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Abstract: Traditionally, the first step in physiological measurements based on remote photoplethys-
mography (rPPG) is localizing the region of interest (ROI) that contains a desired pulsatile information.
Recently, approaches that do not require this step have been proposed. The purpose of this study was
to evaluate the performance of selected approaches with and without ROI localization step in rPPG
signal extraction. The Viola-Jones face detector and Kanade–Lucas–Tomasi tracker (VK) in combina-
tion with (a) a region-of-interest (ROI) cropping, (b) facial landmarks, (c) skin-color segmentation,
and (d) skin detection based on maximization of mutual information and an approach without ROI
localization step (Full Video Pulse (FVP)) were studied. Final rPPG signals were extracted using
selected model-based and data-driven rPPG algorithms. The performance of the approaches was
tested on three publicly available data sets offering compressed and uncompressed video recordings
covering various scenarios. The success rates of pulse waveform signal extraction range from 88.37%
(VK with skin-color segmentation) to 100% (FVP). In challenging scenarios (skin tone, lighting condi-
tions, exercise), there were no statistically significant differences between the studied approaches in
terms of SNR. The best overall performance in terms of RMSE was achieved by a combination of
VK with ROI cropping and the model-based rPPG algorithm. Results indicate that the selection of
the ROI localization approach does not significantly affect rPPG measurements if combined with a
robust algorithm for rPPG signal extraction.

Keywords: remote photoplethysmography; vital signs monitoring; remote sensing

1. Introduction

Remote photoplethysmography (rPPG) is an optical measurement technique for de-
tecting minute blood volume variations in cutaneous microcirculation using a digital
camera [1]. It allows non-contact measurements of various physiological parameters: pulse
rate (PR) and its variability, blood pressure, pulse transit time, etc.

Traditionally, rPPG approaches first require localization of the region of interest
(ROI) [2,3]. The most basic solution is a manual definition of ROI [1,4]; however, the most
commonly used are automated ROI localization approaches, such as (1) combination
of face detection, tracking and skin mask refinement (the latter being optional) and (2)
living-skin detection [5,6]. In the first approach, Viola-Jones frontal face detector has been
suggested [7] for detecting faces in video recordings and has been widely used ever since
in rPPG studies [8]. Detected ROI is then tracked throughout the entire recording using a
dedicated algorithm, most commonly Kanade–Lucas–Tomasi (KLT) tracker. An optional
step of skin mask refinement (i.e., ROI refinement) can be carried out in several ways, e.g.,
by resizing bounding box containing a detected face [7,9], by skin-color segmentation in
various color spaces (RGB [10], RGB-H-CbCr [11], YCbCr [12]), by extracting selected facial
landmarks [13,14], or by applying the skin detector based on maximization of mutual in-
formation [15]. The described automated approach is, however, only applicable in the case
of facial video recordings, and its performance depends on the presence of motion artifacts
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and the appearance of face in the recordings. In the second approach, video recordings are
first segmented into several regions, from which rPPG pulse waveform signals are extracted.
Next, based on the characteristics of rPPG signals, pulse and noise are differentiated from
the extracted signals, and finally, the regions containing pulse information are labeled as
skin regions [5]. Drawbacks of this approach are its high computational complexity, the
presence of the causality dilemma caused by the interdependence of the skin detection and
pulse waveform signal extraction, and the requirement for spatio-temporally coherent local
segmentation [16].

Recently, new approaches have been proposed that do not require a ROI localization
step [16,17]—these are the approaches with no image processing front-end [17]. The idea
behind them is that, since we are interested only in the rPPG pulse waveform signal and not
in the ROIs and their location specifics, we can treat a camera as a single rPPG sensor [16].
In the Full Video Pulse extraction (FVP) approach, a temporal mean of a color signal is
used as a feature to differentiate between the image background and foreground (i.e., skin
pixels) by first producing a set of weighting masks, then extracting rPPG signals from each
mask, and finally combining the signals into a single pulse waveform signal [16]. Another
approach is single-element rPPG, in which the average pixel intensity values of the full
frames are extracted from the entire video recording [17]. In contrast to FVP, the existing
skin reflection model-based rPPG algorithms showing the best general performance exhibit
a significant performance drop in extracting target pulse waveform signal when applied
in single-element rPPG. Therefore, this approach should be used with a dedicated rPPG
algorithm, e.g., SoftSig [17]. SoftSig consists of two steps, a projection step and a selection
step, in which pulse waveform signals candidates are extracted and the best candidate
rPPG signal (in terms of predefined quality metrics) is selected, respectively [17].

The selection of the image processing front-end approach in rPPG strongly affects
the signal-to-noise ratio (SNR) of the extracted rPPG pulse waveform signal [8,18–20].
Li et al. [18] evaluated the performance of seven different image processing front-end ap-
proaches (in combination with model-based CHROM rPPG algorithm [21]) in PR extraction
from the publicly available Univ. Bourgogne Franche-Comté Remote Photoplethysmog-
raphy (UBFC-RPPG) data set [6]. The studied approaches included Viola-Jones frontal
face detector with KLT tracker and different ROI refinement algorithms: (1) no refine-
ment, (2) ROI cropping [7], (3) RGB-based skin-color detection [10], (4) skin detection
based on the maximization of mutual information [15], (5) adaptive RGB-based skin-color
detection, (6) graph-cut based skin segmentation [22] and (7) facial landmarks segmen-
tation [14]. The worst result was obtained for Viola-Jones face detection algorithm with
KLT tracking with no ROI refinement, whereas the overall best performance was reached
when skin detection based on the maximization of mutual information was applied for
refining ROIs [15]. It is to be noted that the studied video recordings covered resting and
mathematical game playing scenarios only. Fouad et al. [19] reported that Viola-Jones
outperforms Normalized-Pixel-Difference-based face detector proposed by Liao et al. [23],
KLT outperforms Camshift [24], and skin detector based on the maximization of mutual
information [15] outperforms RGB-H-CbCr [11] in terms of root mean square error (RMSE)
of average PRs. The authors used the UBFC-RPPG data set [6] and extracted the pulse
waveform signals using blind-source-separation-based rPPG algorithm FastICA [25]. Later,
Li et al. [20] additionally assessed the performance of selected approaches with different
ROI localization steps in rPPG-based PR measurement: Viola-Jones face detector [26] and
KLT [27], in combination with (1) no additional algorithms, (2) skin detector based on the
maximization of mutual information [15], and (3) facial landmarks detector [14]. The best
overall performance, in terms of correlation coefficient, percentage of PR values below
2.5 and 5 BPM errors, mean absolute error (MAE), RMSE, and SNR, was achieved by the
combination of Viola-Jones, KLT and skin segmentation, and the worst by the combination
of Viola-Jones and KLT. The studied data set was UBFC-RPPG [6], and CHROM [21] was
used for the final rPPG signal extraction. Zhao et al. [8] studied performance of four differ-
ent face detection and tracking algorithms applied in rPPG: (1) landmarks detection [14]
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on all frames and (2) landmarks detection on the first frame only in combination with
(a) KLT tracker, (b) Circulant Structure with Kernels (CSK) tracker [28], and (c) Sum of
Template and Pixel-Wise Learners (STAPLE) tracker [29]. Two different publicly available
data sets (PURE [30], UBFC-RPPG [6]) and one private data set (Self-RPPG) were used
and Plane-Orthogonal-To-Skin (POS) [31] algorithm was applied for final rPPG signal
extraction. The best overall result (in terms of SNR, MAE, and RMSE) for PURE was
achieved by landmarks detection on each frame, for UBFC-RPPG by an approach relying
on KLT tracking, and for Self-RPPG by the approach relying on CSK tracking. Recently,
Woyczyk et al. [32] indirectly studied the performance of the following ROI localization
approaches: (1) detecting a face on the first frame using Viola-Jones frontal face detector
and keeping the position of the bounding box fixed throughout the entire recording, (2)
detecting a face on the first frame using Viola-Jones frontal face detector and then tracking
it using KLT tracker, and (3) the same approach as the previous one with an addition of
statistical skin classifier proposed by Jones and Rehg [33]. Their performance in terms of
accuracy and MAE was tested on two data sets containing a total of 1000 ten-seconds-long,
lossy compressed video recordings recorded under challenging illumination conditions.
The authors reported that, in the case of using the green channel signal as the final pulse
waveform signal, the best overall result was achieved by the first approach (accuracy –
defined as the ratio between the number of true positives [i.e., PRs within the range of
±5 BPM around the reference PR] – of 0.1709 and MAE of 23.53 BPM), in the case of ap-
plying CHROM [21] rPPG algorithm, by the third approach (accuracy of 0.3411 and MAE
of 16.77 BPM) and in the case of applying POS [31] algorithm, by the second approach
(accuracy of 0.3455 and 15.95 BPM).

The purpose of this work is to study the effect of approaches with and without the
ROI localization step (i.e., with and without the image processing front-end), on the (1)
success rate of extracting rPPG signals from video recordings, (2) SNR and (3) RMSE of
average PRs estimated from video recordings. Performance evaluation is to be carried
out on the publicly available data sets offering uncompressed and compressed (both lossy
and lossless) videos covering various scenarios. Extraction of final rPPG signals will be
extracted using two state-of-the-art rPPG algorithms relying on distinct principles and
differing in sensitivity to the presence of non-skin pixels within ROI: model-based POS [31]
and non-model-based (i.e., data-driven) Spatial Subspace Rotation (2SR) [34].

2. Materials and Methods
2.1. Data Sets

We used three publicly available data sets in our study: Public Benchmark Dataset
for Testing rPPG Algorithm Performance (hereinafter PBDTrPPG) [35], LGI-PPGI-Face-Video-
Database (LGI-PPGI-FVD) [36] and Pulse Rate Detection Dataset (PURE) [30].

PURE [30] consists of 59 lossless compressed one-minute-long facial video recordings
(recorded at 30 fps and 640 × 480 pixels per frame) of ten subjects (eight males and two
females) in sitting position during six different controlled scenarios (resting with no in-
tended head motion, talking, slow head translation of 7% of the face height per second, fast
head translation of 14% of the face height per second, small head rotation of approximately
20 deg, and large head rotation of approximately 35 deg) and reference pulse waveform
signals recorded with pulse oximeter at the sampling rate of 60 Hz. We used all video
recordings from the data set and divided them into four groups: resting (10 recordings),
talking (9 recordings), head translation (20 recordings), and head rotation (20 recordings).

LGI-PPGI-FVD [36] consists of 100 uncompressed video recordings (recorded at 25
fps and 640 × 480 pixels per frame) of 25 subjects (20 males and 5 females) during four
different sessions (resting with no intended head motion, head and facial motion, exer-
cising on a cycle ergometer in a gym with no set restrictions, and talking in a real-world
urban environment) together with reference pulse waveform signals recorded with a pulse
oximeter at the sampling rate of 60 Hz. Gym recordings are five minutes long, whereas
the length of other recordings is approximately one minute. When it comes to actual
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public availability of the data, only 24 recordings of six subjects are available. We used
only the recordings covering resting (six recordings) and gym (six recordings) scenarios.
By selecting the gym recordings, we covered a challenging scenario of uncontrolled motion
in a real-world environment (uncontrolled lighting, presence of multiple subjects), which
is not present in the other two data sets.

PBDTrPPG consists of lossy compressed (H.264 codec) facial video recordings (recorded
at 30 fps and 1080 × 1920 pixels per frame) of three male subjects during three challenging
scenarios (lighting variation in combination with different skin tones, motion scenarios,
and resting after exercise, causing significant changes in PR) and reference ECG recordings
(recorded at 1024 Hz). Only videos covering five different lighting conditions and three
different skin tones (total of 15 recordings; two additional lighting scenarios with only one
recording per each scenario were excluded) were included in our study from this data set.
We excluded motion and resting after exercise scenarios because there are only three and
one video(s) available, respectively. In addition, the type of motion scenarios is equivalent
to that from the PURE data set, so inclusion of these recordings would not represent a
major contribution to our study.

With the selected data sets we included uncompressed and compressed videos, record-
ings made in controlled and uncontrolled environments and covering several different
scenarios (rest, talking, different types of controlled and uncontrolled motion) and chal-
lenges (lighting variation and various skin tones).

2.2. Studied Approaches with and without ROI Localization Step

We applied five different approaches for PR extraction from video recordings—four
with the ROI localization step and one without it:

• Viola-Jones [26] frontal face detector + ROI width reduction to 60% of its original
width [7] + KLT tracker [27,37] (hereinafter VK),

• Viola-Jones [26] frontal face detector + facial landmarks detector [13] + KLT tracker [27,37]
(hereinafter VK-LMK),

• Viola-Jones [26] frontal face detector + RGB-H-CbCr skin-color segmentation method [11]
+ KLT tracker [27,37] (hereinafter VK-RGBHCbCr),

• Viola-Jones [26] frontal face detector + skin detector on the maximization of mutual
information [15] + KLT tracker [27,37] (hereinafter VK-Conaire) and

• Full Video Pulse Extraction [16] (hereinafter FVP), which is by default combined with
the POS rPPG algorithm.

The basis for all approaches with an image processing front-end is a combination of
Viola-Jones frontal face detector and KLT tracker due to its predominant application in rPPG
studies. Viola-Jones frontal face detector was applied on the first frame of each recording.
In the case more than one face was detected, the largest bounding box was selected for
further processing. From this step onwards, the methodology split in separate directions:

• In the VK approach, we reduced the width of the detected ROI to 60% of its original
width [7].

• In VK-LMK we identified facial landmarks within the original (unresized) ROI con-
taining a detected face using the Discriminative Response Map Fitting approach [13].
From the identified 66 landmarks, we used nine of them to define new ROI, which
covered cheeks, nose, and mouth area [38].

• In VK-RGBHCbCr and VK-Conaire, we kept the original size of the detected ROI.

The KLT tracker was then initialized by identifying feature points within the original
bounding box containing the detected face using Good Features to Track method [37]
and then propagated throughout the entire recording. For a current frame, the tracker
attempted to find the points from the previous frame and then estimate a transformation
matrix consisting of the affinity parameters between the old points from the previous
frame and new points from the current frame. Estimation of the transformation matrix
was done using MSAC algorithm [39], a type of RANSAC algorithm, which is, in general,
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used for robust estimation of parameters of a selected mathematical model. Once the
transformation matrix was defined, it was used to transform the edges of the ROIs defined
in the list above from a previous frame to a current one. In the case of VK and VK-LMK,
the newly transformed ROI represented the final ROI that was used for further processing,
whereas in the case of VK-RGBHCbCr and VK-Conaire, the ROI was refined using RGB-H-
CbCr skin color segmentation model [11], and skin detector based on the maximization
of mutual information [15] were applied, respectively. The presented steps were applied
on each of the following frames. The only studied approach without the ROI localization
step was FVP [16]. Its implementation followed that of its authors [16], with an exception
that we did not remove non-pulsatile components from rPPG signals in order to ensure
easier comparison with other studied approaches. The selection of the studied approaches
with image processing front-end was based on the frequency of their use in research—
Zhao et al. reported that the most cited detection and tracking algorithm in rPPG research
are Viola-Jones face detector, facial landmarks, KLT, and skin detection [8].

2.3. Applied rPPG Algorithms for Pulse Waveform Signal Extraction

We selected two state-of-the-art rPPG algorithms, POS [31] and 2SR [34], to extract final
pulse waveform signals from the information extracted from video recordings using the
approaches presented in the previous subsection. In POS, raw RGB signals extracted from
ROIs on each frame are projected to a plane that is orthogonal to temporally normalized
skin and, therefore, exhibits large pulsatile and low specular strength [31]. Since POS is
built on a physiological reasoning, it works well also when skin mask is noisy. In 2SR,
spatial subspace of the pixels within the ROIs is defined, and the measurement of temporal
rotation of the defined space is used for extracting a pulse waveform signal. In contrast to
POS, the quality of SNR drops significantly when the percentage of non-skin-pixels falls
within 10 to 30%. The reasoning behind the selection of the presented algorithms was
based on their sensitivity to skin mask noise and their performance in comparison to other
state-of-the-art rPPG algorithms [31,34].

2.4. Performance Evaluation of the Studied Approaches with and without ROI Localization Step

Performance of the studied approaches was assessed by three quality metrics: (1)
success rate, (2) modified SNR metric proposed by de Haan and Jeanne [21], and (3) RMSE
of the difference between reference- and rPPG-derived PRs.

Success rate was defined as a percentage of successfully processed video recordings
among the total number of recordings for each studied approach. Whenever an approach
failed (regardless of the processing stage at which a failure occurred), further processing
was stopped and the processing of a given video recording was marked as unsuccessful.

SNR was calculated as the ratio between the energy within 5 bins around the first
harmonic (or fundamental frequency) plus 11 bins around the second harmonic and the
remaining energy within the frequency band of expected PRs in humans (i.e., [30, 240] BPM)
(de Haan and Jeanne [21] took 10 bins around the second harmonic, but it is unclear, how
the authors positioned this window relative to the second harmonic):

SNR = 10 log10

(
∑240

f=30(wt( f )S( f ))2)

∑240
f=30(1 − wt( f )S( f ))2

)
(1)

where f denotes the PR frequency (expressed in BPM), wt the applied binary window and
S( f ) the power spectrum of rPPG pulse waveform signal. Fundamental frequency was
defined as the peak frequency within the defined frequency band in the power spectrum
of reference pulse waveform signals (obtained by Fast Fourier Transform). In the case
a window around the second harmonic fell outside the set PR band, we extended the
spectrum accordingly (this is the second modification of the SNR metric proposed by de
Haan and Jeanne [21] that we applied).
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Before calculating SNR, the reference signals were pre-processed by (1) applying first
order Butterworth bandpass filter with lower and upper cut-off frequencies corresponding
to 40 and 180 BPM, respectively, and (2) resampling to the sampling rate that matched the
frame rate of the accompanying video recordings. The reason for applying bandpass filter
with cut-off frequencies different from the upper- and lower frequencies in the frequency
band corresponding to expected PRs in humans is the fact that we adopted the values of
the actual data in order to achieve cleaner reference signals. SNR values were calculated for
windowed signals (512-frame-long sliding window was applied). The results are visually
presented in the form of boxplots if the size of each group within the studied scenario is
larger than or equal to five, whereas strip plots are used otherwise.

RMSE was defined as the square root of the average of squared differences between
the estimated (PRrPPGi ) and actual, i.e., reference, PR values (PRrefi ):

RMSE =

√
1
n

n

∑
i=1

(PRrPPGi − PRrefi
)2, (2)

where n denotes the total number of estimated PRs. PR values were measured using a
sliding window of 512 frames; we took into the account that, in general, a PR is not constant
throughout the entire recording, not even in a resting condition.

Statistical evaluation of the results was carried out using one-way analysis of variance
(ANOVA). ANOVA was used in the cases when number of samples in each studied group
was larger than or equal to five.

We set the length of the sliding processing window to 128 frames for POS, 60 frames for
2SR and 128 frames for the FVP approach. The selection of the window lengths are partially
adjusted to each algorithm to ensure their reliable performance: FVP tends to perform
worse at shorter window lengths and is more sensitive to window size if compared to the
approaches with image processing front-end [16]; in 2SR, optimal window length should
include at least a half of the cardiac cycle, so its selection depends on the camera frame-rate
and PR of the subject [34]; in POS, similarly as in 2SR, window length should capture
at least one cardiac cycle (shorter window lengths are preferred so that instantaneous
distortions can be suppressed as quickly as possible [31]).

3. Results

Studied approaches failed several times due to the following reasons: (1) no face was
detected on the first frame of the recording, (2) KLT tracker lost all the feature points, (3)
no skin pixels were detected using the RGB-H-CbCr skin-color detector, and (4) no skin
pixels were detected using skin detector based on maximization of mutual information.
Table 1 lists the recordings in which one of the presented issues occurred; it can be seen
that Viola-Jones frontal face detector failed in some gym recordings, KLT tracker failed
(i.e., lost all tracked points) in one gym recording (in this particular recording, the subject
was moving his head very fast and at some point his face was occluded), skin-color-based
segmentation failed in at least one of the videos from each studied data set, and the skin
detector based on maximization of mutual information failed in one gym recording only.

Table 1. The identified issues during ROI localization step using the studied approaches and the IDs of the recordings in
which the issues occurred. VK-Conaire: Viola-Jones combined with skin detector based on the maximization ofmutual
information and Kanade–Lucas–Tomasi tracker; VK-RGBHCbCr: Viola-Jones combined with RGB-H–CbCr skin-color
segmentation and Kanade–Lucas–Tomasi tracker; KLT: Kanade–Lucas–Tomasi.

Issue/Data Set PURE PBDTrPPG LGI-PPGI-FVD

no detected face on the first frame / / alex_gym, angelo_gym,
david_gym

KLT tracker failure / / felix_gym
no skin pixels detected (using
VK-RGBHCbCr) 03-01, 03-04, 04-02, 05-04 P3LC1 harun_gym

no skin pixels detected (using VK-Conaire) / / harun_gym
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The reasoning behind unsuccessful skin detection is due to the limited training set
applied for determining the threshold values in both skin detection algorithms, whereas
in the case of Viola-Jones frontal face detector failure, the appearance of faces on the first
frames was the reason for unsuccessful detection. For each occurrence of the presented
issues, we discarded the obtained results and marked the processing of the particular video
recording as unsuccessful. Based on the number of unsuccessfully processed recordings,
we defined the success rates of the studied approaches: 88.37% of VK-RGBHCbCr, 94.19%
of VK-Conaire, 95.35% of VK and VK-LMK, and 100% of FVP.

Figure 1 shows the examples of successfully localized ROIs for a selected record-
ing from each of the studied data sets using four different approaches with an image-
processing front-end.

Figure 1. Results of the region of interest (ROI) localization on the selected recordings from stud-
ied data sets: recording P1LC3 from PBDTrPPG using (a) VK, (b) VK-LMK, (c) VK-Conaire, (d)
VK-RGBHCbCr; recording angelo_resting from LGI–PPGI–FVD using (e) VK, (f) VK-LMK, (g) VK-
Conaire, (h) VK-RGBHCbCr; recording 01-01 from PURE (i) VK, (j) VK-LMK, (k) VK-Conaire, (l)
VK-RGBHCbCr. VK: Viola-Jones combined with ROI width reduction and Kanade–Lucas–Tomasi
tracker; VK-Conaire: Viola-Jones combined with skin detector based on the maximization of mutual
information and Kanade–Lucas–Tomasi tracker; VK-LMK: Viola-Jones combined with landmarks
detection and Kanade–Lucas–Tomasi tracker; VK-RGBHCbCr: Viola-Jones combined with RGB–H–
CbCr skin-color segmentation and Kanade–Lucas–Tomasi tracker; FVP: Full Video Pulse Extraction
rPPG algorithm.

The sizes of ROIs are shown in Table 2. Mean absolute ROI sizes are, in general,
the largest for videos from LGI–PPGI–FVD and the smallest for videos from PURE (differ-
ences in sizes are more than two-fold); mean relative ROI sizes range from 4.9 to 13.2% of
the total frame size for LGI–PPGI–FVD recordings, from 3.0 to 6.5% for PURE and from
0.6 to 1.4% for PBDT–rPPG. The differences arise from different distances between the
subjects and the camera, as well as different video frame sizes between the three studied
data sets. Note that FVP does not rely on a common ROI localization step; therefore it is
not included in Table 2.
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Table 2. ROI sizes (in pixels) expressed as a mean ± standard deviation for different image-processing
front-ends and all studied data sets. VK: Viola-Jones combined with ROI width reduction and
Kanade–Lucas–Tomasi tracker; VK-Conaire: Viola-Jones combined with skin detector based on
the maximization of mutual information and Kanade–Lucas–Tomasi tracker; VK-LMK: Viola-Jones
combined with landmarks detection and Kanade–Lucas–Tomasi tracker; VK-RGBHCbCr: Viola-Jones
combined with RGB–H–CbCr skin-color segmentation and Kanade–Lucas–Tomasi tracker; FVP: Full
Video Pulse Extraction rPPG algorithm.

VK VK-LMK VK-RGBHCbCr VK-Conaire

PURE 19,063 ± 3581 9114 ± 1591 13,407 ± 5339 19,984 ± 5252
PBDTrPPG 28,849 ± 14,196 12,731 ± 4498 19,514 ± 16,015 19,128 ± 9699
LGI-PPGI-FVD 38,060 ± 13,863 14,962 ± 7106 32,916 ± 12,141 40,550 ± 15,970

Figure 2 shows the performance of studied approaches in combination with two rPPG
algorithms (POS and 2SR) in extracting rPPG signals from video recordings from PURE in
terms of SNR.

Figure 2. Performance of the studied approaches with and without ROI localization step in com-
bination with two rPPG algorithms (POS and 2SR) in terms of SNR for PURE. VK: Viola-Jones
combined with ROI width reduction and Kanade-Lucas-Tomasi tracker; VK-Conaire: Viola-Jones
combined with skin detector based on the maximization of mutual information and Kanade-Lucas-
Tomasi tracker; VK-LMK: Viola-Jones combined with landmarks detection and Kanade-Lucas-Tomasi
tracker; VK-RGBHCbCr: Viola-Jones combined with RGB-H-CbCr skin-color segmentation and
Kanade-Lucas-Tomasi tracker; FVP: Full Video Pulse Extraction rPPG algorithm.

Black horizontal lines denote median SNR values, upper and bottom sides of the
boxes the 25th and 75th percentiles, and whiskers extend to the values not considered as
outliers, which are marked with black diamonds; green triangles denote mean SNR values.

The largest SNR values are achieved for the resting scenario, followed by the head
translation, the head rotation and the talking scenarios. For the resting and talking scenario,
one-way ANOVA showed no statistically significant differences (at α = 0.05) of mean SNR
values between all pairs of studied approaches (p = 0.954 and p = 0.260). The boxplot
of FVP and VK-RGBhCbCr SNR values exhibits the widest interquartile range for the
resting and talking scenarios, respectively. For the head translation scenario, one-way
ANOVA showed statistically significant differences in mean SNR values between FVP
and (1) VK-POS (p = 0.0013), (2) VK-2SR (p = 0.0004), (3) VK-LMK-POS (p = 0.0098), (4)
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VK-LMK-2SR (p = 0.0004), (5) VK-RGBHCbCR-POS (p = 0.0023), (6) VK-RGBHCbCR-2SR
(p < 0.0020). The boxplot of VK-Conaire-2SR SNR values exhibits the widest interquar-
tile range for this recording scenario. For the head rotation scenario, one-way ANOVA
showed statistically significant differences in mean SNR values between VK-POS and
VK-LMK-2SR (p = 0.0002), VK-POS and VK-Conaire-2SR (p = 0.0029), VK-2SR and
FVP (p = 0.0427), VK-LMK-POS and VK-LMK-2SR (p = 0.0123), VK-LMK-2SR and VK-
RGBHCbCr-POS (p = 0.0029), VK-LMK-2SR and FVP (p = 0.0001), VK-RGBHCbCr-POS
and VK-Conaire-2SR (p = 0.0267), and VK-Conaire-2SR and FVP (p = 0.0022). Similarly as
in the previous recording scenario, the boxplot of VK-Conaire-2SR SNR values exhibits the
widest interquartile range.

Figure 3 shows the SNR results of the studied approaches tested on PBDTrPPG.

Figure 3. Performance of the studied approaches with and without image processing front-end
in combination with two rPPG algorithms (POS and 2SR) in terms of SNR on the example of
PBDTrPPG covering (a) different lighting conditions (LC1: 0.052 × 102 lux, LC2: 0.363 × 102 lux,
LC3: 1.870 × 102 lux, LC4: 7.200 × 102 lux, LC5: 27.200 × 102 lux) and (b) skin tone challenges. VK:
Viola-Jones combined with ROI width reduction and Kanade-Lucas-Tomasi tracker; VK-Conaire:
Viola-Jones combined with skin detector based on the maximization of mutual information and
Kanade–Lucas–Tomasi tracker; VK-LMK: Viola-Jones combined with landmarks detection and
Kanade–Lucas–Tomasi tracker; VK-RGBHCbCr: Viola-Jones combined with RGB–H–CbCr skin-color
segmentation and Kanade–Lucas–Tomasi tracker; FVP: Full Video Pulse Extraction rPPG algorithm.
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Figure 3a shows that mean SNR values increase with an increasing lighting intensity in
all studied approaches. Performances of various approaches are comparable except for FVP,
which shows weaker performance at all lighting intensities, as well as VK-Conaire-2SR
and VK-Conaire-POS at the largest lighting intensity. For the bright and dark skin tone
recordings, the results of one-way ANOVA show no statistically significant differences in
mean SNR values between all pairs of studied approaches (p = 0.8032 and p = 0.6831,
respectively). For the intermediate skin tone recordings, there are statistically significant
differences in mean SNR values between FVP and (1) VK-POS (p = 0.0003), (2) VK-2SR
(p = 0.0003), (3) VK-LMK–POS (p < 0.0001), (4) VK-LMK-2SR (p < 0.0001), (5) VK-
RGBHCbCR–POS (p = 0.0002), (6) VK-RGBHCbCR-2SR (p = 0.0002), (7) VK-Conaire-POS
(p = 0.0008) and (8) VK-Conaire-2SR (p = 0.0012). In all the studied recordings from
LGI–PPGI–FVD, FVP exhibits the widest interquartile range.

Figure 4 shows the performance of the studied methods for extracting rPPG signals
from video recordings from LGI–PPGI–FVD in terms of SNR.

Figure 4. Performance of the studied approaches with and without image processing front-end
in combination with two rPPG algorithms (POS and 2SR) in terms of SNR on the example of
LGI–PPGI–FVD. VK: Viola-Jones combined with ROI width reduction and Kanade–Lucas–Tomasi
tracker; VK-Conaire: Viola-Jones combined with skin detector based on the maximization of mutual
information and Kanade–Lucas–Tomasi tracker; VK-LMK: Viola-Jones combined with landmarks
detection and Kanade–Lucas–Tomasi tracker; VK-RGBHCbCr: Viola-Jones combined with RGB–H–
CbCr skin-color segmentation and Kanade–Lucas–Tomasi tracker; FVP: Full Video Pulse Extraction
rPPG algorithm.

There are no significant differences between the SNR values among the studied ap-
proaches in case of resting scenario, whereas in the case of gym recordings, FVP performed
worse than the other approaches. However, it should be noted that in the case of the
approaches with the image-processing front-end, four of the video recordings were not
processed successfully. The SNR values of the rPPG signals extracted from these recordings
are the ones that lower the mean SNR value for FVP.

Table 3 shows the results of the RMSE analysis. The results follow those of SNR, but the
differences between the studied approaches seem to be more prominent. On average, the best
performance is achieved by a combination of the VK approach and the SB rPPG algorithm.
As expected, the RMSE is the largest in the case of low lighting conditions (LC1) and dark
skin tone and the lowest in the case of resting conditions regardless of the applied approach.
Similarly as in the case of SNR values, the worst performance was achieved by FVP.
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Table 3. Performance of the studied approaches with and without image processing front-end in terms of RMSE (expressed as a mean ± standard deviation; measured in BPM) for
PURE, PBDTrPPG and LGI–PPGI–FVD. The lowest RMSE values for each recording scenario are denoted in bold; the values in parentheses denote the number of samples in each group.
VK: Viola-Jones combined with ROI width reduction and Kanade–Lucas–Tomasi tracker; VK-Conaire: Viola-Jones combined with skin detector based on the maximization of mutual
information and Kanade–Lucas–Tomasi tracker; VK-LMK: Viola-Jones combined with landmarks detection and Kanade–Lucas–Tomasi tracker; VK-RGBHCbCr: Viola-Jones combined
with RGB–H–CbCr skin-color segmentation and Kanade–Lucas–Tomasi tracker; FVP: Full Video Pulse Extraction rPPG algorithm.

VK VK-LMK VK-RGBHCbCr VK-Conaire FVP
SB 2SR SB 2SR SB 2SR SB 2SR SB

PURE

resting 1.08 ± 0.71 (10) 1.11 ± 0.72 (10) 1.09 ± 0.74 (10) 1.18 ± 0.72 (10) 1.31 ± 0.91 (9) 1.5 ± 1.29 (9) 1.09 ± 0.75 (10) 1.13 ± 0.78 (10) 1.48 ± 0.86 (10)
talking 4.09 ± 3.68 (9) 8.19 ± 15.62 (9) 11.08 ± 15.72 (9) 14.54 ± 20.24 (9) 8.68 ± 16.24 (8) 9.06 ± 17.59 (8) 8.48 ± 9.5 (9) 12.7 ± 16.58 (9) 7.95 ± 9.32 (9)
head translation 1.07 ± 0.64 (20) 1.14 ± 0.75 (20) 1.13 ± 0.83 (20) 1.20 ± 0.87 (20) 1.13 ± 0.74 (18) 1.28 ± 0.8 (18) 1.14 ± 0.71 (20) 2.98 ± 4.18 (20) 3.96 ± 4.97 (20)
head rotation 0.88 ± 0.7 (20) 2.77 ± 3.94 (20) 1.06 ± 0.97 (20) 5.53 ± 6.62 (20) 0.84 ± 0.62 (20) 5.41 ± 12.43 (20) 3.08 ± 6.29 (20) 9.45 ± 17.76 (20) 2.47 ± 5.73 (20)

PBDTrPPG

LC1 (0.052 · 102 lux) 25.57 ± 12.25 (3) 25.23 ± 13.09 (3) 23.27±12.02 (3) 22.92 ± 11.4 (3) 19.66 ± 11.69 (2) 19.85 ± 12.71 (2) 24.56 ± 12.37 (3) 23.89 ± 12.15 (3) 52.28 ± 6.65 (3)
LC2 (0.363 · 102 lux) 22.69 ± 13.27 (3) 25.78 ± 16.04 (3) 21.47 ± 13.42 (3) 23.81 ± 16.56 (3) 20.47 ± 12.7 (3) 21.55 ± 12.59 (3) 18.95 ± 11.4 (3) 24.79 ± 16.89 (3) 54.84 ± 9.41 (3)
LC3 (1.870 · 102 lux) 17.37 ± 10.36 (3) 30.53 ± 28.34 (3) 21.88 ± 22.58 (3) 27.15 ± 28.57 (3) 20.23 ± 12.79 (3) 22.39 ± 15.64 (3) 18.03 ± 11.19 (3) 23.26 ± 17.84 (3) 52.17 ± 17.90 (3)
LC4 (7.200 · 102 lux) 12.84 ± 9.61 (3) 17.36 ± 15.22 (3) 15.12 ± 13.1 (3) 16.65 ± 15.11 (3) 14.36 ± 10.67 (3) 13.03 ± 8.97 (3) 14.44 ± 9.65 (3) 17.82 ± 13.57 (3) 40.76 ± 26.12 (3)
LC5 (27.200 · 102 lux) 12.44 ± 9.62 (3) 20.96 ± 19.39 (3) 15.81 ± 16.58 (3) 19.43 ± 22.08 (3) 19.76 ± 14.65 (3) 17.2 ± 15.28 (3) 24.94 ± 15.35 (3) 27.90 ± 17.85 (3) 40.62 ± 29.02 (3)
bright tone 4.37 ± 1.98 (5) 4.16 ± 1.46 (5) 4.14 ± 1.63 (5) 4.28 ± 1.6 (5) 4.27 ± 1.88 (5) 4.24 ± 1.53 (5) 4.1 ± 1.55 (5) 4.08 ± 1.47 (5) 32.02 ± 22.30 (5)
intermediate tone 21.13 ± 10.92 (5) 21.64 ± 10.51 (5) 16.59 ± 11.79 (5) 16.11 ± 10.76 (5) 21.41 ± 7.05 (5) 20.47 ± 9.0 (5) 25.3 ± 8.61 (5) 26.17 ± 8.79 (5) 43.74 ± 3.15 (5)
dark tone 29.05 ± 3.53 (5) 46.12 ± 12.79 (5) 37.8 ± 9.02 (5) 45.59 ± 13.34 (5) 33.85 ± 3.51 (4) 34.66 ± 6.08 (4) 31.14 ± 3.05 (5) 40.35 ± 6.07 (5) 68.65 ± 9.62 (5)

LGI-PPGI-FVD

resting 2.22 ± 1.3 (6) 2.20 ± 1.31 (6) 2.23 ± 1.30 (6) 2.21 ± 1.31 (6) 2.08 ± 1.38 (6) 2.18 ± 1.32 (6) 2.20 ± 1.31 (6) 2.20 ± 1.32 (6) 2.24 ± 1.31 (6)
gym 13.9 ± 11.16 (2) 15.6 ± 12.89 (2) 17.81 ± 9.53 (2) 33.5 ± 4.35 (2) 2.99 ± 0.0 (1) 31.84 ± 0.0 (1) 13.77 ± 0.0 (1) 29.6 ± 0.0 (1) 39.66 ± 17.22 (6)
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4. Discussion

FVP is the only approach that allowed continuous PR measurement in all studied
video recordings. It would, however, fail in the case of video recordings of multiple
subjects, and its performance would deteriorate in the case of significant background
changes. In other approaches, face detector algorithm or KLT tracker failed in at least one
of the video recordings. In general, approaches relying on Viola-Jones frontal face detector
would provide false positive results in the case of mannequins and fail completely if body
parts other than face were covered on video recordings.

Mean SNR and RMSE values indicate that, in most of the recording scenarios, the
performance of the studied approaches is comparable. This means that (1) the obtained
ROIs were large enough to cancel out the camera quantization noise and (2) the effect
of non-skin pixels did not significantly affect the performance of the studied approaches.
When comparing the results of the approaches combined with POS with those combined
with 2SR, the POS-based solutions seem to outperform the 2SR-ones, especially in the
case of more challenging scenarios. This confirms the innate sensitivity of 2SR to noisy
skin mask.

In addition, there are some observable differences between the studied approaches
in some recording scenarios. In the talking-scenario recordings from PURE (Figure 2),
the performance of all the approaches decreases in comparison to resting scenario due to
noisier ROIs and varying intensities of specular and diffuse reflection components due
to the motion of the facial pixels during talking. The worst performance is achieved by
VK-LMK-2SR due to the largest ratio of non-skin to skin pixels (ROIs in VK-LMK were
the smallest out of all ROIs), which arises when the mouth is opened during talking. A
similar result is achieved in the head rotation scenario, in which we can also observe that
2SR performs worse than POS. In the case of PBDTrPPG (see Figure 3), which contains
lossy compressed video recordings, average SNRs are the lowest out of all studied data
sets. The achieved SNR values are comparable, and the selection of the approach with or
without an image processing front-end together with an rPPG algorithm does not affect
SNR value significantly. This is most likely due to partial loss of pulsatile information or
introduction of additional artifacts into the recordings, as sugggested by Wang et al. [31].
Results show that SNR values increase as light intensity increases (Figure 3a) and decreases
as skin tone decreases (Figure 3b), which is expected based on the knowledge underlying
the formation of rPPG signal. It should be noted that results for different skin tones are
not directly comparable, because of the variable distance between subjects and a camera.
In addition, intermediate and dark skin tone would, based on our perception, lie close
to each other on the Fitzpatrick scale, which could explain similar SNR values achieved.
Interestingly, the best performance in case of a dark skin tone was achieved by FVP, which
might be due to the fact that it relies not only on a mean but also on a variance for spatial
pixel combination [31]. Lastly, the results of SNR values for LGI-PPGI-FVD (Figure 4)
indicate similar performance of studied approaches in both resting and gym scenarios
(except for FVP at gym recordings). In the case of the gym scenario, average SNR values
are greatly reduced and only up to two video recordings from the set were successfully
processed using the studied approaches with image processing front-end, whereas FVP
allowed processing of all videos. It is to be noted that individual SNR values that lie below
the mean SNR value for FVP correspond to the videos in which other approaches failed.
If we removed these results, the SNR values of FVP would be comparable to those of the
other approaches. Provided that the relative ROI sizes for recordings from LGI-PPGI-FVD
were the largest, unevenly distributed pulsations [40] might also affect the results.

Our SNR values of the rPPG signals are lower in comparison with those provided
by Zhao et al. [8], whereas RMSE values are lower in case of resting, talking and head
translation scenarios. The authors studied the performance of several tracking algorithms
(tracked ROI was a rectangular bounding box, corners of which were defined by selected
facial landmark feature points). They reported the following SNR (RMSE) values for
PURE video recordings: 13.26–13.42 dB (2.16–2.52 BPM) for resting scenario, 3.36–4.06 dB
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(13.46–15.10 BPM) for talking scenario, 8.27–11.12 dB (2.12–3.19 BPM) for head translation
and 7.05–10.46 dB (1.91–6.17 BPM) for head rotation. The results potentially indicate
differences between the approaches for ROI localization, while it is important to emphasize
that differences may occur due to different calculations of SNR. Although most of the
studies rely on the SNR metric proposed by de Haan and Jeanne [21], there are differences in
its actual calculation. Zhao et al. [8], for example, chose a frequency band of [48, 300] min−1

(instead of the proposed [30, 240] min−1), included the energy around the third harmonic
in the energy spectrum of the pulse signal (in the original implementation, only the energy
around the first and the second harmonic are included), and used the same spectral
window length for calculating energies around the first, second, and third harmonic
(in [21], 5- and 10-bins-long windows around the first and second harmonic were used,
respectively). In the case of calculating RMSE, the length of the processing window plays
an important role when interpreting the results (differences of up to 10% may occur for
the window lengths from 0 to 60 s [41]). The described issue results from the already
exposed drawback of the rPPG research, i.e., the lack of standardized methodology [42].
There were even some attempts to define standardized report procedures for assessing
rPPG PR measurements [43] with the goal to ensure direct comparison of the results of
different studies, but there seems to be no general agreement on this issue. Compared to
other similar studies, the worst performance in terms of SNR and RMSE is achieved by the
Viola-Jones face detector with KLT tracker [18,20], which indicates that a simple original
ROI width reduction applied in our study does improve the skin mask. However, on
the other hand, an approach similar to ours was applied by Fouad et al. [19], but again,
the obtained RMSE was more than two times lower than in other studied approaches.

The key advantages of our study are (1) the inclusion of lossy compressed, lossless
compressed, and uncompressed videos from publicly available data sets covering various
recording scenarios and (2) the inclusion of an approach without the image-processing
front-end. These advantages also define the innovative part of our study: the proposed
methodology for assessing the performance of the approaches with and without the ROI
localization step. The methodology includes (1) publicly available data video recordings
of various quality of subjects in different challenging conditions and (2) the inclusion
of the approach without the image processing front-end, which has, to the best of our
knowledge, never been used before in the evaluation of the performances of the proposed
ROI localization steps.

The disadvantages are related to (1) the limited number of analysed approaches, (2) the
absence of time complexity analysis of the studied approaches, and (3) the small number
of studied video recordings covering motion and skin tone scenarios. These disadvantages
are due to the fact that (1) we wanted to focus on the most widely used approaches (with an
addition of the less known FVP approach, which relies on a completely different principle),
(2) time complexity analysis would first require optimization of the programming code
behind the studied approaches, and (3) the remaining 19 sets of video recordings from
LGI–PPGI–FVD are not publicly available due to the limited storage space on the server
that data set’s creators use, whereas PBDT–rPPG offers only a small number of videos
covering the skin tone challenge. It is also to be noted that the success rate and the ROI size
are the only parameters that directly assessed the performance of the studied approaches.
However, even ROI sizes themselves do no tell anything about the quality of the skin mask
(in terms of the ratio between the skin and non-skin pixels). In SNR and RMSE metrics,
potential differences between the studied approaches are masked especially in the case of
POS, which has been shown to exhibit the best overall performance [31] in extracting the
rPPG signal from video recordings.

The first future challenge is the optimization of the studied algorithms to allow their
best performance. For example, (1) in VK-RGBHCbCr and especially in VK-Conaire,
a combination of a sequence of morphological operations (erosion and dilation) could
be used to further refine the ROIs (see Figure 1d,h,l for noisy ROIs identified by VK-
Conaire); (2) in all approaches with image processing front-ends, identified ROIs could be
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divided into multiple ROIs (multiple ROIs would also enable measurements of additional
physiological parameters [44]); and (3) in all approaches, lengths of the processing window
lengths could be optimized. Additionally, we could test some other skin classification
approaches, such as one class support vector machine-based classifier [45] or an approach
based on active contours and Gaussian mixture models [32], which do not rely on simple
pixel-wise segmentation. It is to be noted that both methods require robust face detection.
The second challenge is related to the analysis of the performance of the studied approaches
in cases when subjects are wearing masks. Due to the fact that masks are becoming a new
reality of our everyday life amid the ongoing COVID-19 pandemic, this challenge is in
our opinion relevant for the rPPG research community. Recently, Speth et al. [46] created
a publicly available data set containing recordings of 61 masked subjects together with
an algorithm that adds a synthetic mask to a face on a selected video recording, which
is, in our opinion, a valuable contribution for the rPPG community. The last challenge is
related to the evaluation of various approaches for extracting rPPG signals from video
recordings covering parts of the body other than face. These body parts have already been
used for assessing peripheral hemodynamics [47,48].

5. Conclusions

In rPPG measurements, the selection of an approach for extracting the pulsatile
information from video recordings seems not to significantly affect the extraction of rPPG
signal from video recording in terms of SNR if proper rPPG algorithm that combines the
information extracted from the video recording into a single pulse waveform signal is
selected. On the other hand, RMSE and especially the success rate of the approaches are
more affected by the selection of ROI localization approach. Therefore, when designing
software for rPPG measurement system, one should adopt the software solution to the
actual application to ensure as robust performance of the rPPG measurement system
as possible.
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Abbreviations
The following abbreviations are used in this manuscript:

2SR Spatial Subspace Rotation rPPG algorithm
ANOVA analysis of variance
BPM beats per minute
CHROM chrominance-based rPPG algorithm
CSK Circulant Structure with Kernels
ECG electrocardiography
FastICA a fast algorithm for Independent Component Analysis invented by Aapo

Hyvärinen at Helsinki University of Technology
FVP Full Video Pulse Extraction rPPG algorithm



Appl. Sci. 2021, 11, 3467 15 of 17

KLT Kanade-Lucas-Tomasi tracker
LGI-PPGI-FVD LGI-PPGI-Face-Video-Database
MAE mean absolute error
MSAC M-estimator Sample and Consensus
PBDTrPPG Public Benchmark Dataset for Testing rPPG Algorithm Performance
POS Plane-Orthogonal-to-Skin rPPG algorithm
PR pulse rate
PURE Pulse Rate Detection Dataset
RANSAC Random Sample Consensus
RGB red-green-blue color space
RGB-H-CbCr color space consisting of red-green-blue, hue (from HSV color space),

blue-difference chroma component and red-difference chroma component
(both from YCbCr color space)

RMSE root mean square error
ROI region of interest
rPPG remote photoplethysmography
SelfRPPG private rPPG data set prepared by Zhao et al. [8]
SNR signal-to-noise ratio
STAPLE Sum of Template and Pixel-Wise Learners
UBFC-RPPG Univ. Bourgogne Franche-Comté Remote Photoplethysmography data set
VK Viola-Jones combined with ROI width reduction and Kanade-Lucas-Tomasi tracker
VK-Conaire Viola-Jones combined with skin detector based on the maximization of mutual

information and Kanade-Lucas-Tomasi tracker
VK-LMK Viola-Jones combined with landmarks detection and Kanade-Lucas-Tomasi tracker
VK-RGBHCbCr Viola-Jones combined with RGB-H-CbCr skin-color segmentation and

Kanade-Lucas-Tomasi tracke
YCbCr color space with the luma component (Y), blue-difference chroma component (Cb)

and red-difference chroma component (Cr)
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