguish the orientation from where a message is
sensed. We propose a minimal communication system and, consequently, the number of
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sectors is fixed to 4 in the tasks. This means that the reception orientation is discretized
to θRX ∈ {θr, θr + π/2, θr + π, θr + 3π/2} radians. Two agents can directly communicate
if their Euclidean distance is lower that 80cm and the misalignment is lower than π/4.
By misalignment, we refer to:

misalignment = π −min{|θRX − θTX |, 2π − |θRX − θTX |} (2)

where θRX and θTX are the orientations of the sectors from where the message was received
and transmitted, respectively.

Moreover, we propose the incorporation of a communication state (MODE when
referred as a binary variable) as follows: an agent can be either in send mode or in relay
mode. Send mode means that the robot controller creates a novel message, based on the
incoming message from its neighborhood, and broadcasts it to its vicinity. On the contrary,
relay mode refers to broadcasting the input message sensed by the receiver. The commuta-
tion between these states will be performed by the agent controller. Moreover, a maximum
number of hops is fixed so that old messages eventually stop from being relayed. Messages
have an attached identifier of the robot that initially generated the message content in send
mode. Therefore, an agent avoids receiving echoes of its own messages by filtering out
incoming packets with its own identifier. As robots can only perceive one message per
time cycle, a random selection among all the messages currently captured from all sectors
is implemented. Moreover, only the context information corresponding to the chosen
message if provided to the robot’s controller.

3.2. The Robot’s Controller

Continuous-Time Recurrent Neural Networks (CTRNN), see [6], are used as robot’s
controllers in order to map sensed stimuli to actions. The neurons of the CTRNN are
modelled as firing rate neuron models (see Chapter 11 in [41]), as a simplification of spiking
neuron models assuming rate coding schemes. Firing rate model can be described as in
Equations (3) and (4).

τ
dv(t)

dt
= −v(t) + I(t) (3)

u(t) = σ(g(v(t) + β)) (4)

Inspired from biological neuronal dynamics, v(t) represents the time varying mem-
brane potential of the neuron and I(t) is the instantaneous somatic current injected in
the neuron as the contribution from all presynaptic neurons. Say, that the n-th neuron is
connected to Npre presynaptic neurons and Nin input nodes. Then, the somatic current
injected to the n-th neuron is defined in Equation (5).

In(t) =
Npre

∑
j=1

wnjuj(t) +
Nin

∑
i=1

wφ
niφi(t) (5)

where wnj is the strength of the synapse with j-th presynaptic neuron and n-th postsynaptic

neuron and wφ
ni is the strength of the synapse connecting input i to the n-th neuron model.

Moreover, φi(t) is the corresponding input stimulus signal. Additionally, τ is the membrane
decaying time constant governing how rapidly v(t) reaches stable fixed points in response
to I(t). The second equation exposes the transformation of the membrane voltage into
the variable u(t) representing the neuron firing rate or activity. σ is the sigmoid function
(see Equation (6)) that maps membrane voltages into neuron activities.

σ(z) =
1

1 + e−z (6)

Besides, β and g are constants that define neuron dynamical properties. In the case
of β, it establishes the maximum voltage threshold that must be surpassed in order to
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produce non-zero firing rate u(t). The constant g states how fast a neuron can switch from
resting activity (null or scarce activity) to maximum firing rate. Note that large values
will increase the slope of the sigmoid function within the linear region, producing a fast
transition between minimum and maximum activities.

The precise CTRNN architecture used in this manuscript is presented in Figure 1. It
is composed by a set of input nodes representing the stimuli vector, two hidden layers of
10 neurons each and a series of motor neuron ensembles, whose activities are decoded into
actions. In swarm robotics, it is a common practice to design CTRNN controllers with 1 or,
at most, 2 hidden layers (see e.g., [7–10]). This configuration is a good tradeoff between
processing capabilities and simplicity of the robot’s controllers. It should be noticed that
the latter property is critical in swarm robotics systems. Besides, adding more hidden
layers would drastically increase the dimension of the search space and, consequently, it
would highly complexify the optimization problem. Moreover, as demonstrated in [42],
an artificial neural network with a single hidden layer and with sigmoid activations can
approximate any continuous function in [0, 1]n, provided that the weights are correctly
adjusted. The input stimuli vector is composed by the readings of the communication
receiver, namely, the message mRX ∈ C, the communication state (MODE ∈ {0, 1},
0 representing the relay mode and 1 denoting send mode) and the encoded reception
orientation θRX. The actions decoded from motor neurons’ activities are aLED ∈ {0, 1},
for turning on or off the robot’s LED, the new communication state (MODE ∈ {0, 1},
with the same meaning as the input) and the elaborated message (mTX ∈ [0, 1]2). As it
can be observed, the actions corresponding to aLED and MODE are decoded using the
Heaviside functionH with discontinuity at 0.5, while the message decoding is the identity
function (no decoding).

Input neurons
Hidden neurons
Motor neurons

Layer
                 10 neurons

Layer
                 10 neurons

Figure 1. CTRNN architecture of the robot’s controller. In order to simplify the diagram, only
the connections of the first neuron of each layer are illustrated. The synapses from the rest of the
neurons in the layers have the same post synaptic neurons as the ones depicted for the first unit.
The colors of the connection arrows indicate the kind of layer to which the pre synaptic neuron
belongs to. Note that input neurons, in yellow, are placeholders of input stimulus and not actual
neuron models. The boxes on the right side of the diagram display the firing rate decoding function.
H is the Heaviside function.

The simulator experiments operate at two different time scales. k is the time variable
of the environment, so that, at each time instant of k, the agents read the current partially
observable state using their sensors and perform actions. On the contrary, t is the time
variable at the neuronal dynamics time scale. Considering that the random selection of
input messages produces a high frequency stimuli signal, it is reasonable to set the neuronal
dynamics at a much faster time scale than the world dynamics. More specifically, such
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a discontinuous and high frequential input signal would preclude the reaching of stable
attractors or state space trajectories. In general, the relation between time scales is:

t = δ k, δ > 1

The action at each world time step is decoded using the activities of the motor neurons
at instants t = δk using the decoders of Figure 1. Similarly, the input stimuli is maintained
constant in between sampling instants of the environment:

φ(t + 1) = φ(t), ∀t ∈ [δ k, δ (k + 1)− 1), ∀k ∈ [0, ∞)

where φ is the overall stimuli vector. In all the experiments, δ is set to 20 so that during
each environment step, the CTRNN dynamics are updated 20 times. Considering a real
hardware implementation of the controller, the δ steps of the CTRNN can be scheduled in
between sensor and actuator executions when the microcontroller would be idle otherwise.
We experimentally found that a value of δ of 20 is, as a first approach, a good tradeoff
between computational complexity and CTRNN capabilities of reaching steady states or
stable state space trajectories.

3.3. Separable Natural Evolution Strategies

The parameters of the CTRNN of the neural controller are evolved using natural evo-
lution strategies (see [15]). Natural Evolution Strategies (NES) are a family of evolutionary
computation algorithms that, instead of directly evolving the population of individuals or
genotypes, it updates a parametrized search distribution that is used to sample genotypes.
NES algorithms maximize the expected fitness with respect to the search distribution
parameters, as in Equation (7),

argmax
θ

{Eθ[ f (G )]} (7)

where f is the fitness function evaluating genotypes G . Genotypes are sampled from the
search distribution, π(θ) generically speaking (see Equation (8)).

G ∼ π(θ) (8)

In particular, Separable Natural Strategies (SNES) are used in this paper to evolve
the parameters of the CTRNN controllers. SNES (see [18]) is a natural evolution strategy
specifically suitable when dealing with large dimensional problems, such as in neuroevolu-
tion. It restricts the search distributions to multivariate normal distributions with diagonal
covariance matrix Σ = σ I, with σ ∈ Rd

>0. Therefore, the parameters to be evolved are µ
and σ, both of the same dimension d (genotype length).

G =


ŵ
ĝ
τ̂

β̂

 (9)

The genotypes (see Equation (9)) are vectors bounded in [0, 1]d resulting from the
vector concatenation of normalized synapse weights (w), neuron gains (g), time constants
(τ) and biases (β). In order to constrain the search space to the hypercube [0, 1]d, these vari-
ables are normalized as in Equation (10), fixing the corresponding upper and lower bounds
of the variables. On the contrary, when converting genotypes to CTRNN phenotypes to be
evaluated, the variables are inversely denormalized as in Equation (11).
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ŵ =
w− wmin

wmax − wmin

ĝ =
g− gmin

gmax − gmin

β̂ =
β− βmin

βmax − βmin

τ̂ =
log(0.5 · τ)− τmin

τmax − τmin


(10)

w = ŵ · (wmax − wmin) + wmin

g = ĝ · (gmax − gmin) + gmin

β = β̂ · (βmax − βmin) + βmin

τ = 2 · 10τ̂·(τmax−τmin)+τmin


(11)

It should be mentioned that the same phenotype is used as neural controller for all
robots in the experiments (homogeneity principle of swarm robotics). Finally, Table 1
exposes the search space bounds of each variable vector subject to evolution. The [−1, 0.75]
range of τ is mapped to [2× 10−1, 2× 100.75] = [0.2, 11.25] seconds. Equivalently, this
search space of time constants allows the existence of a variety of neuronal regimes. For ex-
ample, low time constants allow the rapid reaction to abrupt changes in the input stimuli,
while large time constants permit the formation of working memory at a much slower
time scale.

Table 1. Search space constrains of each of the denormalized optimization variables.

Variable Min. Max.

w −3 3
τ −1 0.75
β −1.5 1.5
g 0.05 5

In the tasks addressed in this paper, SNES algorithm is executed during 1000 genera-
tions with a population size of 100. Each genotype is evaluated in a total of 5 independent
trials or episodes and each trial is composed by 300 simulation steps.

4. The Experiments
4.1. Experiment A: Leader Selection

The objective of the leader selection experiment is to find a cooperative behavior in
which just a single agent claims the leadership of the group during the evaluation period.
Robots can claim leadership by turning their LED on. Cooperative solutions resulting in
the swarm leader being the same during consecutive time instants will be rewarded, trying
to avoid unnecessary switching of the leadership. However, it is highly desirable to find a
swarm behavior capable of reacting to leader fault or loss by selecting a substitute. In order
to guide evolution towards this behavioral feature, a robot becomes faulty if it has been the
unique leader for 50 consecutive simulation cycles. In this context, a faulty robot means
that the agent can only relay input messages (it is always in relay mode) and it cannot claim
leadership. As communication is still operative after failure, the swarm graph cannot be
broken or disconnected due to leader fault. The size of the swarm or the number of robots
inR is set to 10, albeit there is a post evolution scalability analysis assessing the task for
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different swarm sizes. At the beginning of each simulation episode, the robots’ position are
randomly initialized with a random spatial graph initializer that guarantees that there are
no isolated swarm members. Heading orientations are also randomly initialized.

The fitness function rewards two main aspects of the swarm behavior in this problem,
namely, leader identification and its preservation. On the one hand, the instantaneous
fitness score increases at each time step when there is uniquely one leader in the group.
On the other hand, the reward rises proportionally to the number of consecutive time
steps that the leadership has been assumed by the same robot. The fitness function at each
simulation instant is exposed in Equation (12).

fA(G , k) = w(k)>aLED(k) (12)

The vector aLED(k) ∈ {0, 1}R gathers the LED actions performed by all the agents
in the swarm at time step k, subject to genotype G . Moreover, ar,LED(k) is the scalar LED
action of the robot r in the group (which is one of the components of aLED(k)). The vector
w(k) is a credit assignment vector that represents the number of consecutive time steps
that a robot has been the leader.

w(k) =



min{w(k− 1) + 0.1 aLED(k), 5} If ∑r∈R ar,LED(k) = 1
and aLED(k) = aLED(k− 1)

0.1 aLED(k)
If ∑r∈R ar,LED(k) = 1
and aLED(k) 6= aLED(k− 1)

(0, . . . , 0︸ ︷︷ ︸
R times

)> Otherwise

(13)

Specifically, Equation (13) describes the computation of w(k). Note that the com-
ponents corresponding to activated LEDs are increased 0.1 up to a maximum of 5. This
increment is only performed if there is only one leader (i.e., only one LED action to 1)
and the current leader is the same as the previous one, as specified in the condition of the
equation. Alternatively, if there is only one leader but it is not the same as the previous
one (or there was not a leader) then the credit assignment is 0.1. Provided that none of
the former conditions are fulfilled, the credit assignment vector is reset to zeros. With the
meaning of w(k) in mind, we can resume the explanation of Equation (12). Clearly, the dot
product w(k)>aLED(k) will be higher as the credit assignment of a leader grows. Moreover,
if there is more than one leader (‖aLED‖1 > 1) then the fitness is zero because w becomes
the zero vector.

The fitness score of an episode is computed as the temporal average of the instanta-
neous fitness fA value of each evaluation time step:

FA =
1

TE

TE

∑
k=1

fA(G , k)

Finally, each genotype is evaluated in 5 independent trials so that multiple fitness
samples are used to construct the final expected fitness estimate. The final estimate is the
sample mean of the fitness values obtained in each trial.

4.2. Experiment B: Borderline Identification

Borderline or frontier identification of a swarm of robots is the problem of detecting
which nodes in a cluster surround the others. Given a set of points P, the aim is to find the
subset of these points PB such that there is a closed polygon joining all elements in PB ⊂ P
whose area contains all the other points in P \ PB.
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This boundary is approximated, for randomly generated node distributions, using
the alpha shape algorithm, as a generalization of convex hulls (see [43]). Figure 2 shows
the alpha shape of a randomly generated set of 100 points with the parameter α = 15.
We heuristically concluded that this value is suitable for our application. The borderline
points (PB) are those points belonging to the obtained alpha shape. The interior points
are the remaining nodes in the swarm, that are not considered extremities. Only those
agents belonging to the alpha shape of the swarm should identify themselves as borderline.
Robots can identify themselves as borderline members by turning their LED on. At each
simulation cycle, the experiment can be understood as a binary classification problem
in which agents have to decide if they belong to the boundary or not. Alpha shape is
used to generate target values that increase the fitness of the swarm if the classification
is correct. In the experiment proposed here, the target alpha shape is the same during
the entire simulation period because of the stationarity of the swam. In practice, the lack
of a large number of points, in our case robots, leads to highly probable scenarios where
the borderline polygon is not closed (for instance, a swarm forming a line or a V-shape).
In this case, all the robots in the swarm would belong to the frontier (PB = P). The swarm
topology graph and the robot’s orientation are randomly initialized as in Experiment A.

0.0 0.2 0.4 0.6 0.8 1.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Alpha Shape with = 15
Interior
Borderline

Figure 2. Example of alpha shape algorithm with α = 15 and 100 points.

At each time step, the instantaneous fitness function will be higher as the number of
correct LED decisions increase. A correct decision means that either a borderline member
activates its LED (true positive) or that an interior robot turns off its LED (true negative).
LetRB ⊂ R be the subset of robots belonging to the swarm borderline or frontier (note that
there is a bijective correspondence between the elements ofRB and PB). On the contrary,
the subset of robots belonging to the interior of the swarm is denoted asRI = R\RB. The
instantaneous fitness function is displayed in Equation (14). The function has two terms
that are combined as a product. The first term corresponds to the number of borderline
robots successfully identified divided by the number of borderline members. The second
part is the number of correct classifications of interior agents divided by the number of
interior robots. RB and RI denote the cardinality of the setsRB andRI , respectively.

fB(G , k) =
1

RB RI

(
∑

r∈RB

ar,LED(t)

)
·
(

RI − ∑
r∈RI

ar,LED(t)

)
(14)

From a different perspective, the terms measure separately the true positive rate (TPR)
and the true negative rate (TNR) instead of computing directly the total accuracy of the
swarm. This fitness breakup is principally performed because the number of borderline
and interior agents (RB and RI) are highly unbalanced in most of the random initializations
of the swarm topology. This leads to naive and utterly suboptimal solutions in which
all robots identify themselves as interior or borderline due to the high overall accuracy.
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As in all the experiments, the fitness score of a trial is computed as the average of the
instantaneous fitness values of each time step:

FB =
1

TE

TE

∑
k=1

fB(G , k)

Similarly, 5 trials are accomplished, computing the final expected fitness estimate as
the sample mean of all the episode fitness scores.

5. Results

The behaviors evolved are exhaustively analyzed for each task. For each experiment,
this section is structured considering the following blocks:

- Behavior: The emerged behavior and the resulting performance are discussed. Several
figures, showing the swarm actions and the goodness of the solution, are shown to
demonstrate the performance.

- Scalability: In each experiment, the behavior is assessed for different swarm sizes.
- Robustness: Robustness is evaluated by means of introducing an alteration in the task

at some point in time during the simulation.
- Communication: The emerged communication is described for each problem. Princi-

pally, the relevant communication information is figured out, highlighting the type of
communication that has emerged (e.g., situated or abstract communication).

In order to present the results in the previous items, tools from descriptive statistics are
considered. More precisely, 50 independent trials with random initialization are executed
and gathered into a dataset. Afterwards, the dataset with 50 samples is used to support
most of the figures and results of the experiments.

Figure 3 illustrates the fitness evolution in each experiment. Figure 3a shows the
fitness evolution in the leader selection task, while Figure 3b focuses on the borderline
identification experiment. For each generation, it shows the sample mean fitness score
(darker curves) and the maximum and minimum fitness values (upper and lower contours
of the shadow areas).
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(a) Leader selection
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(b) Borderline identification
Figure 3. Evolution of the fitness function with the generations of SNES in (a) the leader selection
and (b) the border identification tasks. In each generation, the darker curves are the sample mean
fitness scores and the upper and lower contours of the shadow areas represent the maximum and
minimum fitness values.

5.1. Experiment A: Leader Selection

Behavior: We observed two stages during the evaluation process. Firstly, agents carry
out a negotiation phase in order to select a leader. Essentially, all the robots claim the
leadership at the beginning of the negotiation process by turing their LEDs on. Thereafter,
each robot being the leader eventually turns off its LED in order to yield leadership to other
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members of the swarm. The negotiation process can be understood as a winner-take-all
competition among agents, so that each potential leader inhibits the others through the
communication system. Consequently, the winner of the negotiation, and thus the leader, is
the robot whose LED remains turned on. The second phase of the behavior is achieved if an
agent is the unique leader of the swarm or, at least, if it does not receive any communication
information specifying the opposite. In such a situation, a stable solution is reached and
remains still unless a perturbation is introduced in the system. Agents are aware of other
robots claiming leadership by means of the communication system. The discussion on the
emerged communication is retrieved and elaborated in detail later.

Figure 4 shows an example of the emerged behavior, displaying both negotiation
and stable leader identification. It shows the LED actions of the agents in a swarm of
size 20 as execution time elapses. Black bars indicate that the LED of the corresponding
robot in the ordinate axis is turned on. There is no leader fault in this figure as it will
be discussed in the robustness analysis below. The results of the figure closely resemble
the behavior previously described. The negotiation stage, starting at time step 0 and
concluding approximately at simulation cycle 40, exposes the winner-take-all process
in which LED actions are constantly being deactivated. Nonetheless, the plot shows an
unsuccessful negotiation scenario whereby all the robot LEDs are turned off and no leader
is selected around time step 20. In such a case, it can be observed that another negotiation
process, of much shorter duration, is initiated with less contestants. Finally, as a result of
the second competition, a unique leader is identified and a stable behavior is settled until
the simulation ends.
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LED actions

Figure 4. LED actions of the robots in a swarm of size 20 as time elapses in the leader selection
experiment. Horizontal black bars denote that the LED is activated. Two phases, namely, negotiation
and leader settlement, are observed.

The results can be observed in Figure 5 from another perspective, using a different
simulation trial. The figure illustrates different frames of a simulation of this experiment.
The red balls represent robots whose LED is turned on and the blue balls show agents with
deactivated LED. Only instants previous to time step 20 are shown. After this time instant,
leader is settled and stable. The last resource to observe the behavior of robots within
this task is provided as a video recoding the simulation (https://youtu.be/ahBlVf9jAbw
accessed on 9 Janunary 2021).

https://youtu.be/ahBlVf9jAbw
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(a) Time step 1 (b) Time step 3 (c) Time step 5

(d) Time step 10 (e) Time step 15 (f) Time step 20

Figure 5. Snapshots of different time steps of a leader selection simulation. Blue dots represent robots
whose LED is deactivated and red balls indicate that the agent’s LED is turned on. Figures (a–e)
correspond to negotiation phase while in (f) the leader is selected and stabilized. Remark: the
simulation trial is not the same as the one exposed in Figure 4.

Scalability: The scalability of the solution is assessed by simulating the experiment
with different swarm sizes. Moreover, instead of depicting the results for a single trial, as in
the performance evaluation, we collect a total of 50 independent simulations in order to
gather a statistically significant number of observations. Figure 6 shows the impact of the
swarm size on the leader selection experiment. For each of the 50 episodes, the percentage
of the total simulation time in which just a single robot claims leadership is computed
and represented in boxplots. There is no significant degradation up to swarm sizes of 30.
Thereafter, there is a clear degradation as the number of robots increase. Moreover, this
degradation is not only in terms of median degradation but also in terms of interquartile
range increase. However, regarding the boxplots corresponding to swarm sizes of 40 and
50, we have observed that in more than 96% of the simulations there is a leader elected
at some point of the simulation, albeit there is a high variability in the simulation time
elapsed before leadership allocation.

Robustness: In order to verify the system ability to react to unexpected perturbations
during runtime, we incorporate the leader fault already introduced in Section 4.1. A leader
becomes a faulty robot if it has been the unique leader during 50 consecutive time steps.
A defective agent cannot claim leadership nor send its own messages. It can only relay
incoming messages from its neighborhood in order to preserve graph compactness.

Figure 7 shows the LED actions of each robot with failure perturbations. Again,
black bars denote activated LEDs while blank spaces mean that the LED is turned off. It
can be observed that agents are totally capable of reacting against leader fault. In this
situation, an additional phase can be added to the negotiation to stablish a new leader.
More precisely, after robot failure, there is a time gap of approximate duration of 10 time
instants when all the robots are silent before noticing leader disconnection. Summarizing,
in the shown simulation example, robots start with a negotiation as usual. After leader is
settled and 50 time steps have elapsed without other leadership claims, the leader fails
and the silent period starts. Thereafter, another negotiation is initiated and the process is
repeated. The system is remarkably robust against the designed leader failure perturbation.
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Figure 6. Assessment of the scalability capabilities of the evolved solution for the leader elec-
tion task. For different swarm sizes, the figure shows the distribution of the percentage of the
evaluation time that only one robot claims leadership. The sample of size 50 is represented
by means of boxplots, where the orange line within the box is the median and each box en-
closes samples in between the first and third quantiles, also known as the interquartile range.
The whiskers extend to the farthest data points that are within 1.5 times the interquartile range.
Outliers are shown as white dots.
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Figure 7. LED actions of the robots in a swarm of size 20 as time elapses in the leader selection
experiment with leader failure. Horizontal black bars denote that the LED is activated.

Communication: To complement the behavior mechanics previously exposed and
analyzed, the communication procedures that emerged from evolution to solve the task
are studied. Firstly, in order to gain a general insight on the input variables that are
actually harnessed to accomplish leader identification, we performed the following test: for
each communication input being fed to the CTRNN, we inhibited the input variable and
observed the consequent results. The process to inhibit neural stimulus is straightforwardly
accomplished by replacing the input by zeros and each variable is inhibited one by one.
Figure 8 shows the resulting performance of the solution in terms of percentage of time
with elected leader when variables are inhibited. Interestingly, the algorithm uses the
message content, albeit the orientation from where the message was received seems to be
irrelevant. These results are utterly important as they reflect that the message reception
orientation could have been omitted in the architecture.
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Figure 8. Percentage of simulation time with a single leader elected when communication stimulus
are inhibited and in normal conditions. Stimulus inhibition is performed by replacing with zeros the
corresponding input stimulus at neural level. Inhibition of the variables is performed separately and
one by one.

In the light of the previous observations, hereafter, attention is paid to the message
content and to the communication state in order to understand the mechanics of the agents
interactions. Figure 9a shows the swarm spatial configuration, while Figure 9b displays
the communication state of each robot at each time step. Black bars indicate that the
corresponding agent in the ordinate axis is in send mode and blank spaces mean relay
mode of the robot. Note that there is a clear correlation between the communication
mode of the robots and their LED action. Specifically, most of the time that robots are
in send mode, the LED claiming leadership is turned on (see Figure 4). Additionally,
Figure 9c displays the message sent or relayed at each time step. The legend shows the
possible symbols and the corresponding 2-dimensional vector. Provided that Figure 9b,c
are analyzed jointly, the following communication mechanics can be assumed.

- If an agent claims leadership, its communication state settles as send state. On the
contrary, non leader robots enter into relay mode.

- Agents in send mode mostly emit symbol 15, corresponding to message (1, 1)>.
- The message sent by the potential leaders is spread around the entire swarm, resem-

bling a wave-like propagation. In fact, Figure 9a clarify that the agents sending symbol
15 more frequently are those with less number of hops to the leader (node 7).

- Messages between symbols 0 and 15 are essentially transient messages caused during
the rise time of the motor neuron firing rate. This implies that only symbols 0 and 15
are actually relevant for the communication, and, therefore, there is no need to include
more than 2 symbols in the communication of this experiment.

The resulting communication emerged as a result of evolution in the leader selection
task is essentially an abstract communication in which the environmental context is not
communicative. More precisely, it is a signaling based communication.
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(b) Communication State
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Figure 9. (a) Spatial graph of the swarm topology, preserving positions and distances. (b) Communication state of each
robot at each time step. Horizontal black bars correspond to state send and horizontal blank bars denote relay state.
(c) Message transmitted by the robots at each time instant. The color of the bar at each time step corresponds to a symbol
specified in the legend.

5.2. Experiment B: Borderline Identification

Behavior: In order to assess the correct functioning of the evolved solution, Figure 10
shows the behavior of the robots in a trial with 30 agents. Firstly, Figure 10a, illustrates
the swarm spatial distribution and pairwise communication channels. Red balls represent
robots belonging to the alpha shape with α = 15 (see Section 4) and blue dots represent
interior nodes. For the depicted graph, Figure 10c exposes the target LED actions or
target alpha shape that the robots should perform in order to correctly identify the swarm
borderline. Thus, the robots with horizontal black bars are members of the borderline
according to the alpha shape algorithm. Additionally, Figure 10d shows the actual LED
actions of the robots, indicating if they are in the frontier or in the interior. Figure 10b
displays, in the spatial swarm distribution, the correct frontier classifications (in green)
and the errors (in red). The actions of Figure 10b correspond to a snapshot at time instant
480. Observing Figure 10d, the results show outstanding classification accuracy, although
sporadically there are some robots whose decision is incorrect (excluding the first 10 time
steps, the classification accuracy oscillates between 83%, for instants near time step 80,
and 93%, for the last cycles of the trial). Specifically, there are about 2 or 3 robots, depending
on the observed time step, whose classification is wrong. It can be observed that there are
some agents whose LED actions are remarkably stable (e.g., robots 2, 3 or 10) while the
decisions of other robots are much more undefined (e.g., nodes 9, 26 or 28). A common
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observable feature is that agents with a robust decision generally have only few neighbors
(1 or 2). On the contrary, unstable robots mainly belong to a dense part of the graph,
with many neighbors (3, 4 or 5). Thereafter, the errors principally occur when the agents
have many neighboring robots, leading to the naive classification of being interior node
(which is an incorrect assumption in some cases).
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(d)
Figure 10. (a) Spatial graph of the swarm, edges denote the existence of a pairwise communication channel. Red balls
represent alpha shape members and blue dots are interior robots. (b) Spatial graph of the swarm, red balls denote
agent errors (as indicated in (d)) and green balls denote correct borderline classifications. (c) Target borderline members
according to the alpha shape. Horizontal black bars denote frontier robots and horizontal blank bars represent interior
agents. (d) Temporal evolution of LED actions of the robots as time elapses. Horizontal black bars denote activated LED.
(a) Swarm topology graph, alpha shape highlighted. (b) Swarm graph, successes and errors highlighted. (c) Alpha shape.
(d) LED actions.

Furthermore, another interesting observation is that errors are more likely to appear
as false negatives as it can be observed in Figure 11, where the true positive rate (TPR) is
slightly inferior than the true negative rate (TNR). At the initial time steps of the simulation,
the TPR and the TNR are respectively 1 and 0 because, at the simulation startup, all the
agents identify themselves as frontier nodes (see Figure 10d).

To observe the behavior in a more visual manner, Figure 12 collects snapshots of a
sample trial at different time instants of the simulation. At the initial time step, all robots
consider themselves as extremities (red balls). Subsequently, as time elapses, the solution is
corrected until the final decision is settled (approximately at time instant 50). The actual
alpha shape of the example is shown in purple in Figure 12f. The final classification of
this example results in two errors, corresponding to false negatives in both cases. Finally,
the behavior of the solution to this experiment can be observed in video format (https:
//youtu.be/tGytXx2BM2w accessed on 22 Janunary 2021).

https://youtu.be/tGytXx2BM2w
https://youtu.be/tGytXx2BM2w
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Figure 11. Temporal evolution of true positive and negative rates in the borderline identification
experiment with 30 robots. Darker curves represent median TPR and TNR and contours of the
shadow areas are the first and third quantiles, using a sample of size 50.

(a) Time step 1 (b) Time step 10 (c) Time step 15

(d) Time step 30 (e) Time step 50 (f) True alpha shape

Figure 12. (a–e) snapshots of the borderline identification experiment at different simulation time
steps. The balls represent the robots in the swarm. Robots colored in red indicate that the LED is
turned on at the corresponding time step. Similarly, blue balls denote robots with the LED deactivated.
Swarm topology and robot distances are preserved in the graphs. (f) Actual alpha shape, in purple,
used as target, Note that at time step 50, once the decisions are settled, there are only 2 errors.
Moreover, both errors correspond to false negatives.

Scalability: In Figure 13, the scalability of the system is evaluated. The results are
presented using a sample of size 50 with independent simulation executions. For each
swarm size, it shows the accuracy of each time step, defined as the number of agents
correctly identified as frontier or interior divided by the swarm size. The curves represent
the time dependent median of the accuracy using all the collected samples. Alternatively,
the shadow areas indicate, at each time instant, the first and third quantiles of the accuracies.
It can be observed that the solution scales utterly well as swarm size increases. Indeed,
there is no statistically significant degradation in accuracy as the number of robots grows,
up to 50 agents. Consequently, the scalability of the system is clearly fulfilled.
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Figure 13. Temporal evolution of the accuracy of the robot’s classification in the borderline identifica-
tion experiment for diverse swarm sizes. The darker curves represent the median of the accuracy
using all 50 collected samples. Alternatively, the shadow areas indicate, at each time instant, the first
and third quantiles of the accuracies.

Robustness: The robustness capabilities are evaluated by reinitializing the robots
spatial graph, defining their positions, every 200 time steps. However, the states of the
CTRNNs of all the robots are maintained untouched regardless of the position resampling.
This causes an abrupt change in the swarm topology, leading to agents being forced to
reconsider if they are in the borderline subset. Figure 14 displays both target borderline tem-
poral evolution (left) and robots LED actions (right). Although there are several erroneous
decisions, robots are generally able to respond successfully to topological alterations.

Figure 15 represents the accuracy distributions for different swarm sizes under the
above mentioned topology alterations. Evidently, there is a short transient period of
time required by the agents to notice the swarm changes and alter its neural states as a
consequence. The resampling of robot positions result in discontinuous accuracy drop as
the alpha shape and, thus, the robots in the borderline, change. Agents are able to detect
the changes and almost correctly solve the task for the unexpected swarm redistribution.

Communication: With the aim of studying the communication that emerges as a
result of evolution, Figure 16 analyzes the importance of the communication variables in
solving the task. Specifically, in the figure, it can be observed the accuracy comparison
among a scenario with no inhibition and when different communication variables are
inhibited. Each inhibition is performed one by one and consists in replacing the value
of the corresponding variable with zeros at the input of the CTRNN. The comparison of
the figure reveals that the information about the orientation from where the message was
sensed is a highly relevant context variable, whose deletion causes system breakdown.
On the contrary, provided that the system accuracy is not significantly decreased, the results
indicate that the message is not harnessed in this experiment. This leads to a solution
to the task with purely situated communication, in which only the context underlying
the message carries information. The communication state was not included because we
observed that the CTRNN of the robots always settle the state to send mode. In relation
to the message reception orientation, it is remarkably challenging to find out the precise
functioning and usage of its information.
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Figure 14. (Left) Target frontier members (according to alpha shape). Black bars indicate that the robot is in the alpha shape
and blank bars represent interior nodes. (Right) Robots LED actions. The swarm topology is switched to a different one
(randomly sampled) every 200 time steps.
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Figure 15. Temporal evolution of the accuracy of the robot’s classification in the borderline identifica-
tion experiment for diverse swarm sizes. Every 200 time steps the swarm topology is changed while
the neural states are preserved. The darker curves represent the median of the accuracy using all 50
collected samples. Alternatively, the clearer areas indicate, at each time instant, the first and third
quantiles of the accuracies.
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Figure 16. Temporal evolution of the accuracy of the robot’s classification in the borderline identifi-
cation experiment for different inhibited variables. It compares the accuracy in a situation without
inhibition (blue) and inhibiting different communication variables (one by one).
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6. Conclusions

A set of robotics tasks were proposed and solved using a swarm of homogeneous
simulated robots, controlled by Continuous-Time Recurrent Neural Networks (CTRNN).
The neural controllers are optimized using Separable Natural Evolution Strategies (SNES).
The faced experiments were the leader selection and the swarm borderline identification
tasks. These experiments required, at some extent, the cooperative interaction and com-
munication among robots, that are incapable of solving the problem individually. The
objective of the leader selection experiment is to elect, automatically and in a distributed
fashion, a single leader of the swarm of robots. Alternatively, the borderline identification
is a task in which swarm members have to detect if they are in the borderline or shape
of the swarm or not. In both experiments, the simulated static robots have to solve the
corresponding task in a distributed manner by interacting locally using a communication
system. The semantics of the communication are undefined a priori and it corresponds
to the evolution process and fine-tuning of the neural controller the settlement of the
communication information that becomes relevant. As a side contribution of this paper,
we propose a minimal communication system, highly constrained both in terms of spatial
range and number of messages that can be received at each time instant. It provides the
robots with both a message and the context information attached to it. We analyzed the
emerged communication mechanics of both tasks that result from evolution. The main
objective and contribution of this paper is the validation of the hypothesis that, depending
on the task to be solved, the evolution guides communication towards very different me-
chanics and semantics, albeit the neural controller is architecturally the same. We show
that evolution in the leader selection experiment leads to an abstract communication, while
in the borderline identification task only the environmental context is used. Specifically,
the abstract communication that emerged in the former experiment was a signaling process
in which leaders notify their leadership and non leaders relay the information so that it
is spread around the entire swarm. On the contrary, a purely situated communication,
in which only the context information about the orientation from where the message was
received seems to be relevant, arises in the latter experiment.

Finally, we show that, up to considerable limits, the evolved systems are scalable
and outstandingly robust under the defined perturbations. After the evolution phase,
the scalability of both experiments was assessed by means of increasing the swarm size
and observing the consequent results. Additionally, the robustness of the leader selection
task was evaluated by imposing leader fault after 50 consecutive time steps of stable
leadership. In the borderline identification experiment, the system robustness was verified
by drastically altering the swarm topology at runtime.

Although the expected results were successfully achieved, there are some limitations
that should be taken into consideration and can be stated as future research lines. Firstly,
owing to the fact that the experiments are carried out using simulated robots, a future
analysis employing real robots must be accomplished in order to address the simulation-to-
reality gap. Moreover, the experiments are performed using a swarm of static robots. Thus,
it has not been assessed if the system is able to respond suitably in dynamic environments.
Additionally, we show that the same neural controller can be optimized to reach the emer-
gence of diverse communication semantics depending on the task to be solved. However,
this validation is only assessed for the leader selection and borderline identification prob-
lems. Therefore, a future study can extend this work to more demanding and sophisticated
tasks that require a more complex and higher level communication semantics.

The future lines of research that have appeared during the development of this paper
are the following. Firstly, in order to extend the findings of this paper, an important future
improvement of this work would be to adapt the neural controller to more diverse and po-
tentially more complex swarm robotics tasks (e.g., experiments involving robot locomotion
by adding differential drive system control actions at the neural level). Therefore, it can be
further assessed if more complex communication semantics, apart from those encountered
in this study, can emerge using the same controller. Secondly, a more ambitious experiment
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would be to verify if it is possible to evolve a robot’s neural controller capable of solving
multiple problems (multitasking), either sequentially or concurrently. Consequently, it
could be analyzed if the multitasking capability also leads to the emergence of multiple
coexisting communication semantics. Additionally, an exhaustive analysis of the optimal
value of δ (see Section 3.2) for the experiments would require a demanding research labor
and weeks of optimization and simulations. Therefore, a remarkably interesting future
research line is the analysis of the impact of the value of δ on the emergence of commu-
nication. Furthermore, because the experiments are carried out using simulated robots,
a future analysis employing real robots must be accomplished in order to address the
simulation-to-reality gap. Finally, the experiments are performed using a swarm of static
robots. Thus, it has not been assessed if the system is able to respond suitably in dynamic
environments. This extension, jointly with the addition of more complex and elaborated
experiments, is also a future improvement to be considered.
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