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Abstract: The introduction of Industry 4.0 is expected to revolutionize current maintenance prac-
tices by reaching new levels of predictive (detection, diagnosis, and prognosis processes) and pre-
scriptive maintenance analytics. In general, the new maintenance paradigms (predictive and pre-
scriptive) are often difficult to justify because of their multiple inherent trade-offs and hidden sys-
tems causalities. The prediction models, in the literature, can be considered as a “black box” that is
missing the links between input data, analysis, and final predictions, which makes the industrial
adaptability to such models almost impossible. It is also missing enable modeling deterioration
based on loading, or considering technical specifications related to detection, diagnosis, and prog-
nosis, which are all decisive for intelligent maintenance purposes. The purpose and scientific con-
tribution of this paper is to present a novel simulation model that enables estimating the lifetime
benefits of an industrial asset when an intelligent maintenance management system is utilized as
mixed maintenance strategies and the predictive maintenance (PdM) is leveraged into opportunistic
intervals. The multi-method simulation modeling approach combining agent-based modeling with
system dynamics is applied with a purposefully selected case study to conceptualize and validate
the simulation model. Three maintenance strategies (preventive, corrective, and intelligent) and five
different scenarios (case study data, manipulated case study data, offshore and onshore reliability
data handbook (OREDA) database, physics-based data, and hybrid) are modeled and simulated for
a time period of 20 years (175,200 h). Intelligent maintenance is defined as PdM leveraged in oppor-
tunistic maintenance intervals. The results clearly demonstrate the possible lifetime benefits of im-
plementing an intelligent maintenance system into the case study as it enhanced the operational
availability by 0.268% and reduced corrective maintenance workload by 459 h or 11%. The multi-
method simulation model leverages and shows the effect of the physics-based data (deterioration
curves), loading profiles, and detection and prediction levels. It is concluded that implementing
intelligent maintenance without an effective predictive horizon of the associated PAM and effective
frequency of opportunistic maintenance intervals, does not guarantee the gain of its lifetime bene-
fits. Moreover, the case study maintenance data shall be collected in a complete (no missing data)
and more accurate manner (use hours instead of date only) and used to continuously upgrade the

failure rates and maintenance times.

Keywords: maintenance management; lifetime benefit; simulation modeling; multi-method simu-
lation; industry 4.0; oil and gas; centrifugal compressor

1. Introduction

The opportunities within information and communication technology have revolu-
tionized the industry by bringing the fourth industrial revolution, Industry 4.0, into real-
ity. The main enablers of this new era are associated with the opportunities within emerg-
ing technologies such as the internet of things, big data, and cloud computing (including
detection, diagnosis, and prognosis). These technologies are the fundamentals of Industry
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4.0's core concept, namely the cyber-physical-system that enables converging the physical
space of equipment with cyberspace. Therefore, Industry 4.0 is considered as the future
scenario of industrial production since it enables a new level of organizing and controlling
the entire value chain within the product lifecycle, by creating a dynamic and real-time
understanding of cross-company behaviors.

Several case studies [1] highlight the benefits of digital transformation in the oil and
gas (O&G) sector. For example, reducing the upstream operations’ finding and develop-
ment costs by 5 percent; maintenance costs by 20 percent; overtime cost by 20 percent;
downtime by 5 percent (mainly due to predictive maintenance (PdM)); inventory levels
for spare parts by 20 percent; while boosting production by a conservative 3 percent in
conventional land operations [1]. However, maintenance management and performance
are complex aspects of an asset’s operation that are difficult to justify because of their
multiple inherent trade-offs and hidden systems causalities. Nevertheless, companies
want to be capable of estimating the lifetime benefits in terms of improving availability
and reducing the maintenance management workload, etc., by incorporating intelligent
maintenance into the operation and maintenance of their engineering assets to demon-
strate (1) how much to invest, (2) when to invest, and (3) the resulting expected lifetime
benefits.

Therefore, the industry has really begun to appreciate the benefits of applying mod-
eling and simulation methodologies as a supportive function to enable assessing the be-
havior and predicting the future outcome of, e.g., maintenance management. For example,
Shoreline AS provides a simulation model that helps to simulate possible maintenance
alternatives for offshore wind farms and select the most cost-effective by considering op-
erational aspects such as weather forecast, accessibility, and resources i.e., technicians and
type of vessel. Moreover, Miriam RAM studio simulates the availability and productivity
of O&G installations based on reliability analysis. This helps designers to redesign or de-
sign out items to enhance availability and overall equipment effectiveness. These indus-
trial simulation tools shall be enhanced until they capture and are able to estimate all the
lifetime benefits of an intelligent maintenance management system. For example, indus-
trial managers are looking forward to estimating the lifetime benefits of PAM and the po-
tential opportunistic maintenance intervals in (1) reducing the corrective maintenance and
unintended maintenance events, (2) reducing the preventive maintenance workload and
minimizing the planned maintenance campaigns, (3) reducing the level of damage and
repair, and (4) extending the lifetime of industrial assets. The desired simulation tool shall
support estimating the scheduled maintenance workload (maintenance campaigns), po-
tential corrective maintenance workload, PdM capabilities (effectiveness and earliness),
and the planned and potential opportunistic maintenance intervals to perform intelligent
maintenance. These basic functions shall enable industrial managers to (1) redesign their
maintenance campaigns and potential corrective maintenance (with the help of intelligent
maintenance) to fit opportunistic maintenance intervals, (2) reschedule maintenance cam-
paigns at the utilization phase, and (3) redefine their loading and operating profile (opti-
mal profile to produce as high as possible at a deterioration rate as low as possible) either
for short-term tactical decisions as toleration to utilize the next potential opportunistic
maintenance (avoid unintended maintenance visit) or for long-term strategic decisions to
extend their assets’ lifetime. For instance, Arun [2] illustrates how the change in loading
profile (from stand-by redundancy to preschedule redundancy) extends the asset lifetime.
In this case study, two out of three crude oil pumps were operating continuously, while
one pump was in stand-by mode functioning as redundancy (triggered once one of the
other two pumps fail). Following this, the company decided to change the operating pol-
icy and run each pump based on time, whereas each pump was operating for two months
followed by one month in redundancy (monthly shift between the pumps to ensure that
two pumps were running continuously).
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The state-of-the-art of simulation models for maintenance practices shows three
schools of thinking: discrete event, system dynamics, and agent-based modeling. The dis-
crete-event simulation models for maintenance services and failure events are nicely sum-
marized by Alabdulkarim, Ball et al. [3]. These models have the objective of independently
simulating preventive maintenance and corrective maintenance events (due to probabil-
istic failures) and consider them as discrete events that return the asset to a state of “as
good as new”. First, maintenance practitioners and researchers [4,5] have noticed that pre-
ventive maintenance has a long-term effect on corrective maintenance and maintenance
resources, and they defined the “shift the burden” phenomenon. Second, they noticed that
preventive maintenance activities fix the symptoms of failures but might not fix the fun-
damental problem or cause of the propagating deterioration. Therefore, the system dy-
namics approach came as the second wave with its ability to model interactions (causali-
ties) between maintenance policies (corrective and preventive) to enable the field of
maintenance simulation to study the effect of several and mixed maintenance policies e.g.,
total productive maintenance [5], reliability centered maintenance [6], overall equipment
effectiveness [7], and condition-based maintenance (CBM) [8-11]. In this context, simula-
tion models involving maintenance policies using systems dynamics are nicely summa-
rized by Linnéusson, Ng et al. [12]. In fact, system dynamics models are well known for
their high level and abstractive representations (they consider the entire industrial system
as one single system), which made maintenance practitioners and researchers search for
another approach that models the individual behaviors (where they can decompose the
system, but with traceable connections). Therefore, the third wave of maintenance simu-
lation started with agent-based modeling where multi-agent models, multi-simulation
models, and individual state-transition (statechart) were enabled. The agent-based mod-
els for maintenance simulation are still few, but rapidly growing [2,13-15].

The literature clearly introduces two research gaps. First, none of the existing simu-
lation models have modeled the deterioration based on loading. Second, a model that in-
cludes the PdM capabilities of detection, diagnosis, and prediction processes is missing.
In summary, to get the lifetime benefits of the referred simulation models and make them
fit with the required above-mentioned functionalities (opportunistic maintenance inter-
vals, PdM, and load-based deterioration), further contributions are required. In fact, the
future simulation model required shall be able to consider: (1) the individual agent (phys-
ical component and failure modes), as Endrerud, Liyanage et al. [14] have done, besides,
(2) modeling the PAM module, as Adegboye, Fung et al. [15] have done, (3) modeling the
asset determination based on loading function as Arun [2] has done, and (4) modeling
opportunistic maintenance intervals and leveraging PdM into these intervals in terms of
intelligent maintenance. Table 1 highlights what is covered by the three latter studies and
the missing scientific contribution (research gap) required to enable simulating intelligent
maintenance operations.

Table 1. Existing research and required scientific contributions to satisfy intelligent maintenance operations.

Intelligent Maintenance

Reference Preventive and Corrective Modeling CBM  Load-Based (Leveraging PdM into
Maintenance Considering Agents and PdM Deterioration .
Opportunistic Intervals)
[14] X - - -
[15] X X - -
[2] X X X -
This study X X X X

Therefore, the purpose and scientific contribution of this work is to develop a novel
multi-method simulation model that enables estimating the lifetime benefits of an indus-
trial asset, whereas intelligent maintenance is utilized as mixed maintenance strategies
and the PdM is leveraged into opportunistic intervals.
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Leveraging PAM requires an enhanced level of detection, diagnosis, and prognosis [16]
with an integrated load-based deterioration model. To be more specific, the desired sim-
ulation model shall enable simulating the behavior of several maintenance strategies and
fulfill specific industrial requirements to ensure its effectiveness, fitness to purpose, and
adaptability. The desired model shall enable maintenance engineers to (1) allocate the
scheduled maintenance campaigns for each component and differentiate between cam-
paigns that lead to operational unavailability and not, (2) simulate the potential failure
events and associated corrective maintenance events, and utilize their real historical fail-
ure and maintenance data or data extracted from the well-known failure database, i.e., the
offshore and onshore reliability data handbook (OREDA) [17], or both, (3) assign “failure
rate” and “mean time to repair” (MTTR) values for each maintainable item (component
level) and associated failure modes, (4) simulate maintenance events that are triggered by
CBM or PdM algorithms, (5) assign the capability level of condition monitoring tech-
niques and prediction algorithms [16], and leverage the predicted failure events into op-
portunistic maintenance intervals in terms of intelligent maintenance, (6) simulate deteri-
oration process and predict failure events based on realistic (fluctuating, seasonal pat-
terns, stand-by operations, extreme loading intervals) loading and operating profiles.
Thus, to build such a model and validate its structure and behavior, a case study of a
centrifugal compressor used for natural gas transportation is purposefully selected.

The novel multi-method computational simulation model in this paper is decom-
posed into four sub-models (1) working state for operational availability and intelligent
maintenance, (2) scheduled maintenance states (component level and equipment level)
which also presents the opportunistic maintenance intervals, (3) failure states which rep-
resent failure modes and triggers for failure events, and (4) corrective maintenance states.
Furthermore, to highlight the expected lifetime benefits of intelligent maintenance during
20 years of operation, two main use case scenarios shall be modeled: with and without
intelligent maintenance. The latter use case scenario (without intelligent maintenance) has
several sub-scenarios that also study the effectiveness of several possible data sources: (1)
empiric case study data (experience), (2) manipulated empiric case study data, (3) the
OREDA database [17], and (4) mixed data-input from both the empiric case study and the
OREDA database. These four sub-scenarios along with the intelligent maintenance sce-
nario result in a total of five simulated use case scenarios.

The six-step modeling and simulation methodology, presented in the following sec-
tion, is applied to build the desired novel multi-method computational simulation model
that combines agent-based modeling with system dynamics to simulate the five use case
scenarios. In this case, the multi-method modeling software Anylogic 8 is utilized.

The rest of this section is organized as follows. First, Section 2 explains the materials
and methodology of this study, which includes the entire six-step simulation modeling
methodology adopted. Section 3 presents the simulated results obtained from the compu-
tational model. Section 4 discusses and validates the findings of this study. Finally, Section
5 offers some conclusions and makes recommendations for future work.

2. Materials and Methods

In this section, the adopted six-step simulation modeling methodology is presented.
Thus, detailed descriptions of how the real-world case study was analyzed, conceptual-
ized, and computerized into a simulation model are presented.

In fact, model-based representations in terms of process modeling and industrial sim-
ulation approaches have become a highly embraced tool with their growing complexity
and capabilities [18]. Current literature presents several different methodologies that fa-
cilitate the successful development of a simulation model, with the most trusted modeling
methodologies being that of [19-21], whereas the majority of literature relies on the meth-
odology proposed by Sterman [21]. Nevertheless, the essence of the different methodolo-
gies is quite similar. This research adopts a six-step simulation modeling methodology
that extends the essence of Sterman [21] by allocating additional emphasis on systems
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analysis and scenario modeling. The adopted six-step modeling and simulation method-
ology is as follows: (1) System analysis and project planning, (2) Conceptual modeling, (3)
Computational modeling, (4) Scenario modeling, (5) Verification and validation, and (6)
Visualization. In the following subsections, each step will be described in detail.

2.1. Step 1: System Analysis and Project Planning

The first step in the six-step modeling and simulation process starts with a system
analysis addressing the needed fundamentals to attain an understanding of the system'’s
behavior, i.e., structure, interfaces, processes, interactions, etc. To do so, relevant stake-
holders must be addressed, including their needs and requirements to the system under
study. Then, the model constraints must be defined by studying, e.g., system context, hi-
erarchy, interface architecture, and functional and physical architecture in greater detail.
In addition, other features posing a significance to the purpose must be identified, e.g.,
politics, market, technology.

The purpose of the system analysis step is to (1) identify the purpose and objective
of the simulation, (2) analyze the case study data that is required to conceptualize the
maintenance management practices (scheduled, corrective, condition monitoring, oppor-
tunistic intervals), especially, workflow, rules, conditions, and actions, (3) analyze the case
study data that is required as inputs for the simulation model e.g., failure rates, mainte-
nance service times, and (4) analyze the case study data that is required to validate the
simulated behavior e.g., real availability and real corrective maintenance workload.

The purpose of the proposed multi-method simulation model is to simulate and es-
timate the potential lifetime benefits of implementing an intelligent maintenance manage-
ment system in terms of availability and corrective maintenance workload during a time
period of 20 years. Thus, the simulated outputs of the computational model address: (1)
operational behavior, (2) maintenance event: timeline and workload, and (3) the occur-
rence of failures allocated at the component level. It is evident that operational availability
is essential for the case company, as the end-user consumption is traceable to industrial
operation and human welfare in Europe. Therefore, the operational behaviors including
availability and unavailability caused by failures and the need for corrective maintenance
are analyzed. This is easiest illustrated through a time-plot diagram showing continuous
availability and unavailability as a function of time during operation. The maintenance
event timeline of both scheduled maintenance and corrective maintenance is analyzed.
First, a scheduled maintenance event timeline is analyzed as it introduces opportunistic
maintenance intervals whereas future predicted failures can be allocated. Second, a cor-
rective maintenance event timeline that demonstrates the corrective maintenance events
required by the different use case scenarios is analyzed. This is especially interesting when
it comes to comparing the corrective use case scenarios with the intelligent maintenance
scenario. The maintenance workload is analyzed to demonstrate the allocation of mainte-
nance management. The number of component failures occurring during operation is an-
alyzed to compare different use case scenarios, which supports highlighting the number
of corrective maintenance events that can potentially be replaced with intelligent mainte-
nance. In addition, it addresses possible differences in input data originating from the
empiric case study and the OREDA database.

To simulate the possible lifetime benefits of incorporating an intelligent maintenance
system into the specific case study, data concerning failure rates and MTTR values of the
specific case of interest is needed. In addition, data that enables determining the capabili-
ties of detection, diagnosis, and prognosis of such a system is also needed. To do so, an
analysis tool that has been developed by the authors on a previous occasion can be
adapted [16]. A more detailed system analysis has already been performed and presented
by the authors in [22].
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2.2. Steps 2 and 3: Conceptualization and Computational Modeling

The conceptual modeling is all about synthesizing the developer’s understanding of
the real situation analyzed in the “system analysis and project planning” into a conceptual
model. This is known as a time-consuming task in comparison to the other steps in the
simulation modeling process [23]. In this context, the authors have already published a
paper [24] where the conceptual model is described using a system dynamic approach.
However, the authors later recognized that a multi-method modeling approach combin-
ing system dynamics with an agent-based modeling approach, whereas statecharts either
triggered by rates, parameters, or conditions connected to system dynamics approaches
are used, can enable better modeling of the maintenance policies. The statecharts in Figure
1 represent the maintenance management process in the case company, specifically for
compressor equipment. The statechart is modeled using Anylogic Simulation package
(8.5.1) and decomposed into the following four sub-models (1) Working state for opera-
tional availability and intelligent maintenance representing the daily operation and
maintenance (including condition monitoring) activities that do not affect the operational
behavior, (2) scheduled maintenance states (at component level and equipment level), re-
quiring shutdown of the compressor equipment (presents the opportunistic maintenance
intervals), (3) failure states, representing failure modes and triggers for failure events, and
(4) corrective maintenance states, referring to the corrective maintenance needed to put
the compressor equipment back in normal operation post-failure. These four sub-models
are illustrated in Figures 2—4 and described in more detail in the following subsections,
respectively.
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Figure 1. The novel computational model of intelligent maintenance.
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2.2.1. Operational Availability and Intelligent Maintenance

The “working” state is considered as the mother state in Figure 2, which means that
the equipment is available as long as the agent “Compressor” has not triggered a mainte-
nance event requiring equipment stoppage. However, the equipment might be available
and running normally in the “normal” state while the condition monitoring system is ac-
tive, and the equipment health is being checked on a daily and monthly basis (rates). The
daily and monthly checks have specific time amounts (i.e., timeout in Anylogic) and might
trigger a maintenance event that results in equipment stoppage. The monthly monitoring
checks are done by two stakeholders (1) condition monitoring providers and (2) the tech-
nical service provider. Moreover, there are minor and major scheduled maintenance work
that is taking place while the equipment is running (which does not lead to production
stoppage). Furthermore, the PAM might also trigger a maintenance event that can take
place in the following opportunistic intervals. This state is named “Intelligent Mainte-
nance” and does not lead to production stoppage as it utilizes potential opportunistic in-
tervals. The time amount for these maintenance events specifically connected to the intel-
ligent maintenance and is extracted based on OREDA data for MTTR.

I

Working

&——[ BentlyNevadaDailyAnalysis

L@——[ MinorScheduledMaintenanceNonlmpact ]—(_L)—/ i [ BentlyNevadaMonthlyAnalysis

m.-—[ TechnicalServiceProviderManthlyAnalysis ]

Inform

¥®——[ MajorScheduledMaintenanceNonlmpact ]—(_L)—/

\-@——( IntelligentMaintenance ]—(9/

NoFailure

Figure 2. Operational availability and intelligent maintenance.

Table 2 addresses the triggers of the transitions between the different states included
in Figure 2. As seen, the transitions from the “normal” state to the states concerning (mi-
nor and major) “scheduled maintenance”, and back again, are triggered by timeouts (spe-
cific time interval). The states of “condition monitoring” are triggered by rates. In this
case, a conditional transition including a “randomTrue probability distribution” of the
input failure data is used to demonstrate the probability of detection. This means that, if
the condition is false, the condition monitoring system is not able to detect anything ab-
normal with the operation and enters the normal working state again. In contrast, if the
condition is true, the condition monitoring system has detected abnormal behavior of the
system and the presence of failure. The logic of these latter states concerning condition
monitoring is not yet incorporated into the computational model, as the extracted failure
rates used in this research only contain system failure, and therefore the impact of the
monitoring system has already been taking into consideration, indirectly. However, the
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states are included in the computational model as they pose an impact on the model out-
put in terms of maintenance workload. At last, the “IntelligentMaintenance” is triggered
by the flow “OpportunisticMaintenance” from system dynamics and then back to the
“normal” state again by a timeout function of 18 h that is extracted from the OREDA da-
tabase [17] and traceable to the specific MTTR values of the failure modes monitored in
this case study.

Table 2. The connection between states, triggers, logics, and data sources in Figure 2.

From State To State Trigger Logic Data source
Normal Scheduled maintenance Condition Scheduled maintenance > 0 Case study
non prod. Impact
Scheduled maintenance Normal Timeout Triangular distr. Case study
non prod. Impact
Normal Condition Monitoring Rates Parameter Case study
Condition Monitoring Normal Timeout & Con- Parameter and Case study
dition randomTrue(failure rate) distr.
Normal Intelligent Maintenance Condition = Opportunistic Maintenance > 0 Calixto
Intelligent Maintenance Normal Timeout 18 OREDA

2.2.2. Scheduled Maintenance and Opportunistic Maintenance Intervals

The second sub-model highlights the scheduled maintenance at both system level
and component level, as depicted in Figure 3. More specifically, the scheduled mainte-
nance at both component and system level includes all the scheduled maintenance activ-
ities that require stoppage of the system under study. In this case, scheduled maintenance
at the component level concerns maintenance activities directly connected to the compo-
nents of the case study, while scheduled maintenance at the system level focuses on sys-
tem-level (systems connected to the case study, e.g., scrubber, cooler) —hence, scheduled
maintenance causing unavailability of any of these systems requires stoppage of the case
study.

J

ScheduledMaintenanceAtSystemLevel

'@’—( ScheduledMaintenanceHarmonicFilter E:®
'@’_( ScheduledMaintenanceFrequencyConverter |"_®
0—( ScheduledMaintenanceTransformator |"—-®
'@’—( ScheduledMaintenanceHIPPS |‘—®
. e
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. 194
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0—( ScheduledMaintenanceSealant |"—-®
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Figure 3. Scheduled maintenance state (at both system and component level) representing oppor-
tunistic maintenance intervals.
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Table 3 highlights the triggers that are causing transitions between the different states
present in the scheduled maintenance and opportunistic maintenance intervals. In this
case, the scheduled maintenance states are triggered by rates that are extracted from the
case company data. The durations of the states are, on the other hand, highlighted by
triangular distributions either based on the case study data or the OREDA database [17]
(dependent on use case scenario). Since the MTTR values of the scheduled maintenance
activities are average values (assuming normal distribution), the triangular distribution is
used to incorporate some variance in the data.

Table 3. The connection between states, triggers, logics, and data sources in Figure 3.

From State To State Trigger Logic Data source
Normal Scheduled maintenance at Condition Scheduled maintenance >0 Case study
System Level
hedul i
Scheduled maintenance at Normal Timeout Triangular distr. Case study
System Level
heduled maint t
Normal Scheduled maintenance a Condition Scheduled maintenance >0 Case study
Component Level
Scheduled maintenance at Normal Timeout Triangular distr. Case study

Component Level

The main purpose of modeling the scheduled maintenance at both system and com-
ponent levels is to address all planned maintenance activities that are causing production
stops. These stops are decisive to address as they can be used as opportunistic mainte-
nance intervals in which PAM can be leveraged in terms of intelligent maintenance. Hence,
if the intelligent maintenance system enables detecting and predicting the future deterio-
ration propagation of a failure, it can allocate the future required maintenance activity to
a coming opportunistic maintenance interval, as long as this interval appears prior to the
component fault.

2.2.3. Failure Events and Corrective Maintenance

The third sub-model concerns the occurrence of failure events and the associated cor-
rective maintenance actions required to put the component back in operation. Figure 4
highlights all the failure modes that are associated with the case study based on both the
empiric case study data and the OREDA database. The systems analysis step revealed
some differences between the failure modes presented in the OREDA database and the
ones presented in the case company notification system, as demonstrated in Table 4.
Therefore, only the failure modes represented by the specific scenarios are assigned with
values traceable to their specific data source, while the failure modes that do not appear
in the specific use case scenario are assigned with a value of zero.

Table 4. Differences in failure modes of centrifugal gas compressor presented by the empiric case
study data and the offshore and onshore reliability data handbook (OREDA) database.

Failure Mode Case OREDA

Component Failure Mode Abbreviation Study Database

Abnormal instrument reading AIR X -

Rotor Breakdown BRD X -
Low output LOO - X

Abnormal instrument reading AIR X X

Breakdown BRD X -

Bearing  Parameter deviation PDE - X
Vibration VIB - X

External leakage — Utility medium ELU X -
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Abnormal instrument reading AIR X -
Breakdown BRD X -
Parameter deviation PDE X -

Motor External leakage — Utility medium ELU X -
Spurious stop UST X X

Fail to start on demand FTS - X

Minor in-service problems SER X X
Abnormal instrument reading AIR X X
Breakdown BRD X X
Parameter deviation PDE X X
Vibration VIB - X

External leakage — Utility medium ELU X X

Spurious stop UST - X

Seal Fail to start on demand FTS - X
Minor in-service problems SER - X

External leakage —Process medium ELP - X

Low output LOO - X

Internal leakage INL X X
Unknown UNK - X

Other OTH - X
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Figure 4. Failure events and corrective maintenance.
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During simulation, the “failures” are triggered by either (1) failure rates that are ei-
ther extracted from the empiric case study data or the OREDA database [17] (Scenarios 1-
4) or (2) a condition based on deterioration rates supported by Calixto [25] (only valid for
intelligent maintenance and thus Scenario 5). Then, the state of “corrective maintenance”
is triggered by timeout functions including a triangular distribution of the MTTR values
that are transparent with the specific use case scenario. Since the MTTR values of the cor-
rective maintenance activities are average values (assuming normal distribution), the tri-
angular distribution is used to incorporate some variance in the data. The connection be-
tween the states, triggers, values, and data source are summarized in Table 5.

Table 5. The connection between states, triggers, logics, and data sources in Figure 4.

From State To State Trigger Logic Data Source
Working Failure Rates Parameter Case study/OREDA
Working ! Failure ! Condition ! Fault>0" Calixto !
Failure Corrective Maintenance Timeout Parameter Fixed
Corrective Maintenance Normal Working Timeout  Triangular distr. Case study/OREDA

! Only valid for the condition monitoring systems with detection and prediction capabilities. In this paper, this refers to

intelligent maintenance.

2.3. Step 4: Scenario Modeling

This section is dedicated to scenario modeling, which facilitates simulating different
use case scenarios, and furthermore attaining an understanding of sensitive data and in-
fluencing factors identified through the model outputs. To do so, four different use case
scenarios are modeled with the purpose of highlighting the associated sensitiveness con-
nected to the model input data i.e., failure rates and MTTR values extracted from either
(1) the case study, (2) the well-known OREDA database, [17] which is highly applied in
the O&G industry, or (3) both. In final, the last use case scenario (use case scenario 5) that
concerns the loading and deterioration process of the case study is modeled. Its purpose
is to highlight the connection between component deterioration, detection, diagnosis, and
prognosis purposes in the context of implementing an intelligent maintenance manage-
ment system into the case study. Therefore, this paper models in total five use case sce-
narios. The connection between the input data and use case scenarios is summarized in
Table 6 and described in more detail in the following subsections.

Table 6. The five use case scenarios and associated input data.

Input Data
Scenario Failure Rate Deterioration Rate MTTR
Case Study OREDA Calixto Case Study OREDA
1 X - - X -
2 X - X1 -
3 - X - - X
4 X - - - X
5 X - X - X

! Manipulated input data.

2.3.1. Scheduled and Corrective Maintenance Scenarios (1, 2, 3, and 4)

Scenario 1 includes failure rates and associated MTTR values that are extracted from
the notification system of the case company. The data is extracted exactly how it is pre-
sented in the notification system.

Scenario 2 includes the same data as in the previous scenario. However, the differ-
ence in Scenario 2 is that all the values considered as “unreasonably extreme” are replaced
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with values the authors anticipate to be more reasonable when taking the connection be-
tween the specific failure and associated MTTR value into consideration.

Scenario 3 addresses input data involving both failure rates and MTTR values ex-
tracted from the OREDA database [17]. The OREDA database is in fact well-known and
highly adopted by O&G companies in connection with analyses concerning risk and tech-
nical integrity. In practice, the OREDA database categorizes failure rates in terms of
“lower”, “mean”, and “upper” failure rates, and MTTR values in terms of “mean” and
“max”. This research adopts the “upper failure rates” and the “max MTTR values”, which
experts claim to represent industrial experience the best.

The interesting context of this use case scenario is to highlight whether the case com-
pany experiences either higher or lower failure rates and MTTR values in comparison to
the OREDA database. This will underpin whether the industry shall be recommended to
support integrity assessments based upon their own empiric case study data or the
OREDA database, dependent on the associated risk profile (“risk-averse”, “risk-seeking”,
etc.).

The estimation of MTTR values originating from the empiric case study data is asso-
ciated with the highest uncertainty as it depends on two different variables the mainte-
nance personnel need to report (start of maintenance and end of maintenance). Therefore,
Scenario 4 replaces the MTTR values from the empiric case study data with the ones pre-
sented in the OREDA database.

2.3.2. Intelligent Maintenance Based on Deterioration Modeling (Scenario 5)

One of the main issues of applying failure rates in connection with detection, diag-
nosis, and prognosis purposes is due to the straight lines in terms of pulses produced by
the simulation. In more detail, such straight lines make it difficult, or even impossible, to
justify the opportunity to detect, diagnose, and predict future deterioration evolution. The
maintenance timeline concept based on failure events is not effective to enable CBM and
PdM, as they require deterioration curves instead. Therefore, a deterioration model based
on loading that addresses the deterioration curves for the individual component associ-
ated with the case study must be modeled.

The deterioration modeling process starts by first modeling the component deterio-
ration using system dynamics, depicted in Figure 5. As seen from the loading model, it
contains three different flows: (1) Loading, (2) Failure, and (3) Intelligent maintenance.
Furthermore, one stock representing the “accumulated loading”, and one parameter of
“Opportunities” which represents the future opportunistic maintenance intervals defined
by the scheduled maintenance requiring stops in operation.

OpportunisticMaintenancelnterval

o.

."', IntelligentMaintenance
-~

. AccumulatedLoadi
Loading

~
~
3 X =[]

Failure

Figure 5. Loading model using systems dynamics.

The logic of each flow in the deterioration and intelligent maintenance module is de-
scribed in more detail in Table 7.
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Table 7. Description of the deterioration and intelligent maintenance module.

Element Function Logic

Loading Estimates the loading rate per Described in Table 8.
hour.

Accu.mulated Accumulates the loading rate. Integral value of loading.

Loading
Triggers failure and the need for rint(AccumulatedLoading) > uni-

Failure corrective maintenance when the form_discr (100,100)? Accumulated-
deterioration has reached a de-  Loading = initial AccumulatedLoad-
fined level. ing value: 0

Opportunistic Represents the opportunistic Defines all scheduled maintenance

Maintenance maintenance intervals defined by events that are causing a stop in the
Interval the scheduled maintenance. operation in terms of pulseTrains.

Triggers intelligent maintenance

event when two conditions are ~ OpportunisticMaintenancelnterval! =
satisfied: (1) opportunistic mainte- 0 && rint(AccumulatedLoading) >
nance interval is available, and (2) uniform_discr (70,100)? Accumulated-
the accumulated loading triggers Loading = initial AccumulatedLoad-
detection or prediction alarm at  ing value: 0

the defined level.

Intelligent
Maintenance

In more detail, the “Loading” flow expresses the entire deterioration process and in-
cludes the loading equation of the specific component under study. Such an equation can
be established by first identifying a failure distribution that demonstrates the evolution of
a specific failure through a deterioration curve. To do so, there exist several failure distri-
butions applied to demonstrate the degradation evolution from a healthy component to a
faulty one [26-28]. Some of the most applied failure distributions concerning aging equip-
ment are, e.g., “traditional view”, “bathtub curve”, and “slow aging” (linear deterioration)
[29]. However, concerning component deterioration, the distribution of either exponential
distribution or power-law distribution is most frequently adopted.

Second, a designed load case that assumes constant loading from the beginning of
the operation until it fails must be addressed. Such time to failure can for instance be based
on recommendations from the component vendor, estimated through equations offered
by the manufacturer (e.g., [30]) or other reliable data sources (e.g., Calixto [25] or OREDA
[17]). In final, the suitable deterioration curve identified must be fitted with the time to
failure through an iterative simulation process that highlights the entire deterioration pro-
cess from a healthy component to a faulty one.

In practice, the condition monitoring system monitors the deterioration process of
the component during normal operation. If the monitoring system is not capable of de-
tecting and predicting the deterioration, the accumulated deterioration level reaches the
designed lifetime (100% deterioration) that triggers the “Failure” flow in system dynamics
(Figure 5), which furthermore triggers the associated “failure” state in the agent-based
computational model (shown in Figure 1). However, if the condition monitoring system
is able to detect and predict the level of deterioration propagation prior to component
failure, it tries to leverage the PdM event into a coming opportunistic maintenance inter-
val represented by the “OpportunisticMaintenancelnterval” parameter connected to the
“IntelligentMaintenance” flow. In this case, the opportunity of leveraging a predicted fail-
ure event to a future opportunistic maintenance interval is based on two criteria: (1) when
the future opportunistic maintenance intervals appear and (2) the capabilities offered by
the specific monitoring system, i.e., levels of detection and prediction that are demon-
strated in detail in [16]. Illustratively, if the condition monitoring system is able to detect
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component deterioration one week prior to failure and the next opportunistic mainte-
nance interval appears first after four weeks, there exists no opportunity to leverage the
PdM into an opportunistic maintenance interval, and corrective maintenance is thus re-
quired. In contrast, if the deterioration is detected five weeks prior to component failure
and the next opportunistic maintenance interval appears after four weeks, the PdAM can
be leveraged into the future opportunistic maintenance interval in terms of “intelligent
maintenance”. Therefore, exploiting these opportunistic maintenance intervals to perform
intelligent maintenance will thus reduce the unplanned operational unavailability and
cost (since corrective maintenance is replaced by intelligent maintenance).

At last, this paper presents an illustrative example of how an intelligent maintenance
system that enables detecting, diagnosing, and predicting the specific failure mode of
breakdown (BRD) of the rotor, bearing, and seal. It is important to emphasize that the
transparency between failure modes, and detection, diagnosis, and prognosis processes
shall be analyzed individually for the specific condition monitoring system applied. In
this context, the authors recommend the future readers perform the analysis presented in
[16] to determine these specific capabilities of an associated condition monitoring system
of interest.

The final use case scenario, Scenario 5, is dedicated to the deterioration modeling of
the components associated with the case study, i.e., rotor, bearing, and seal. Modeling
component deterioration is required to highlight the capabilities of implementing an in-
telligent maintenance management system, i.e., levels of detection, diagnosis, and prog-
nosis [16]. This paper develops individual loading equations of the components of inter-
est, based on the plot presented by Calixto [25]. Since Calixto only represents the deterio-
ration curves and not the specific deterioration equations, the associated loading equa-
tions presented in Table 8 are replications.

Table 8. Connection between components, loading equations, and designed lifetimes.

Component Loading Equation Designed Lifetime [25]
0.00013738 x AccumulatedLoading

Rotor (initial AccumulatedLoading value = 0.5) 44 years (38,544 h)
0.00010045 x AccumulatedLoading

Beari . 2 h

eanng (initial AccumulatedLoading value = 0.5) 6.0 years (52,560 by

Seal 0.00075232 x AccumulatedLoading 47 years (41,172 h)

(initial AccumulatedLoading value =2 x 10-1%)

The individual loading equations developed are then incorporated into the “Loading
model” (shown in Figure 5) and are simulated and optimized to fit the designed lifetime
presented by Calixto [25] using Anylogic, as depicted in Figure 6. As seen, the deteriora-
tion curves highlight the entire deterioration process from when the specific component
starts operating until a fault is present at the designed lifetime. The deterioration curves
also demonstrate that the component deterioration propagates differently. Clearly, this
affects the opportunities of detecting, diagnosing, and predicting the future behavior of
the associated component deterioration process. For example, the deterioration of the seal
appears with a steeper slope in comparison to the two other components, which thus re-
duces the opportunities of performing intelligent maintenance as it is more difficult to
detect and predict the occurrence of seal deterioration. In contrast, the deterioration curve
of bearing introduces the gentlest slope, which increases the opportunities to perform in-
telligent maintenance as it is possible to detect and predict the occurrence of bearing de-
terioration at an early stage.
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Figure 6. The deterioration curves modeled for each component, individually.

It is important to highlight that this research adopts a detection and prediction level
of 70% for Scenario 5. The main justification of this selection is based on recommendations
from the literature [31] and experts in the field.

2.4. Steps 5 and 6: Verification, Validation, and Visualization

The fifth step in the simulation modeling methodology concerns the verification and
validation of the simulation. In this case, all the applied data, i.e., operation and mainte-
nance including condition monitoring (Figure 2), scheduled maintenance plans (Figure 3),
and experienced failures and following corrective maintenance (Figure 4) including fail-
ure modes, failure rates, and MTTR values are extracted from the notification system of
the case company and incorporated into the computational model. The applied data is
also validated through several discussions with engineers and experts in the field repre-
sented by the case company and stakeholders for verification and validation purposes to
attain a correct description of the case study, to increase the reliability of the results ob-
tained from the simulations. In final, to improve the reliability of the simulations even
more, similar data, i.e., failure modes, failure rates, and MTTR values are extracted from
the well-known OREDA database [17] and also compared to the real-time data extracted
from the notification system of the case company.

The computational model is considered generic in that sense the future adopter can
fit the model to their own purposes. In more detail, this means that the future adopters
can replace the components with the ones of interest. Furthermore, the associated sched-
uled maintenance causing operational unavailability and thereby representing opportun-
istic maintenance intervals, and corrective maintenance data including failure modes, fail-
ure rates, and MTTR values can be replaced. This means that all data can be replaced by
the ones of interest, however, the logic of the model must be kept, i.e., triggers and equa-
tions.

3. Results

The simulated results for the five scenarios are presented in accordance with the
model outputs presented in Section 2.1. The following results are presented for each use
case scenario: (1) operational behavior, (2) maintenance event: timeline and workload, and
(3) component failure during a time period of 20 years (175,000 h). In addition, one sub-
section is dedicated to comparing the corrective maintenance (Scenario 4) with the intelli-
gent maintenance scenario (Scenario 5). At last, one subsection demonstrates the effect of
proliferating PAM capabilities in connection with intelligent maintenance.

3.1. Operational Behavior and Availability

The operational behavior highlights the operational availability and unavailability
for each scenario, shown in Figures 7-11 and summarized in Table 9. In the figures, the y-
axis shows the operational behavior in percentage as a function of time in hours repre-
sented by the x-axis.
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Figure 7. Operational behavior of Scenario 1 during 20 years of operation.
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Figure 8. Operational behavior of Scenario 2 during 20 years of operation.
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Figure 9. Operational behavior of Scenario 3 during 20 years of operation.
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Figure 10. Operational behavior of Scenario 4 during 20 years of operation.
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Figure 11. Operational behavior of Scenario 5 during 20 years of operation.

Table 9. Summary of operational behavior of the different simulated use case scenarios.

Operational Behavior [%]

Scenario

Availability Unavailability Total
1 37.756 62.244 100
2 73.384 26.616 100
3 96.220 3.780 100
4 95.750 4.250 100
5 96.018 3.982 100

The results highlight that Scenario 1, which is based on case study historical failure
data, offers the lowest operational availability of approximately 37.756% availability dur-
ing 20 years of operation, which is not valid. Scenario 2 provides more valid numbers of
availability with 73.384%, as the unreasonably extreme data values (closed dates for
maintenance events) caused by human factors in the notification process are manipulated
and corrected. Scenario 3, which is based on OREDA failure rates and MTTR values, high-
lights the availability of 96.220%, which is a significant improvement compared to scenar-
ios 1 and 2. Scenario 4, which is a mixed scenario based on case study failure rates and
OREDA MTTR values, shows the availability of 95.750%. Scenarios 3 and 4 demonstrate
the effect of failure rates on availability, where the availability decreased 0.470% (96.220-
95.750%) when case study failure rates are used. Scenarios 2 and 4 highlight the effect of
MTTR on availability, where the availability increased 22.366% (95.750-73.384%) when
OREDA MTTR values are used. Scenarios 3 and 4 are valid scenarios when compared
with real availability numbers. However, it shows that OREDA is more reliable and valid
in terms of MTTR data, as the used unit is hours, not days like in case study data. In final,
Scenario 5 addresses a total of operational availability of 96.018%, which corresponds to
an improvement of 0.268% (96.018-95.750%) in comparison to Scenario 4, which includes

the same input data but without an intelligent maintenance system.
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3.2. Maintenance Event: Timelines and Workloads

This subsection presents the maintenance event timelines during 20 years of opera-
tion that include the associated workloads of (1) scheduled maintenance policy, (2) cor-
rective maintenance policy with five different scenarios, and (3) intelligent maintenance

policy.

3.2.1. Scheduled Maintenance Event Timeline

The scheduled maintenance plan provided by the case study company covers two
categories: (1) downtimes that lead to production stoppage, and (2) downtimes that have
no effect on production. In this context, the scheduled maintenance intervals that lead to
production stoppages are especially interesting as they represent opportunistic intervals,
as shown in Figure 12. In the figure, the x-axis represents the simulated time in hours and
the y-axis defines the state of the operation that is either characterized by 0 or 1. Further-
more, 0 defines an operational state when the equipment operates as normal and 1 defines
an operational state when the equipment is out of operation due to scheduled mainte-
nance. As highlighted by the figure, there are in total 19 opportunistic maintenance inter-
vals occurring during 20 years of operation, which PdM can be leveraged into in terms of
intelligent maintenance.

@

0

20,000

|
40,000 60,000 80,000 100,000 120,000 140,000 160,000

. Scheduled Maintenance at System Level Scheduled Maintenance at Component Level

Figure 12. Scheduled maintenance representing opportunistic maintenance intervals during 20
years of operation.

3.2.2. Corrective Maintenance Event Timeline

The corrective maintenance event timelines for the five modeled use case scenarios
are depicted in Figures 13-17. In the figures, the x-axis represents the simulated time in
hours and the y-axis defines the state of the operation that is either characterized by 0 or
1. Furthermore, 0 defines an operational state when the equipment operates as normal
and 1 defines an operational state when the equipment has failed and is out of operation
due to corrective maintenance. The planned maintenance timeline, presented in Figure 12,
is also included in all these corrective scenarios. The corrective maintenance event time-
line shows the failure and corrective maintenance events for the most important compo-
nents, i.e., bearing, rotor, seal, and motor. The corrective maintenance timeline of Scenario
1, Figure 13, clearly highlights the effect of incomplete maintenance data, where some
maintenance events have quite a long maintenance time interval (due to the closing date
either being missing or considered as an unreasonable extreme value). This issue was en-
hanced in Scenario 2, shown in Figure 14, where the closing dates were manipulated.
Thus, the availability has changed from 37.756% in Scenario 1 to 73.384% in Scenario 2,
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which means that 35.629% of the availability in Scenario 1 is just related to incomplete
maintenance dates. However, the availabilities obtained for Scenarios 1 and 2 do not
match the real availability figures. One issue that shall be highlighted is that the time unit
used for maintenance time (MTTR) in the case company is days. It means the maintenance
time for any maintenance event will have a minimum duration of 24 h, even though it
might take 4 h in reality. This issue can clearly be illustrated when OREDA MTTR values
are used, as in Scenario 4 (Figure 16), where the availability increases from 73.384% (days
used in Scenario 2) to 95.750% (hours used in Scenario 4). Thus, the time unit for the MTTR
values is of significant importance, which may lead to an error of 22.366% (95.750—
73.384%) in availability if days unit is used instead of hours.
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Figure 13. Corrective maintenance event timeline of Scenario 1 during 20 years of operation.
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Figure 14. Corrective maintenance event timeline of Scenario 2 during 20 years of operation.
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Figure 15. Corrective maintenance event timeline of Scenario 3 during 20 years of operation.
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Figure 17. Corrective maintenance event timeline of Scenario 5 during 20 years of operation.
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The maintenance timeline for Scenario 3 (Figure 15), which is based on OREDA fail-
ure rates and MTTR values, shows different numbers (at the component level) and loca-
tions of corrective maintenance events compared to Scenario 4 (which is based on case
study failure rates and OREDA MTTR values). This is caused by the fact that the scenarios
include different failure rates at the component level. However, the number of corrective
maintenance events in total (at equipment level) and availability are almost the same. The
corrective maintenance timeline for Scenario 5 (Figure 17) provides a smaller number of
corrective maintenance events compared to Scenario 4 (Figure 16), due to the lower failure
rates presented by the deterioration curves. For example, bearing deterioration curves es-
timate the bearing to fail every six years (around three times during 20 years of operation),
while the OREDA database anticipates that the bearing will fail 26 times during 20 years
of operation.

In summary, the maintenance timelines (presented in Figures 13-17) visualize the
number of corrective maintenance events with their associated maintenance time inter-
vals. To get more insight into the maintenance workload for each scenario, Table 10 is
provided. In addition, Table 11 presents the number of maintenance events for each sce-
nario in more detail.

Table 10. Summary of the maintenance workload of the five simulated use case scenarios.

Maintenance Workload [h]

Scenario Corrective Scheduled Maintenance Intelligent Total
Maintenance with Impact without Impact Maintenance
1 107,700 1311 3425 0 112,436
2 44,055 2578 6682 0 53,316
3 3385 3237 8763 0 15,385
4 4183 3262 8736 0 16,181
5 3724 3251 8765 360 16,101
Table 11. Failures occurring during 20 years of operation based on the simulated results.
Number of Failures during 20 Years of Operation
Component Scenario
1 2 3 4 5
Rotor 8 8 2 8 3
Bearing 13 14 26 13 5
Seal 19 35 45 29 22
Motor 24 27 7 26 26
Total 64 84 80 76 56

By comparing the number of failures for Scenarios 1, 2, and 4 (which is based on case
study historical failure data) and for Scenario 3 (based on OREDA data), it can be observed
that the OREDA data is underestimating the number of failures for some components
(e.g., rotor and motor), while it is overestimating the number of failures for some compo-
nents (e.g., bearing and seal). That might be due to the mean issue (as the OREDA data-
base presents the mean and upper failure rates of several failure events occurring based
on several installations, where some failure events might even not be registered). By com-
paring the number of failures occurring in Scenarios 1, 2, and 4 with Scenario 5, it can be
concluded that Scenario 5 (based on well-known deterioration curves) underestimates the
number of failures. Let us take rotor as an example, the mean time between failures based
on the deterioration curve is 4.4 years for rotor (see Table 8), while the mean time between
failures based on case study historical failure data is 2.5 years (see Table 11). This can be
justified as the available deterioration curves that authors could find only cover three out
of twenty-eight failure modes considered in Scenario 1, 2, and 4.
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3.3. Intelligent Maintenance and the Effect of Proliferating Detection and Prediction Levels

This subsection demonstrates the maintenance events based on prediction leveraged
intelligent maintenance at several detection and prediction levels (50, 60, 70, 80, 90, and
100%), as depicted in Table 12. In contrast to the other use case scenarios, these results are
only based on designed lifetimes presented by Calixto specifically (see Table 8). Therefore,
the sole purpose of this subsection is to study if the assumption of increasing levels of
detection and prediction offers increasing flexibilities of leveraging PdM into an oppor-
tunistic maintenance interval in terms of intelligent maintenance. Not surprisingly, the
table underpins the connection between increasing detection and prediction levels, and
the opportunity of performing intelligent maintenance. Furthermore, it highlights that the
detection and prediction levels of 50% and 60% provide the same opportunities in this
case (in total eight intelligent maintenance events), while the detection levels of 70, 80, and
90% include five, four, and three intelligent maintenance events, respectively.

Table 12. The effect of proliferating detection and prediction levels.

Detection and Corrective Opportunistic Corrective Maintenance

Prediction Level Events Events Reduction [%]
50% 3 8 72.727
60% 3 8 72.727
70% 6 5 45.454
80% 7 4 36.363
90% 8 3 27.272
100% 11 0 0

4. Discussion and Validation
4.1. Data Collection

Data in terms of scheduled maintenance plans and experienced corrective mainte-
nance including failure modes, failure rates, and MTTR values were extracted from the
notification system of the case company and incorporated into the computational model.
In addition, several discussions with engineers have been conducted to attain a correct
description and understanding of the case study and its data. In final, to improve the re-
liability of the simulations, data including failure modes, failure rates, and MTTR values
were extracted from the OREDA database and compared with the experienced case study
data.

4.2. Human Factors in Notification Processes

The data collection process of the empiric case study data became a lot more time-
consuming than first anticipated. Its sole reason is traced back to human factors present
in the notification processes that evidentially reduced the quality of the data significantly.
This issue is clearly demonstrated by the simulated results. Use case Scenarios 1, 2, and 4
include the same failure rates extracted from the case study but with different MTTR val-
ues. In more detail, Scenario 1 includes MTTR values as presented in the notification pro-
cess, Scenario 2 includes manipulated MTTR values considered as unreasonable extremes
in the previous scenario, and Scenario 4 includes MTTR values extracted from the OREDA
database [17]. Therefore, the volatile changes in operational behavior and significant dif-
ferences in maintenance workload between these three scenarios are solely traced back to
the MTTR values. Respectively, the maintenance workload (in hours) devoted to correc-
tive maintenance for Scenarios 1, 2, and 4 are 107,700, 44,055, and 3262 with associated
operational availabilities of 37.756, 73.384, and 95.750%.

From the authors’ perspective, the main issue of incorporating human factors in the
notification processes is traced back to the maintenance personnel’s opportunity of devel-
oping a notification that is solely based on subjective perceptions, without any associated
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requirements concerning the level of details of the individual notifications. Following this,
the simulated results also justify why the O&G companies keep using the OREDA data-
base [17] and not their own empiric data in connection with analysis related to, e.g., tech-
nical integrity and risk. However, it is a paradox that case-specific data do not express the
case of interest the best. Therefore, for the future, it shall be recommended that the notifi-
cation processes avoid incorporating human factors, at least, reducing its impact by mak-
ing the notification process (partial) automatic or based on a templated questionary with
pre-defined alternatives the maintenance personnel is required to answer before the noti-
fication is considered as complete.

At last, it is also important to emphasize that the failure data originating from the
case study includes several components of one component, i.e., rotor, bearing, and seal.
However, due to difficulties in differentiating between these specific components, the fail-
ure rates presented in this research do not take into consideration the number of each
component. Illustratively, this means that this research estimates one failure rate compos-
ing all the failures associated with one type of component, without taking its population
into consideration. Therefore, the failure rate assumes that failure of, for instance, one
bearing, results in failure of all the bearings present in the case study at the same time.

4.3. Intelligent Maintenance (Scenario 5) vs. Corrective Use Case (Scenario 4)

The final results of this research clearly demonstrate tempting lifetime benefits dur-
ing 20 years of operation. In comparison, the intelligent maintenance system is expected
to improve the operational availability by 0.268% by replacing 2.721% ((4183/16181)-
(3724/16101) = 2.721%) of the corrective maintenance workload with intelligent mainte-
nance. In workload, it equals replacing 459 h of corrective maintenance which corre-
sponds to a reduction of 11% ((4183-3724)/4183 = 11%) of the total corrective maintenance
workload. Specifically, the intelligent maintenance system reduced the unintended cor-
rective maintenance visits by 20 (26.316%), whereas a reduction of 5 (62.500%), 8
(61.538%), and 7 (24.138%) corrective maintenance visits are traced back to the rotor, bear-
ing, and seal, respectively. Following, these 20 corrective maintenance events were re-
placed by intelligent maintenance which leverages the PAM capabilities into opportunistic
maintenance intervals and thereby does not affect the operational availability.

4.4. Additional Lifetime Benefits of Intelligent Maintenance in Industry 4.0

There exist some aspects that can improve the lifetime benefits even more, which are
not presented in this paper. First, reducing component loading to extend the remaining
useful life estimation and by this reach an opportunistic maintenance interval that was
initially not reachable. Second, the expected improvements in terms of maintenance per-
formance and in reducing the level or repair. In fact, enabling detecting, diagnosing, and
predicting the future behavior of component deterioration is expected to support devel-
oping detailed work orders and ensure that the necessary spare parts and resources are
available at the time of intelligent maintenance. However, since the proposed intelligent
maintenance system remains to be implemented, it is difficult to justify the realistic values
of these improvements. Nevertheless, this can be implemented in a future stage after ob-
taining operational experience post the implementation, which is traceable back to the
MTTR values presented in, e.g., the notification system.

4.5. Intelligent Maintenance vs. Maintenance 4.0

There exists a large number of terminologies that are supposed to define maintenance
management in Industry 4.0 such as, e-Maintenance [32], intelligent maintenance [33,34],
smart maintenance [35], deep digital maintenance [36], and Maintenance 4.0 [37]. How-
ever, this paper adopts the terminology of intelligent maintenance, which intentionally
differs from other terminologies e.g., smart maintenance [35], e-maintenance [32], as the
focus is not primarily based on data analysis i.e., detection, diagnosis, and prognosis.
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However, this paper extends the scope to also consider enterprise-level data e.g., spare
part management, seasonal loadings, available resources, in order to provide a solid foun-
dation for the maintenance decision management that shall ensure that the right mainte-
nance takes place at the right time. Furthermore, the term Maintenance 4.0 might bring
the question about other technologies like robotics, augmented reality, additive manufac-
turing, i.e., 3D printed spare parts.

4.6. From a Case-Specific Computational Model into a Generic Computational Model

Although this paper develops a computational model based on a case study and pre-
sents simulated results associated with the case-specific data, it is important to emphasize
that the computational model is easily converted to other cases of interest as the paper
adopts a generic research methodology. To do so, the future adopter solely needs to in-
corporate general information from the specific case of interest including failure modes,
scheduled maintenance plans representing opportunistic maintenance intervals, failure
rates, and MTTR values. In this context, the authors recommend future adopters apply
the PAM assessment matrix [16] to identify associated failure modes, failure mechanisms,
and to determine the levels of detection, diagnosis, and prognosis associated with the spe-
cific condition monitoring system included in the case of interest. The only requirement
is that the computational model presented in this research retains its model structure, trig-
gers, and logic.

5. Conclusions

The simulated results obtained from the multi-method computational model devel-
oped in this paper clearly show the ability to estimate the lifetime benefits of applying
several maintenance strategies (preventive, corrective, predictive, and opportunistic) on
an industrial asset. Simulating preventive, corrective, and opportunistic maintenance is
already done in literature (discussed in the introduction). The novelty and scientific con-
tribution of this computational model is mainly traced back to its ability to (1) simulate
and estimate CBM and PdM behaviors and their lifetime benefits, (2) leverage PdM into
opportunistic maintenance in terms of intelligent maintenance, and (3) estimate and quan-
tify the maintenance workload and determine the specific maintenance event timeline.

Simulating CBM and PdM behaviors was enabled by the deterioration timeline con-
cept where a deterioration curve based on loading profile is simulated, and detection and
prediction levels are incorporated. In fact, most of the existing simulation models utilize
the failure timeline concept generating pulse train curve, which is useless in order to in-
corporate detection and prediction levels. It can be concluded that the load-based deteri-
oration curve, shown in Figure 6, is an effective concept to enable the lifetime benefits
estimation of CBM and PdM. Definitely, this is a challenging issue since there are some
components that either have an unknown deterioration curve or random failure curve
(undetectable or unpredictable). For example, only deterioration curves for the rotor, bear-
ing, and seal were available for this case study.

The developed multi-method simulation model enables leveraging PdM capabilities
into potential opportunistic intervals in terms of intelligent maintenance. It enables stud-
ying if the designed PdM specifications support gaining the lifetime benefits by utilizing
potential opportunistic intervals or not. It is a core aspect to consider whether the mainte-
nance system is intelligent or not. Intelligence in this context means that the maintenance
management system is able to use detection, prediction, and scheduling analytics to opti-
mize the maintenance events and utilize opportunistic intervals. It can be concluded based
on Table 11 that the corrective maintenance events were reduced by earlier detection level
or farther predictive horizon, e.g., detection and prediction at 60% of a component lifetime
offers increased lifetime benefits (72.727% reduction in corrective maintenance events re-
lated to bearing, seal, and rotor) compared with the corrective maintenance reduction per-
cent (27.272%) at 90% of asset lifetime. Please note that PAM at 90% of a component life-
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time is capable of detecting sudden failures before their occurrence, however, the oppor-
tunistic intervals will not be utilized due to the short time notice. It is important to enable
maintenance engineers to determine the optimal technical specifications, i.e., detection
and predictive capabilities, and be able to revise and optimize such technical specifica-
tions at the design phase.

Moreover, this model has adopted the “timeline” concept to estimate and quantify
the maintenance workload amount (how much) in the specific timeline (when), rather
than just the accumulated workload amount for the entire lifetime. As shown in Figures
13-17, the corrective maintenance events are time-specific. The timeline concept is re-
quired and highly useful for maintenance scheduling purposes, especially, to utilize op-
portunistic maintenance (based on usage or season) in an intelligent manner. Regarding
the quantification of lifetime benefits of intelligent maintenance, the developed simulation
model mainly covers two aspects of lifetime benefits (1) operational behavior and (2)
maintenance workload. For example, the intelligent maintenance system for this case
study at 70% detection and prediction level (able to detect failures after 70% of the asset
lifetime), is estimated to improve the operational availability by 0.268% (shown in Table
9) and reduce the maintenance workload devoted to corrective maintenance by 459 h
(based on Table 10) which equals 11% during 20 years of operation. Furthermore, intelli-
gent maintenance management is also estimated to reduce the scheduled maintenance
workload (that leads to downtime) by 0.339% ((3262-3251)/3262 = 0.339%), however, it
will increase the scheduled maintenance workload (that does not lead to downtime) by
0.333% ((8765-8736)/8736 = 0.333%).

In summary, the developed simulation model has shown the ability to estimate the
lifetime benefits in terms of operational availability and its reduction of corrective mainte-
nance workload. The authors claim that the lifetime benefits of intelligent maintenance
will become even greater than what is anticipated in this paper, once other lifetime benefit
aspects, which are not covered by this research, are considered. This includes lifetime ben-
efit aspects, i.e., increasing both number and levels of detection and prediction of failure
modes, improving maintenance performance by reducing the level of repair, reducing
scheduled maintenance workload, enhancing asset performance, lifetime extension
measures for tactical and strategical decisions, and health, safety, and environmental is-
sues, and capital allocations. Definitely, the simulation model shall be developed further
to estimate all these lifetime benefits.

The structure of the developed simulation model is valid as it was extracted and val-
idated based on experts from the case study. The structure illustrated in the statechart
(Figure 1) represents (1) maintenance policy type (corrective and scheduled) and decision
making (trigger and condition to get notifications), and (2) failure modes. The statechart
represents how the system in this specific case company generates failure or maintenance
notification and how it can trigger maintenance events. It is important to highlight that
this state chart is valid for other O&G companies operating in the Norwegian Continental
Shelf. Regarding the failure modes, the statechart considers all standardized failure modes
(based on ISO14224) matching the well-known OREDA database. Thus, the authors claim
that the presented state chart is generic for O&G compressors, while the methodology is
generic for any equipment of interest.

The model inputs are also analyzed in a pragmatic manner, i.e., several data sources
(historical data records from the case study, OREDA, and physics-based deterioration
curves). The historical data related to failure and corrective maintenance events provide
valid and reliable failure rates and MTTR values, as long as the incomplete data (e.g.,
maintenance ending date) are manipulated. Failure rates and MTTR values extracted from
the OREDA data are well known and accepted in the Norwegian O&G industry as a valid
and reliable source of information. The deterioration curves extracted from Calixto [25]
are also valid and reliable curves.

The model outputs, i.e., simulated behaviors and estimated key performance indica-
tors have been validated by comparing them to real-world data (case study historical
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data). The simulated availability and corrective maintenance timelines were validated
with case company experts and numbers originating from case study literature [1]. It can
be concluded that the computational model is quite effective in terms of computation time.
This simulation model uses hours as time-unit, which means it simulates failure rate per
hour and checks all conditions (triggers) every time unit. It takes on average around 48 h
(where a “normal computer” is used) to provide results at equipment level, i.e., compres-
sor. However, for future simulations, the authors recommend days as time-unit, especially
once the model is scaled up to system-level, i.e., compression section and plant-level. In
addition, it is recommended that the failure rates are simulated based on years instead of
hours.

The computational model is easily generalized to fit any condition monitoring sys-
tem of interest. In this context, future adopters solely need to incorporate general infor-
mation from the specific case of interest, i.e., failure modes, scheduled maintenance rep-
resenting opportunistic maintenance intervals, failure rates, and MTTR values. In fact, the
authors recommend applying the PAM assessment matrix [16] to identify associated fail-
ure modes, failure mechanisms, and to determine the levels of detection, diagnosis, and
prognosis associated with the specific condition monitoring included in the case of inter-
est. The only requirement is that the computational model presented in this retains its
model structure, triggers, and logic.

Regarding scenarios (Table 6), it is recommended to use Scenario 4 for further simu-
lation as the failure rates are quite reliable in the case study historical data, while the
MTTR values presented by the OREDA database are most reliable and accurate (presented
in hours in comparison to the case study presenting the MTTR in days).

At last, besides the quantifiable results presented in this research, it also addresses
the sensitiveness and challenges concerning incorporating human factors into the failure
notification processes. From the authors’ perspective, the main issue of incorporating the
human factors in the notification processes is traced back to the maintenance personnel’s
opportunity of developing a notification that is solely based on subjective perceptions,
without any associated requirements to the level of detail for the individual notification.
Following this, the simulated results also justify why O&G companies keep using the
OREDA database [17] and not the company’s own empiric data in connection with anal-
ysis related to, e.g., technical integrity and risk. Therefore, for the future, it shall also be
recommended that the notification processes avoid incorporating human factors, at least,
reducing its impact by making the notification process (partially) automatic or based on a
templated questionary with pre-defined alternatives that the maintenance personnel are
required to answer before the notification is considered as complete.
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