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Abstract: Paleolimnological reconstructions from the mid and high latitudes in the Southern Hemi-
sphere are still relatively scarce. Anthropogenic impacts have evidenced trophic state changes and
an increase in cyanobacterial blooms in the lacustrine system of San Pedro de la Paz in the last
decades. Here, we reconstructed primary production and sedimentological changes spanning the
past 2500 years in two coastal lakes in Mediterranean Chile. A multiproxy approach including sedi-
mentological, biogenic silica, carbon and nitrogen isotopes and fossil pigments analysis in sediment
cores was performed in Laguna Grande (LGSP) and Laguna Chica de San Pedro (LCSP). A marked
change in the sedimentology of the lakes, likely related to the terrigenous sediment inputs derived
by a transition from an arid condition in the mid-Holocene to a more humid condition in the late
Holocene that favoured arboreal forest establishment at 100 BC–AD 150. A period of low primary
production was identified between 850 to 1050 AC for LCSP, suggesting moist and cold conditions
that were possibly related to La Niña events. In recent decades, there have been increases in primary
production, probably resulting from anthropogenic disturbances. These likely include the clearance
of native vegetation, the introduction of exotic tree species, and urbanisation, which in turn, resulted
in nutrient inputs and hence eutrophication. We conclude that an integrated management program
for both lakes is urgently needed.

Keywords: lacustrine sediments; algal pigments; multi-proxy; reconstruction; environmental changes

1. Introduction

Lake sediments are archives of past variations in biological communities which re-
spond to environmental and climate change and vary in time and space [1–5]. These
changes result from a complex interaction between climate, anthropogenic activities and
the characteristic of aquatic systems that imply its study and recording [5–7]. Such records
are particularly lacking for the Southern Hemisphere [6–8]. The Mediterranean coast of
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Chile corresponds to a climatic and vegetational transition zone and is considered as an
area sensitive to environmental changes due to anthropogenic impacts and climate alterna-
tions [6,9–12]. Indeed, historical records have emphasised the influence of anthropogenic
activities on lakes in the region over the last 500 years [13,14]. In particular, intensive
periods of land use, clear-cutting of native forest and the replacement by exotic plantation
forestry (Pinus radiata and Eucalyptus spp.), wheat growing, urbanisation and industrialisa-
tion processes have caused changes in the trophic status, chemical composition and water
quality of the lakes [13–16].

Regional studies in the Chilean Mediterranean Zone revealed that prehispanic native
cultures had no significant impact on land use [17]. However, since the mid-sixteenth
century, Spanish colonisation induced disturbances on the natural landscape. The introduc-
tion of the Mediterranean Hispanic Model of agriculture-livestock resulted in pronounced
land-use changes [18,19]. In addition, the urbanisation of the coastal zone has intensified
over the last decades and generated a significant increase in nutrient inputs to watersheds,
leading to gradual environmental degradation and an increase in phytoplankton productiv-
ity [13,16,20–23]. For example, diatom studies in Laguna Grande and Laguna Chica (San
Pedro de la Paz, Biobío region, south-central Chile) revealed that trophic state changes
occurred after the Spanish arrival [13,20,22]. Moreover, cyanobacterial blooms have been de-
tected in Laguna Grande in the last decades [24], which is likely related to the recent increase
in temperature due to global warming and increased nutrient concentrations [25–27].

However, few studies focused on long-term changes in the entire phytoplankton com-
munity have been considered in Chilean coastal lakes to explain their response to environ-
mental conditions [6,9,28–30]. Sedimentological and biological proxies such as (sub)fossil
remains, total organic carbon concentration, C and N stable isotopes and phytoplankton
pigments can provide valuable information on past changes in primary production and
the phytoplankton community structure [6,7,31–39]. Phytoplankton pigments have the
advantages that they also allow for the study of soft-bodied organisms which do not readily
fossilise. A disadvantage is that pigments are relatively sensitive to degradation in response
to high irradiance, oxygen concentrations, bacterial activity, grazing and high tempera-
tures [34,36,40–44]. Nevertheless, once buried in suitable conditions (anoxic sediments),
pigments can be preserved for thousands of years [42,45–47]. Stable isotope ratios of carbon
and nitrogen and the atomic C/N ratios can provide insights into the origin of organic
matter in aquatic ecosystems, vegetation sources, aquatic algae proportions or terrestrial
organic matter. Moreover, they are used to interpret paleoenvironmental changes in lakes
and their watersheds [4,48–51]. The tracking of environmental changes allows historical
trajectories, local and regional patterns to be revealed [11,52,53].

This paper is aimed at reconstructing primary production during the late Holocene
to the present-day based on a multiproxy approach, which includes the sedimentological
description, biogenic silica, carbon and nitrogen isotopic composition and fossil pigments
in two Mediterranean coastal lakes in Chile, namely Laguna Grande and Chica de San
Pedro. We focussed on the late Holocene because this period is characterised by profound
land-use changes in the region [9,10,19,23].

2. Material and Methods
2.1. Study Area

The study area is located within the lacustrine system of San Pedro de la Paz, Biobío
region, in south-central Chile [13,15]. The lacustrine system comprises two lakes:, i.e.,
Laguna Grande (36◦51′ S; 73◦06′ O; 4 m.a.s.l.) and Laguna Chica (36◦51′ S; 73◦05′ O;
5 m.a.s.l.), referred to as LGSP and LCSP, respectively. Both lakes are part of an ancient
coastal plain formed during the Quaternary [54,55]. The formation of the lakes is still largely
unknown, but Martinez et al. [56] reported that both lakes were developed within the valley
of ancient rivers that once drained into the Pacific Ocean. Subsequently, they were dammed
due to the sedimentation contribution by the cliffs of the Nahuelbuta mountain range
during the late Pleistocene/early Holocene. Additionally, basaltic sands transported from
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the headwater to the mouth of the Biobío river originated by the Antuco Volcano (Lake
Laja) contributed to the Biobío river delta formation and the Coronel coastal plain. These
fluvial sediments were deposited at the north of the lakes as part of their geomorphological
formation [56–58].

The lakes are located on the northwestern slope of the mountain range of Nahuelbuta,
close to the Pacific Ocean and south of the Biobío River mouth [58] (Figure 1). The LGSP is
a shallow lake with a 12.5 km2 drainage basin, 1.55 km2 surface area and 13.5 m maximum
depth. Similarly, the LCSP is a small lake with a 4.5 km2 drainage basin, 0.87 km2 surface
area and a maximum depth of 18 m (Table 1) [13,18,58]. Both systems show sharp slopes
at the west, south and east sides, and soft slopes towards the north coast [13,56]. To
date, the phytoplankton communities are dominated by Bacillariophyceae, Chlorophyceae,
Desmideaceae and Cyanobacteria (Table 1).
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Figure 1. Study area of the Laguna Grande and Laguna Chica de San Pedro.

Table 1. Summary of environmental, physico-chemical and biological characteristics of the Laguna
Grande and Laguna Chica de San Pedro (Parra 1989; Araneda et al., 1999; Cisternas et al., 2000; Barra
et al., 2001; Parra et al., 2003; Campos et al., 2005; Almanza et al., 2016).

Laguna Chica Laguna Grande

Latitude 36◦51′ 36◦51′

Longitude 73◦05′ 73◦06′

Altitude (m.a.s.l.) 5 4
Lake area (km2) 0.82 1.55

Watershed area (km2) 4.5 12.7
Maximum depth (m) 18 13.5
Volume (m3 × 106) 8.64 12.9

Native forest and shreds 27.1% 5.7%
Forest plantations 48.9% 52.4%

Agriculture 3.4% 1.0%
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Table 1. Cont.

Laguna Chica Laguna Grande

Urban area 4.9% 4.1%
Water transparency (m) 5.2 (3.8–6.8) 3.7 (3.0–6.1)
Water temperature ◦C

(min-max) 17.4 (12.5–24.0) 18.1 (12.2–24.0)

Annual mean precipitation
(mm) 1.235 mm 1.235 mm

pH 7.0 (6.5–7.73) 7.0 (6.5-7.6)
Conductivity (µS/cm) 71 (50–90) 84 (35–107)

Dissolved oxygen (mg/L) 9.2 (5.9–10.9) 8.8 (4.9–10.7)
Alkalinity (meq/L CaCO3) 0.4 (0.4–0.5) 0.5 (0.5–0.6)

TDS (mg/L) 42.3 52.6
Total phosphorus TP (µg/L) 20 50

Total nitrogen TN (µg/L) 170 (60–320) 230 (80–340)
Chlorophyll a (µg/L) 1.20 6.42
Primary productivity

(mgC/m3/hr) 2.44 22.68

Trophic state Mesotrophic-Eutrophic Eutrophic-Hypereutrophic
Macrophytes Abundant Major abundance

Summer stratification Yes No
Phytoplankton richness 39 57

Main phytoplankton groups

Bacillariophyceae
Chlorophyceae
Desmideaceae
Cyanobacteria

Chlorophyceae
Bacillariophyceae

Desmideaceae Cyanobacteria

Reports of Cyanobacteria

Microcystis sp. (blooms)
Dolichospermum sp.

Merismopedia sp.
Oscillatoria sp.

Aphanocapsa sp.

Microcystis sp. (blooms)
Dolichospermum sp.
Pseudoanabaena sp.
Gomphospheria sp.

Chroococcus sp.
Snowella sp.

Mean (min-max).

2.2. Sampling and Sedimentological Analysis

Duplicate sediment cores were collected in January 2016 at the central and the deepest
part of LGSP (13.5 m) and LCSP (18 m). The cores were obtained using a UWITEC gravity
corer equipped with a 6 cm diameter plexiglass tube, covered with aluminium foil to protect
from sunlight and stored at 4 ◦C until the analyses. The cores were upward sectioned
every 1 cm, freeze-dried and homogenised using a mortar and pestle to analyse biogenic
silica and fossil pigments. For determination of the stable isotopes, the samples were
oven-dried and homogenised using a mortar and pestle before the analysis. The biogenic
silica (BSi) was extracted with the alkaline method and determined by molybdate-blue
spectrophotometry [59].

The magnetic susceptibility (MS) was measured at 1 cm intervals using the Bartington
MS2E sensor and the Multisus v2.44 software. The grain-size analysis was performed
using a Malvern Mastersizer 3000 laser particle size analyser. A quantity of 5 mg of each
sediment layer was treated with H2O2 (30%) in a thermal bath to remove the organic matter
and then combined with distilled water to suspend sediments uniformly prior to analysis.
The percentage by volume of each size fraction was analysed using the Gradistat program
to determine conventional particle size statistics [60,61]. Grain-size and magnetic suscepti-
bility were used as an indicator of input of terrigenous materials, allochthonous to the lake.
These analyses were conducted in the laboratory of Paleolimnology and the laboratory of
Environmental Sciences Center EULA-Chile at the University of Concepción, Chile.
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2.3. Sediment Core Dating

The chronology of the sediment cores of LGSP and LCSP was established by combining
210Pb, 137Cs and 14C. Short-lived radioisotope activities were measured by spectrometry
using a low-background well-shaped high-efficiency, germanium spectrometer equipped
with a Cryo-Cycle in the laboratory Environnements et Paléoenvironnements Océaniques
et Continentaux (EPOC), Université de Bordeaux, France. Excess 210Pb (210Pbxs) was
calculated by subtracting the activity supported by its parent isotope, 226Ra, from the
total 210Pb activity in the sediment. The activities of 210Pbx in excess (210Pbxs) and 137Cs
were analysed downcore until negligible values were observed, which was at about 20
and 14 cm for LGSP and LCSP, respectively. The AMS radiocarbon analyses (14C) were
performed on the bulk sediment samples, selecting three samples for LGSP and LCSP.
These values were calibrated with Oxcal 3.10 [62] using the calibration curve SHCal 13 [63].
Mass accumulation rates (MAR, expressed in g m−2 cm−1) were obtained by plotting the
regression of 210Pbxs against cumulative mass and were used to calculate sediment ages.
This approach assumes that the sediment surface represents the year of core acquisition.
The artificial radioisotope 137Cs was used as an independent time marker in order to
validate the 210Pb age model. All the 14C and 210Pbxs dates were logged to the Clam
code [64] using the R software [65] to obtain the chronological model. A cubic spline and
linear interpolation allowed the ages of undated levels to be estimated.

2.4. Stable Isotopes

The analyses of stable isotopes of carbon and nitrogen were performed using an
IsoPrime100, isotopic ratio mass spectrometry (Isoprime, UK) coupled in a continuous
flow to a Vario Micro cube elemental analyser (Elementar, Germany) at the Laboratory
of Oceanology, Institute of Chemistry, Université de Liege, Belgium. The isotopic val-
ues are expressed as δ values in ‰. Accuracy was obtained on 7 and 10 replicates for
LGSP and LCSP, respectively, performed on samples and standards, i.e., standard atropine
value (0.5 ‰ C and 0.4‰ N), IAEA-CH6 sucrose (δ13C = −10.4 ± 0.2‰) and IAEA-N1
(δ15N = +0.4 ± 0.2‰). The samples were acidified with HCl to remove inorganic carbon-
ates to avoid any modification of nitrogen isotopic signature [18,66–68]. The total organic
carbon (TOC) and carbon and nitrogen isotopes were used to discriminate between the
allochthonous input and the autochthonous organic matter related to the productivity of
the lake.

2.5. Pigment Analysis

Thirty samples of freeze-dried sediments were extracted from sediments in the cores
of both lakes. A solution of 90% acetone was added to the samples, and sonication was
used for the extraction (1 min per sample and let the extract rest overnight at 4 ◦C in dark
conditions). The analyses were performed using the Agilent 1100 HPLC (high-performance
liquid chromatography), pump, auto-sampler, DAD-diode-array detector and Agilent
Eclipse XDB-C8 column [69]. The pigments were identified and quantified based on
the retention time and specified spectrum of each pigment. They were calibrated using
standard pigments provided by DHI Denmark.

The individual pigment concentrations were calculated using the response factors of
standard pigments, expressed as dry-mass specific concentrations (µg pigment per mg
dry sediment) [32,36,70,71]. The fossil pigments were assigned to their respective taxo-
nomic groups. Chlorophylls, mainly represented by chlorophyll-a (chl-a), were used as
an indicator of total photosynthetic algal concentration and higher plants. Chlorophyll-b
(chl-b) reflects the presence of green algae and higher plants [71]. The carotenoids zeaxan-
thin, canthaxanthin and echinenone, were used as indicators of cyanobacterial abundance
(Cyanophyta). Lutein was used as a signature of green algae, euglenophytes and higher
plants [33]. Alloxanthin is a measure of cryptophytes, and diatoxanthin occurs in diatoms,
dinoflagellates and chrysophytes. Chlorophyll degradation products were mainly repre-
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sented by phaeophytin-a and phaeophorbide-a [37,69–72]. These analyses were performed
in the Laboratory of Protistology and Aquatic Ecology, Ghent University, Belgium.

The total chlorophyll was estimated by calculating the sum of the chl-a and their
degradation products (Phaeophorbide and Phaeophytin). Each pigment was divided by
total chlorophyll to obtain pigment proportions. The carotenoid pigments were calculated
considering the total carotenoids as the sum of zeaxanthine, canthaxanthin, echinenone,
lutein, alloxanthin and diatoxanthin [31,72,73]. Pigment fluxes were treated as proxies of
phytoplankton abundance using the sedimentation rate [72,73].

3. Results
3.1. Age Model

Radiocarbon ages from LGSP and LCSP cores are summarised in Table 2 and rep-
resented in Figure 2. The obtained ages maintain a stratigraphic order throughout the
profile in both cores, covering the past 5000 years within 80 cm for LGSP and 2500 years
within 116 cm for LCSP. The 14C age model in LCSP is poorly resolved. Profiles of 210Pbxs
show an exponential decrease of activities, from 40 mBq g−1 for LGSP and 60 mBq g−1 for
LCSP in the uppermost sediments to negligible values in depth. The limit value of 210Pb in
excess to 1888 AD was observed at 25 cm for LGSP and 14 cm for LCSP. (Figures 2a and 2c).
137Cs profiles in the two lakes present a peak at 12 cm (1965 ± 5 AD) for LGSP and 5 cm
(1965 ± 8 AD) for LCSP, respectively (Figure 2b,d), which is in close agreement with the
well-known pulse inputs related to the nuclear weapon test fallout in the early sixties
(maximum atmospheric fallout is in 1965 in the Southern Hemisphere) [74].

Table 2. Radiocarbon date of bulk sediments from the Laguna Grande and Laguna Chica de San Pedro.

Lab Code Lake Core Depth
(cm)

14C yr BP ±1σ Calibrate Age BC/AD

Min Mean Max

ETH–70456 Laguna grande 41 1707 ± 23 339 385 431
ETH–70457 Laguna grande 51 2276 ± 24 −325 −267 −209
ETH–70458 Laguna grande 71 3467 ± 25 −1780 −1707 −1635

D-AMS 025916 Laguna Chica 54.5 936 ± 26 1129 1172 1216
D-AMS 025914 Laguna Chica 116.5 2482 ± 43 −599 −503 −407
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3.2. Lithological Description

The sediment cores from LGSP and LCSP are characterised by two main units (Figure 3).
The lower section is characterised by a light grey to beige coarser layer with higher MS values
in both cores, whereas silty clay sediments compose the upper finer section.

Laguna Grande de San Pedro (LGSP)
The basal unit (58–47 cm) is mainly composed of silty sand. The sand fraction > 63 µm

averaged 14.5± 3.8% (Table 3). The highest MS values compared to the rest of the sediment
core, averaged 299 ± 149.9 × 10−8. TOC and TN displayed a gradual increase from the
bottom upwards, from 0.5 to 1.7‰ and 0.05 to 0.17‰, respectively. BSi concentrations
were low, ranging from 0.35 to 1.19% (0.79 ± 0.24%). The C/N ratio varied from 8.7 to
10.3 (9.4 ± 0.5). The δ13C was stable, ranging between −25.8‰ to −26.2‰ (±0.3‰). Slight
variations in δ15N values ranged from 3.04 to 5.01‰ (3.63 ± 0.4‰) at the bottom with a
maximum at 48 cm.



Appl. Sci. 2021, 11, 3478 8 of 15Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 16 
 

 

 

Figure 3. Depth profiles of magnetic susceptibility (SI), organic matter (%), biogenic silica (%), TOC (weight %), C/N ratio 

atomic, δ13C (‰) and δ15N (‰) in sediment core of (a) Laguna Grande de San Pedro (LGSP) and (b) Laguna Chica de San 

Pedro (LCSP). 

Table 3. Composition of the sediment grain-size (mean percentage ± standard deviation) of the Laguna Grande (LGSP) 

and Laguna Chica de San Pedro (LCSP) described by lithological units. 

 Laguna Grande de San Pedro 

 Clay  (%) Silt (%) Sand (%) 

UNIT 2 (46–0 cm) 7.12 ± 0.83 90.75 ± 1.95 2.03 ± 2.38 

UNIT 1 (60–47 cm) 4.64 ± 0.91 80.88 ± 4.13 14.48 ± 3.76 

  

 Laguna Chica de San Pedro 

 Clay (%)  Silt (%) Sand (%) 

UNIT 2 (93–0 cm) 7.05 ± 2.45 90.12 ± 4.09 2.83 ± 2.72 

UNIT 1 (120–94cm) 4.68 ± 1.62 87.82 ± 2.86 7.50 ± 2.65 

Unit 2 (46–0 cm): the grain-size distribution was relatively stable, with a slight varia-

tion at the top of the core, with a high amount of silt fraction (~91%). Steady low MS values 

(85.6 ± 19.4 × 10−8) were observed. Instead, TOC and TN profiles showed a gradual increase 

upward of this unit. BSi concentrations showed distinguished increases at 29, 12 and 8 cm, 

while values more than ten in C/N ratios were found from 46 cm to the top of the core. 

δ13C values were stable from 46 to 6 cm, with a trend toward more negative values from 7 

cm to the top. δ15N values showed marked variations, extending from 3.5 to 6.9‰ (4.6 ± 

0.7‰), with a significant increase at 24 cm. 

Figure 3. Depth profiles of magnetic susceptibility (SI), organic matter (%), biogenic silica (%), TOC (weight %), C/N ratio
atomic, δ13C (‰) and δ15N (‰) in sediment core of (a) Laguna Grande de San Pedro (LGSP) and (b) Laguna Chica de San
Pedro (LCSP).

Table 3. Composition of the sediment grain-size (mean percentage ± standard deviation) of the Laguna Grande (LGSP) and
Laguna Chica de San Pedro (LCSP) described by lithological units.

Laguna Grande de San Pedro

Clay (%) Silt (%) Sand (%)

UNIT 2 (46–0 cm) 7.12 ± 0.83 90.75 ± 1.95 2.03 ± 2.38
UNIT 1 (60–47 cm) 4.64 ± 0.91 80.88 ± 4.13 14.48 ± 3.76

Laguna Chica de San Pedro

Clay (%) Silt (%) Sand (%)

UNIT 2 (93–0 cm) 7.05 ± 2.45 90.12 ± 4.09 2.83 ± 2.72
UNIT 1 (120–94cm) 4.68 ± 1.62 87.82 ± 2.86 7.50 ± 2.65

Unit 2 (46–0 cm): the grain-size distribution was relatively stable, with a slight varia-
tion at the top of the core, with a high amount of silt fraction (~91%). Steady low MS values
(85.6 ± 19.4 × 10−8) were observed. Instead, TOC and TN profiles showed a gradual
increase upward of this unit. BSi concentrations showed distinguished increases at 29, 12
and 8 cm, while values more than ten in C/N ratios were found from 46 cm to the top
of the core. δ13C values were stable from 46 to 6 cm, with a trend toward more negative
values from 7 cm to the top. δ15N values showed marked variations, extending from 3.5 to
6.9‰ (4.6 ± 0.7‰), with a significant increase at 24 cm.
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Laguna Chica de San Pedro (LCSP)

Unit 1 (117–94 cm): for LCSP (Figure 3b) showed the highest mean values at the
bottom of the core for the mean grain size distribution (15.3 ± 3.8%) and the MS pro-
file (642 ± 329 × 10−8). In contrast, the lowest values were observed for TOC and TN
(0.25 ± 0.07 and 0.03 ± 0.005, respectively). BSi displayed relatively constant values, with
an average of 0.5 ± 0.23%. The C/N ratio fluctuated from 5.4 to 10.4, while the δ13C and
δ15N showed more negative values at 102 cm.

Unit 2 (94–0 cm): the grain-size particle displayed variations throughout the core.
Steady MS values were observed (85.6 ± 19.4 × 10−8). A notable shift was observed in
mean grain size, MS, TOC, TN, BSi, C/N, δ13C and δ15N between 66 and 58 cm.

3.3. Fossil Pigments Analysis

A total of ten fossil pigments were identified from the sediment core for LGSP
(Figure 4a) and nine for LCSP (Figure 4b). Pigments concentrations were minimal in the
sediment core’s deepest part and increased toward the uppers layers, mainly in the modern
sediments. A relatively high abundance of chlorophyll-a and phaeophytin-a for LGSP
were observed. The abundance of canthaxanthin, echinenone and alloxanthin remained
relatively low over time. Notable values were measured at 54, 36 and 9 cm for zeaxanthin
and diatoxanthin, while lutein showed an increase between 9 and 4 cm. Chlorophyll-b was
identified from 24 cm onwards, and phaeophorbide-a showed an increased trend upwards
of the core from 24 cm. The total flux of chlorophylls and carotenoids remained low from
the bottom, but relatively high flux was found at the end of the core (Figure 4b).
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Figure 4. Fossil pigments stratigraphy of Laguna Grande (a) and Laguna Chica (b) de San Pedro sediment cores.

LCSP is characterised by a dominance of chl-a, phaeophytin-a and phaeophorbide-a. The
chl-b was detected at 61 cm. Zeaxanthin, canthaxanthin and lutein displayed a relatively
low abundance. Alloxanthin and diatoxanthin decreased gradually from 69 cm to the top
of the core. The chlorophylls and carotenoid fluxes were relatively low at the bottom and
increased in the upper sediments.
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4. Discussion
4.1. Changes in Sediment Deposition

The changes in physical properties (mean grain size and magnetic susceptibility), as
well as 137Cs and the 210Pb excess activities, were used to correlate both cores, since they
did not present the same sedimentation rates with differences in the time window for both
lakes (Figure 5). Although LGSP and LCSP have steep slopes on the south, east and west
banks, the northern coast shows mild degradations [21,23]. The watershed area and the
characteristics of the slopes of LCSP could have facilitated the dragging of particles with a
more significant accumulation process on the bottom and; therefore, a higher sedimentation
rate than in Laguna Grande, evidencing this change at 48 cm for LGSP and 98 cm for LCSP.
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Figure 5. Correlation of 210Pb, 137Cs, magnetic susceptibility and grain size profiles of the Laguna Grande (a) and Laguna
Chica (b) de San Pedro.

The main sedimentological change (i.e., coarse grain size, high MS) observed at the
base of both studied cores most likely related to change in the sediment supply at the local
scale. According to the reconstructed age models, this change occurred within a similar
time window, i.e., 100 BC–AD 150 in both cores. The presence of sandy sedimentation and
the high magnetic susceptibility values could be attributed to significant changes in the
terrigenous sediment inputs to the lakes. A higher variability of continental weathering
conditions and sediment input have been documented in geomorphological and pedo-
logical studies, which may indicate a more changeable climate in the late Holocene after
3000 yr B.P., marked by the fluctuations in the influence of the westerlies [75]. Besides,
C/N ratio and δ15N values indicated contributions of autochthonous organic matter in
both lakes [48–51].

Under those considerations, we interpreted it as a transition from an arid condition in
the mid-Holocene to more humid late Holocene conditions (humidity and temperature)
that could have favoured the establishment of a native arboreal forest in the watersheds
approximately at 100 BC–AD 150 [8–10]. Precipitations driven by the westerly winds in the
region could influence the erosion rate in the watersheds displayed at the bottom of the
lakes [9]. Other events that occurred in the area were dismissed, such as sediment supplies
from the Biobío river, marine transgressions, emerged marine terraces and surface uplift
rates, because they did not coincide with our period identified [56–58,76].
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4.2. Late Holocene Evolution of Lake Primary Production

A gradual increase in the TOC and TN for LGSP and LCSP was reflected at 100 BC–AD
150 onwards and reached a maximum during the present-day period (Figure 3a,b). This
trend might suggest increased diagenetic processes that, with time, led to the gradual
breakdown of organic matter [2,65]. Nevertheless, this gradual increasing trend is absent
in the LCSP record, which is, by contrast, characterised by relatively lower values of TOC
and TN, but also BSi and δ13C, between 850 and 1050 AD, pointing out very low lake
paleoproductivity. These results might suggest moist and cold conditions coinciding with
persistent cool La Niña-like conditions between 650 and 950 AD, as reported by Fletcher
and Moreno in Laguna San Pedro (38 ◦S) [11].

Variations of the C/N ratio and δ15N were observed from 100 BC–AD 150 to the
present day and particularly, from 450 AD and 520 AD in LCSP and LGSP, respectively.
This might be related to an increased organic matter input derived from the watershed
area of the lakes, but probably also increased the lake primary production as evidenced
by the fossil pigment data. Indeed, fossil pigments were detected in LCSP from 450 AD
onwards and were not present prior to this period. The carotenoids identified suggest
the presence of cyanobacteria, chlorophyta, bacillariophyta and dinoflagellates (Figure 4a)
in LCSP. In the LGSP, pigments were detected throughout the entire core, albeit at low
concentrations prior to 1900 AD. Jenny et al. in Laguna Aculeo (34 ◦S) [9], reported that
around 500–700 AD was characterised by a high frequency of flooding, an event that could
have influenced the watersheds, dragging allochthonous matter towards the lakes, leading
to changes in C/N, δ15N, TOC, TN and primary production during this period.

Interestingly, no obvious changes were present in the proxy records coincident and
immediately after the Spanish colonisation in the region, around the middle of the XVI
century (1536 to 1541 AD). Nevertheless, the highest values of C/N, which indicated a
mixture of terrestrial and aquatic organic matter around 1550 AD for both lakes, resulting in
higher catchment erosion and an increasing lake terrigenous supply, could be due to the set-
tlements in the watershed. According to historical records described by Aronson et al. [77]
and Torrejon and Cisternas [18], the Mapuches lacked intensive productive activities before
the Spanish settlements. Accordingly, little impact was generated in these watersheds.
Contrarily, in the middle of the XVI century, the Spanish colonisation at the south of the
Biobío river caused the introduction of intensive exotic crops and livestock of ungulates
(horses, sheep and cattle) [14,17,21,23,24,77,78]. It has been previously suggested that
the development of settlements had a moderate impact on the pre-Columbian ecological
landscape [19,78], which could favour the inputs of organic matter to the aquatic systems
observed in C/N values as a possible signal of those changes.

The most obvious changes in the proxy records occurred in recent decades in both
sediment cores. In particular, the C/N ratio and δ13C decreased in both lakes, while the
total chlorophyll and carotenoid concentrations increased. Combined, this suggests that
phytoplankton primary production increased in recent decades. Nevertheless, apart from
an increase in Chl-b, no obvious changes were observed in the relative abundance of the
other marker pigments, apart from a slight decrease in diatoxanthin.

Interestingly, this is more or less coincident with a decrease in BSi, which might
suggest that diatoms and/or chrysophytes became less abundant, while chlorophytes
became more dominant (higher Chl-b) in recent decades. However, it must be noted that
the sharp rise in total pigments in the most recent samples might reflect diagenesis and the
degradation of pigments with time.

Nevertheless, given the coincident rise in pigment concentration and the change in
the other proxies (i.e., C/N ratio and δ13C), we suggest that lake primary production
increased in the most recent decades. This is consistent with a period of high sedimentation
rates, as described by Urrutia et al. [22] and Cisternas et al. [79], in LCSP from 1951 to
1968 AD, which coincided with our results showing an increase in C/N ratio and δ13C
at 1955 AD. While Cruces et al. [13] described this period in LGSP from 1948 to 1972 AD,
which coincided with a significant increase in hydrocarbons, fatty acids and organic matter,
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observed by BSi, C/N and δ15N in the same period in this lake. The dynamic changes
observed for both LGSP and LCSP lakes could be linked to the increased urbanisation
of the surrounding areas, and mainly the creation of the Villa of San Pedro in 1962 [20],
and the increase in summer houses for touristic and recreational activities on the banks of
LCSP and LGSP [23]. Finally, an integrated management program is required to generate a
regional plan of conservation and the strengthening of institutional frameworks to enable
governance and public participation in these systems [80].

5. Conclusions

A reconstruction of primary production based on multiproxy analyses in Laguna
Grande and Laguna Chica de San Pedro provided essential information about changes in
the last 2500 years. The major sedimentological transition observed at the lower part of
the sedimentary columns was attributed to local influence with an important proximal
input in both lakes. Additionally, the westerlies winds also contributed to the terrigenous
sediment inputs at 100 BC–AD 150. Laguna Chica de San Pedro evidenced a low primary
production between 850 and 1050 AD that coincided with the persistent cool La Niña-like
conditions. Historical records highlighted the transformations in the ecological landscape
of the area during the colonisation, which were notable around 1550 AD in terms of the
C/N results. The fossil pigment concentrations and the stable isotopes suggest increased
phytoplankton primary production in both lakes in recent decades. These are likely the
result of local environmental conditions and human disturbances related to urbanisation,
the cutting and replacing of native forest and commercial logging. Hence, an integrated
management program for these watersheds is highly needed. We recommend further
research focused on primary production, climate and anthropogenic drivers to understand
long-term responses and patterns of aquatic ecosystems at the local and regional scale.
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