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Abstract: The purpose of this study was to investigate the accuracy of the airway volume measure-
ment by a Regression Neural Network-based deep-learning model. A set of manually outlined airway
data was set to build the algorithm for fully automatic segmentation of a deep learning process.
Manual landmarks of the airway were determined by one examiner using a mid-sagittal plane of
cone-beam computed tomography (CBCT) images of 315 patients. Clinical dataset-based training
with data augmentation was conducted. Based on the annotated landmarks, the airway passage was
measured and segmented. The accuracy of our model was confirmed by measuring the following
between the examiner and the program: (1) a difference in volume of nasopharynx, oropharynx, and
hypopharynx, and (2) the Euclidean distance. For the agreement analysis, 61 samples were extracted
and compared. The correlation test showed a range of good to excellent reliability. A difference
between volumes were analyzed using regression analysis. The slope of the two measurements was
close to 1 and showed a linear regression correlation (r? = 0.975, slope = 1.02, p < 0.001). These results
indicate that fully automatic segmentation of the airway is possible by training via deep learning of
artificial intelligence. Additionally, a high correlation between manual data and deep learning data
was estimated.

Keywords: airway volume analysis; deep learning; artificial intelligence

1. Introduction

Recently, artificial intelligence has been used in the medical field to predict risk factors
through correlation analysis and genomic analyses, phenotype-genotype association stud-
ies, and automated medical image analysis [1]. Recent advances in machine learning are
contributing to research on identifying, classifying, and quantifying medical image patterns
in deep learning. Since the convolutional neural network (CNN) based on artificial neural
networks has begun to be used in medical image analysis, research on various diseases is
rapidly increasing [2,3]. The use of deep learning in the medical field helps diagnose and
treat diseases by extracting and analyzing medical images, and its effectiveness has been
proven [4].

However, studies related to deep learning in the areas of oral and maxillofacial surgery
are limited [5]. For oral and maxillofacial surgery, radiology is used as an important
evaluation criterion in the diagnosis of diseases, treatment plans, and follow-up after
treatment. However, the evaluation process is performed manually and the assessment
can be different among examiners, or even with the same examiner. This may result in an
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inefficient and time-consuming procedure [6]. In particular, the evaluation of the airway
is difficult to analyze due to its anatomical complexity and the limited difference in gray
scale between soft tissue and air [7-9]. Airway analysis is essential for diagnosis and
assessment of the treatment progress of obstructive sleep apnea patients and for predicting
the tendency of airway changes after orthognathic surgery [10-21].

In most previous studies, the airway was segmented semi-automatically using soft-
ware systems for volumetric measurements using cone-beam computed tomography
(CBCT) images [21-23]. These studies evaluated the reliability and reproducibility of
the software systems on the measurement of the airway [7,24-27] and compared the accu-
racy between the various software systems [9,24,25,27]. However, in all cases, the software
systems require manual processing by experts.

In this study, a regression neural network-based deep-learning model is proposed,
which will enable fully automatic segmentation of airways using CBCT. The differences
between the manually measured data and data measured by deep learning will be analyzed.
Using a manually positioned data set, training and deep learning will be performed to
determine the possibility of a fully automatic segmentation of the airway and to introduce
a method and its proposed future use.

2. Materials and Methods
2.1. Sample Collection and Information

Images from 315 patients who underwent CBCT for orthognathic surgery were col-
lected retrospectively from 2017 to 2019. The CBCT data were acquired using PaX-i3D
(Vatech Co., Hwaseong-si, Korea) at 105-114 KVP, 5.6-6.5 mA with 160 mm x 160 mm
field of view, and 0.3 mm in voxel size. The scanning conditions were automatically de-
termined by the machine according to the patients” age and gender. The CBCT images
were converted to DICOM 3.0 and stored on a Windows-10-based graphic workstation
(Intel Core i7-4770, 32 GB). The patients were all placed in a natural head position. All
image processing was performed using MATLAB 2020a (MathWorks, Natick, MA, USA)
programming language.

2.2. Coordinate Determination in the Mid-Sagittal Plane

Five coordinates for each original image were obtained manually in the midsagittal
plane of the CBCT images (Figure 1). The definitions of the points and planes for the airway
division are presented in Table 1, referring to Lee et al. [28]. These five coordinates were
predicted by a 2D convolutional neural network for airway segmentation in the sagittal
direction.

Figure 1. Coordinate and plane determination in the midsagittal plane of the cone-beam computed
tomography (CBCT) image.
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Table 1. Definition of reference points and planes for airway division. (Abbreviations: PNS, posterior nasal spine; VP,

posterior point of vomer; CV1, 1st cervical vertebra; CV2, 2nd cervical vertebra; CV4, 4th cervical vertebra).

Definition

Explanation

Reference Points
PNS
VP
Cv1
cv2
Cv4
Reference planes
PNS-Vp plane
CV1 plane
CV2 plane
CV3 plane
CV4 plane
Volume
Nasopharynx
Oropharynx

Hypopharynx

Most posterior point of palate
Most posterior point of vomer
Most anterior inferior point of anterior arch of atlas
Most anterior inferior point of anterior arch of second vertebra
Most anterior inferior point of anterior arch of fourth vertebra

The plane was perpendicular to the midsagittal plane passing through the PNS and the Vp.
The plane was parallel to the natural head position plane passing through CV1.
The plane was parallel to the natural head position plane passing through CV2.
The plane was parallel to the natural head position plane passing through CV3.
The plane was parallel to the natural head position plane passing through CV4.

From PNS-VP plane to CV1 plane
From CV1 plane to CV2 plane
From CV2 plane to CV4 plane

2.3. Airway Segmentation

First, the image was binarized, then it was filled through a 3D close operation, and
hole filling, and then, the binarized image was subtracted from the filled image to obtain
an airway image. After erasing the image outside, the area that references five points, and
the 1/4 and 3/4 of the inferior border are connected. Only the largest object is left to obtain
the airway image (Figure 2).

Figure 2. Airway segmentation process. (A) Binarization image. (B) Hole filled image after close
operation. (C) Difference image between (A,B). (D) An image that erases the area outside the area
where 5 reference points, and 1/4 and 3/4 of the inferior border are connected. (E) Segmented airway.

2.4. Training via Regression Neural Network and Metrics for Accuracy Comparison

The 315 midsagittal images obtained from the patient’s cone-beam computed tomog-
raphy (CBCT) data were split into training and test sets at a ratio of 4:1. During clinical
data set-based training, validation was not performed because the sample size was too
small for validation. Instead, a five-fold cross-validation was applied. First, the image size
was set to 200 x 200 pixels, and 16 convolution layers were packed for feature extraction.
To generate the regression model, the regression layer was connected to a fully connected
layer. Mean-squared-error was used as a loss function. Data augmentation was then
conducted, including rotation from —6° to +6°, uniform (isotropic) scaling from 0.5° to 1°,
Poisson noise addition, and contrast and brightness adjustment. An NVIDIA Titan RTX
GPU with CUDA (version 10.1) acceleration was used for network training. The models
were trained for 243 epochs using an Adam optimizer with an initial learning rate of le-4
and a mini-batch size of 8.
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The prediction accuracy of the model was calculated using (a) the volume difference
between the predicted and manually determined nasopharynx, oropharynx, and hypophar-
ynx, and (b) the Euclidean distance between where the predicted and manually determined
points are real data.

3. Results
3.1. Measurements of the Differences between Manual Analysis and Deep Learning Analysis

The five coordinates manually pointed and predicted by the deep learning model are
shown in Figure 3. The Euclidean distance between the predicted and manually determined
points was largest at CV4 (4.156 £ 2.379 mm) and smallest at CV1 (2.571 + 2.028 mm).
Other Euclidean distances were estimated as 2.817 & 1.806 mm at PNS, 2.837 + 1.924 mm
at Vp, and 2.896 £ 2.205 mm at CV2. When the volume was compared for each part,
the hypopharynx showed the largest difference difference (50 + 57.891 mm?), and the
oropharynx was assessed as having the smallest difference (37.987 + 43.289 mm?3). The
difference in the nasopharyngeal area was 48.620 + 49.468 mm?>. The difference in total
volume was measured as 137.256 + 146.517 mm?. All measurements of the differences are
shown in Table 2. Volume differences among parts of the airway are shown in Figure 4.

Figure 3. (A) Example of manually pointed data and its volume segmentation. (B) Example of deep learning pointed data

and its volume segmentation.
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Table 2. Measurements of the differences between manual analysis and deep learning analysis

(N =61).
Average SD

Volume (mm?)
Nasopharynx 48.620 49.468
Oropharynx 37.987 43.289
Hypopharynx 50.010 57.891
Total volume 85.256 86.504

Distances between M and DL (mm)

PNS 2.817 1.806
VP 2.837 1.924
Ccv1 2.571 2.028
Ccv2 2.896 2.205
CV4 4.156 2.379

350
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100
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0 1 T . - 1

Nasopharynx Oropharynx Hypopharynx Total volume

Figure 4. Boxplots of the differences between manual analysis and deep learning analysis (N = 61).
In the boxplots, ‘x” within the box marks the mean of volume differences.

3.2. Agreement Analysis

Using agreement analysis, 61 samples were extracted and the manually measured
value and deep learning network predicted value were compared for both volumes and
coordinates. The total volume was the most correlated intra-class correlation coefficient
(ICC) value in the oropharynx (0.986), followed by the hypopharynx (0.964), and the
nasopharynx (0.912). The intra-class correlation coefficient (ICC) value for the coordinate
CV2(x) was the most correlated (0.963) and the least correlated at CV4(y) (0.868). All ICC
values are presented in Table 3.
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Table 3. Agreement analysis of the volume and point via intra-class correlation coefficient (ICC)
(Two-way random effects, absolute agreement, single rater/measurement) (N = 61).

95% CI
Variables ICC
Lower Limit Upper Limit
Volume

Nasopharynx 0.912 0.858 0.946
Oropharynx 0.984 0.973 0.99
Hypopharynx 0.964 0.941 0.978
Total volume 0.986 0.977 0.992

Coordinate
PNS(x) 0.908 0.852 0.944
PNS(y) 0.952 0.921 0.971
Vp(x) 0.908 0.842 0.946
Vp(y) 0.939 0.89 0.965
CV1(x) 0.929 0.885 0.957
CV1(y) 0.956 0.928 0.974
CV2(x) 0.963 0.939 0.978
CV2(y) 0.924 0.877 0.954
CV4(x) 0.953 0.924 0.972
CV4(y) 0.868 0.79 0.919

3.3. Linear Regression Scatter Plots and Bland-Altman Plot for the Total Volume Data Set

The total volume measured by deep learning was compared with the volume manually
measured using regression analysis (Figure 5). The slopes of the two measurements were
close to 1 and showed a linear regression correlation as r2 = 0.975, slope = 1.02, and
p < 0.001. Bland-Altman plots and analyses were used to compare the total volume of the
two methods, and the results are presented in Figure 6. The Bland-Altman plot comparing
the level of agreement between manual and deep learning indicates an upper limit of
agreement (0.261 cm?) and a lower limit of agreement (—0.207 cm?). The range of the 95%
confidence interval was 0.468 cm?.

2000

1500

1000

S00

Total volume manually measured (mm”3)

0 500 1000 1500 2000

Total volume by deep learning measurement (mm*3)

Figure 5. Scatter plot of total volume measured between the manual of deep learning (r> = 0.975,
slope = 1.02, p < 0.001). The line indicates a linear regression graph. There is a strong correlation
between the two methods (N = 61).
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Figure 6. Bland-Altman plot of the total volume data set. The green line indicates the upper limit of agreement, while the
red line indicates the lower limit of agreement (N = 61).

4. Discussion

In the medical field, many studies have used artificial intelligence via deep learning
in radiology [29,30]. There are studies on fully automated airway segmentation of lungs
with volumetric computed tomographic images using a convolutional neural network
(CNN) [31] and on automatic segmentation and 3D reconstruction of inferior turbinate and
maxillary sinus from otorhinolaryngology [32]. Due to the complex anatomical structure of
the airway, there are difficulties in researching the airway using manual measurements,
which is a time-consuming process, and entails inter-examiner error, intra-examiner error,
and a lack of certainty because of the small differences on a gray scale [23]. For these reasons,
automated measurement and analysis are necessary, but the fully auto-segmentation of the
airway is challenging and a study of airway segmentation using deep learning in the area
of oral and maxillofacial surgery has not previously been reported.

Therefore, in this study, we performed a fully automated segmentation of the airway
using artificial intelligence for enabling faster and more practical measurement and anal-
ysis in clinical practice. The correlation between the coordinates and volumes measured
manually and by the deep learning network were evaluated and compared. The distance
between the coordinates of each of the five airway reference points was measured between
2.5 mm and 4.1 mm, and the difference between the measured volumes was 48.620 mm? in
the nasopharynx, 37.987 mm? in the oropharynx, and 50.010 mm? in the hypopharynx. The
difference in total volume was observed to be 85.256 mm?3. Therefore, it is considered that
the correlation between each coordinate and volume showed good to excellent reliability.

In this study, the threshold is defined by the Otsu method [33], the binarized image is
extracted, and deep learning performs fully automatic division of the airway and divides it
into the nasopharynx, oropharynx, and hypopharynx parts through the reference plane.

The difference between the total volumes in this study was evaluated as an acceptable
value at 0.46 cm® when compared to the Torres et al. [25] study, which gave the difference
between the water volume of an actual prototype and the volume on the CT software as
0.2 cm? to 1.0 cm®. The difference in the volume of the oropharynx was measured as the
smallest, which showed the same results as El et al. [34]. According to Alsufyani et al. [23],
since the oropharynx airway is a completely empty space like a tube, it is straightforward
to measure the volume. The more complex and narrow shape of the airway’s soft tissue is



Appl. Sci. 2021, 11, 3501

8 of 10

due to anatomical complexity, such as epiglottis. This has the highest error in volumetric
measurements [35]. Therefore, it can be considered that a simpler anatomical structure will
result in a smaller difference between the measurement methods.

When comparing the distance of each point, the result of this study is not clinically
applicable. A clinically acceptable difference between the landmarks is approximately
2 mm, according to Lee et al. [36]. There are several reasons for a possible error, which
include the limitation in the number of training data sets and the necessity for more precise
data preparation, such as setting more reference points on each slice segmentation. In
setting the reference points for precise training, the reference points were selected on
the bony parts to reduce the error due to the variety of soft tissue shapes. This allows
clear determination of the anatomical point aided by the large difference on a gray scale,
and a simpler comparison of the relationship before and after surgery. Hence, this study
applied the reference points of the Lee et al. study [28]. Nevertheless, in the present study;,
the distance of CV4 had a larger error, which may be due to the shape of the spine CV4
appearing in various ways in the sagittal plane compared to CV1 or CV2. It is necessary to
set an additional reference point to define the hypopharynx that appears to be constant in
the midsagittal plane.

The limitation of most airway segmentation research is possibly due to an inconsistent
patient head position [23,27,37]. Since patients underwent CBCT in the natural head
position in this study, errors may occur. It has been reported that the shape of the airway
can vary greatly depending on the angle of the head [38]. However, as concluded in most
research, it is not a significant error when comparing the volume of the airway rather than
evaluating the volume itself [25]. When performing CBCT, the patient’s head position is
consistently adjusted to a natural head position by the examiner through the head strap,
chin support, and guide light. In addition, the natural head position has been proven to
be reproducible [39], and, hence, there should be no major error when comparing. Due
to breathing and tongue position, errors may occur in volumetric measurements [35,37].
Therefore, for each variable, controlled and consistent scanning is required. This study
divided the airway volume using 5 points in the 2D mid-sagittal image. The accuracy of
these points affects the accuracy of airway segmentation. Therefore, bigger data is needed
for clinical application of our algorithm to raise accuracy of coordinate determination.

In the agreement analysis, according to Koo et al. [40], “Based on the 95% confident
interval of the ICC estimate, values less than 0.5, between 0.5 and 0.75, between 0.75
and 0.90, and greater than 0.90 are indicative of poor, moderate, good, and excellent
reliability, respectively.” In the present study, oropharynx, hypopharynx, total volume,
PNS(y), CV1(y), CV2(x), and CV4(x) indicated excellent reliability, and all other variables
indicated good reliability based on the Koo et al. report [40].

These results indicate that fully automatic segmentation of the airway is possible
through training via deep learning of artificial intelligence. In addition, high correlation
between manual data and deep learning data was estimated. To improve the accuracy,
validity, and reliability of auto-segmentation, further data collection and optimum training
with big data will be required for future clinical application. Furthermore, to raise the
robustness of our algorithm, bigger data is needed for accurate coordinate determination.
Transfer learning with other datasets, such as facial coordinates, can also be useful. We
plan to develop more robust algorithms with bigger data.

5. Conclusions

In this study, using a manually positioned data set, fully automatic segmentation of
the airway was possible with artificial intelligence by training a deep learning algorithm
and a high correlation between manual data and deep learning data was estimated.

As the first study to utilize artificial intelligence to reach full auto-segmentation of the
airway, this paper is meaningful in showing the possibility of a more accurate and quicker
way of producing airway segmentation. For a future clinical application, the more robust
algorithms with bigger and multiplex datasets are required.
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