
applied  
sciences

Article

Extended Evolutionary Algorithms with Stagnation-Based
Extinction Protocol

Gan Zhen Ye and Dae-Ki Kang *

����������
�������

Citation: Gan, Z.Y.; Kang, D.-K.

Extended Evolutionary Algorithms

with Stagnation-Based Extinction

Protocol. Appl. Sci. 2021, 11, 3461.

https://doi.org/10.3390/app11083461

Academic Editor: Mauro Castelli

Received: 10 February 2021

Accepted: 8 April 2021

Published: 12 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Computer Engineering, Dongseo University, Busan 47011, Korea; zyzygan@gmail.com
* Correspondence: dkkang@dongseo.ac.kr; Tel.: +82-51-320-1724

Abstract: Extinction has been frequently studied by evolutionary biologists and is shown to play a
significant role in evolution. The genetic algorithm (GA), one of popular evolutionary algorithms,
has been based on key concepts in natural evolution such as selection, crossover, and mutation.
Although GA has been widely studied and implemented in many fields, little work has been done to
enhance the performance of GA through extinction. In this research, we propose stagnation-driven
extinction protocol for genetic algorithm (SDEP-GA), a novel algorithm inspired by the extinction
phenomenon in nature, to enhance the performance of classical GA. Experimental results on various
benchmark test functions and their comparative analysis indicate the effectiveness of SDEP-GA in
terms of avoiding stagnation in the evolution process.
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1. Introduction

The biological metaphor of evolution was being applied to computation since as early
as 1950 [1–3], and the genetic algorithm (GA) is one of the evolutionary algorithms inspired
by this process of natural evolution. The theory of evolution was introduced by Darwin in
1858 [4] and together with Weismann’s theory of natural selection [5] and Mendel’s concept
of genetics [6] they formed the neo-Darwinian paradigm [7] which the genetic algorithm
was based on. Although it is clear that in the process of evolution, there are fundamental
components such as natural selection, reproduction (crossover), and mutation, it is often
neglected that extinction plays an important role in this process too. Several evolutionary
biologists have raised this question and argued that extinction plays a significant role in
evolution [4,8], but little has been done in the field of evolutionary computation where
extinction is still being neglected or ignored.

When we take a look at the efforts in improving the performance of GA, we can
categorize the efforts into two groups: One tries to improve GA through modeling GA
closer to natural evolution by introducing new biological operators or modifying existing
ones to closely mimic processes observable in nature [9–11]. The other group mainly
designs operators that were tailored to suit specific problems, and these operators have
no correspondence to nature of any sort whatsoever [12–14]. Based on the increased
performance and accuracy of GAs that were modeled to closely mimic the natural evolution
process, we came to a deduction: the closer we model our GA towards natural evolution,
the better it will perform. With this in mind, this research aims to introduce a novel genetic
algorithm inspired by the extinction phenomenon in nature: stagnation-driven extinction
protocol for genetic algorithm (SDEP-GA).

The idea of SDEP-GA is analogous to Dropout regularization [15]. In training the
neural network, Dropout operation is randomly omitting a subset of hidden units at each
training iteration in the neural network. This random removal of hidden units at each train-
ing iteration turns out to be a combination of exponentially many different neural networks
which share the same weights. Thus, Dropout regularization basically attempts to average
multiple models to improve the performance of the neural network. Srivastava et al. [16]
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have shown that dropout reduces overfitting and improves generalization. Removing
chromosomes in SFEP-GA is similar to omitting hidden units in dropout, but in SDEP-GA,
removing chromosomes with the extinction probability in a random way or a targeted way
can allow greater possibility of exploration for new solutions.

The remaining of this paper is organized as follows. Section 2 presents a description
of GA, specially focusing on simple GA. Section 3 provides the design and architecture
of our proposed algorithm, stagnation-driven extinction protocol for GA (SDEP-GA).
Section 4 will cover the experimental design of our proposed algorithm together with the
experimental results and discussion of SDEP-GA compared against Simple GA in terms of
performance. Finally, Section 5 gives a summary, a review of our contribution, and possible
directions for future work.

2. Genetic Algorithm

Genetic algorithm (GA) was invented by Holland in the 1960s and formally introduced
by Holland in 1975 [17]. GA is based on ideas from Darwinian evolution and thus it adopts
some biological terminology. To assist in the understanding of SDEP-GA, we outline Simple
GA algorithm.

2.1. Simple GA

Simple GA is the simplest form of GA, which consists of three types of operators
commonly used in other GAs. The three basic operators are as below, and they will be
further explained later.

• Selection
• Crossover
• Mutation

Figure 1 show the flowchart of Simple GA process, and it can be interpreted as follows:

1. Generate a random population of n chromosomes.
2. Evaluate the fitness of each chromosome.
3. If the termination criterion is not met, then continue the following steps. Otherwise,

return the best chromosome found.
4. Repeat the following until n chromosomes are created:

(a) Select a pair of parent chromosomes.
(b) Perform crossover with the selected pair of parent chromosome. A pair of

offspring is created in this process.
(c) Apply mutation operator on the pair of offspring.

5. Replace current population with the newly created n offspring.
6. Go to step 2 .

Each complete iteration (step 1–5 or step 2–5) performed is called a generation, and
the entire set of generations is called a run. At the end of each run, the fittest chromosome
or the best approximated candidate solution is returned to the user.
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Figure 1. Flowchart of Simple genetic algorithm (Simple GA).

2.1.1. Fitness Evaluation

The first rule required to use GA to solve a problem is that we need to be able to
clearly evaluate the fitness of a chromosome, meaning we must have a clear method of
measuring the accuracy of each candidate solution. The fitness of a chromosome is judged
by its accuracy in solving the given problem. The chromosome that is most accurate in
solving the problem will be the fittest chromosome and the least accurate one will be the
least fit chromosome.

2.1.2. Selection

The selection operator selects a pair of parent chromosomes from the current popula-
tion, the probability of selection being an increasing function of fitness. Selection is done
“with replacement”, meaning that the same chromosome can be selected more than once to
become a parent. There are various types of selection methods, but in this research we will
only use stochastic universal sampling method which will be explained in Section 4.

2.1.3. Crossover

With probability Pc (the “crossover probability”), we cross over the pair of parents at
a randomly chosen point (chosen with uniform probability) to form two offspring. If no
crossover takes place (probability of 1-Pc), we form two offspring that are exact copies of
their respective parents. The crossover operator randomly chooses one or more loci in a pair
of chromosomes and exchanges the subsequences after the locus to create two offspring.
There are two types of crossover operator: single-point crossover and multi-point crossover.
Crossover points are selected randomly, so it might happen that during a single-point
crossover the locus is located before the first bit or after the last bit of a chromosome. In
such cases, the offspring pair will be an exact replica of their parents.

2.1.4. Mutation

Similar to the crossover operator, mutation is done with a probability Pm (the mutation
probability). There are multiple ways to mutate a chromosome: single-bit mutation or
n-bit mutation. For a binary vector case, the mutation operator randomly selects one or
more bits in the chromosome and then flips it. Whether or not mutation takes place in the
offspring created from crossover operation, the offspring will be placed in the population
pool to replace the current population after n offspring are created.
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3. SDEP-GA

This section introduces SDEP-GA, a GA with an extinction protocol driven by stag-
nation. The insight of this extinction protocol is to mimic the extinction phenomenon in
nature to bring GA closer to how natural evolution takes place. Before going deep into the
mechanism of the extinction protocol, it is useful to define what stagnation is and when
it occurs.

We define stagnation as a condition when there is no improvement in the best fitness
after K generations. Stagnation usually takes place when the algorithm is stuck in a local
optimum while trying to search for a global optimum. To overcome this problem, we
suggest make the chromosomes in the population extinct with a probability of Pe (the
extinction probability). This will by chance remove some chromosomes that lead towards
the stagnation from the population before the selection process takes place. This step will
also increase the chances of less fit chromosomes to be selected to reproduce if they have
survived the extinction step due to the decrease in the population size. The flowchart of
how SDEP-GA works is shown in Figure 2.

SDEP-GA is modeled based on simple GA, with an added operator named SDEP that
takes place before the selection operator. Taking into consideration that extinction in nature
can either happen to only a certain species (e.g., bird flu) or any species (e.g., starvation,
flood, etc.), we proposed two types of extinction protocol:

• Random extinction
• Targeted extinction

Figure 2. Flowchart of SDEP-GA.

3.1. Random Extinction

In SDEP with random extinction, if the algorithm is stagnant for K generations, each
of the chromosomes in the population will be removed (extinct) with a probability Pe (the
extinction probability). This is done by assigning a random value from 0 to 1 to each of the
chromosomes in the population pool, and if that value is greater than Pe, the chromosome
will be removed from the population pool. The flowchart of random extinction protocol is
shown in Figure 3 below.
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Figure 3. Flowchart of Random Extinction Protocol.

3.2. Targeted Extinction

In SDEP with targeted extinction, if the algorithm is stagnant for K generations,
the chromosomes in the population will be removed (extinct) with a probability Pe (the
extinction probability) only if their fitness value is below a certain threshold value T. This
is done to preserve the elite chromosomes in the population. The threshold value T will
be changed after every generation so that only a small percentage of chromosomes from
the population pool will be exempted from the extinction process. This is done by ranking
each of the chromosomes according to their fitness value and then using the fitness value
of chromosome in rank i to be the threshold value. Suppose we have a population of
100 chromosomes and we want to preserve the top 10 percent of the chromosome based on
their fitness value, the threshold value T will take the value of the chromosome ranked 10th
according to the fitness value of the entire population. The flowchart of targeted extinction
protocol is shown in Figure 4 below.



Appl. Sci. 2021, 11, 3461 6 of 15

Figure 4. Flowchart of Targeted Extinction Protocol.

4. Experimental Design and Result

With the aim to test the effectiveness of the SDEP-GA in solving multivariable opti-
mization problems, we decided to use some classical test functions widely used among
researchers in benchmarking the performance of GA.

4.1. Classical Test Functions

The performance of SDEP-GA is compared against Simple GA using the following
classical test functions:

• Rastrigin’s function [18]
• Schwefel’s function [19]
• Griewank’s function [20]

They are all multivariable minimization problems, where the global minimum is
known and thus can be used to compare against the solution found by the algorithm.

Rastrigin has many local optima and is highly multimodal. The mathematical expres-
sion of the function is as below, together with the lower and upper bound values and the
global minimum (shown in Figure 5a when n = 2).
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Rastrigin(x) = 10 · n +
n

∑
i=1

(
x2

i − 10 · cos(2 · π · xi)
)

−5.12 ≤ x ≤ 5.12

global minimum : xi = 0; f (x) = 0

Schwefel is a deceptive function where search algorithms are potentially prone to
converge towards the wrong direction. The mathematical expression of the function is as
below, together with the lower and upper bound values and the global minimum (shown
in Figure 5b when n = 2).

Schwefel(x) =
n

∑
i=1

(
−xi · sin

(√
|xi|
))

−500 ≤ x ≤ 500

global minimum : xi = 420.9687; f (x) = −n · 418.9829

Griewank is similar to Rastrigin with many widespread local minima. The mathemati-
cal expression of the function is as below, together with the lower and upper bound values
and the global minimum (shown in Figure 5c when n = 2).

Griewank(x) =
n

∑
i=1

x2
i

4000
−

n

∏
i=1

cos
(

xi√
i

)
+ 1

−600 ≤ x ≤ 600

global minimum : xi = 0; f (x) = 0
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Figure 5. Classical test functions.

4.2. Experimental Design
4.2.1. Representation

As mentioned in Section 2, the first step of the experiment is to represent the candidate
solution in the form of chromosomes. Rastrigin, Schwefel, and Griewank have 20 variables
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each. Each variable of Rastrigin will be represented by 10 bits and each variable of Schwefel
and Griewank will be represented by 20 bits. Gray coding is used for all these experiments.

4.2.2. Selection

We use a stochastic universal sampling method [21] in the parent selection process
where chromosomes are probabilistically selected for reproduction according to their fitness
ranking in the current population. The probability of a chromosome being selected for
crossover (Ps) is as follows:

Ps(xi) =
f (xi)

∑n
i=1 f (xi)

where f (xi) is the fitness of chromosome xi and Ps(xi) is the probability of that individual
being selected.

4.2.3. Crossover

A single-point crossover will be used with a crossover rate of Pc = 0.7. This is to
ensure that crossover will more likely to take place so that the offspring created are not a
mere replica of the parent pair. The crossover point is selected at random, and the vectors
after the selected locus will be swapped.

4.2.4. Mutation

Mutation is done on each element of the chromosome with the mutation probability,
Pm, as follows:

Pm =
0.7

Length

Length refers to the length of the chromosome structure, for example, the length is 20 if the
chromosome is a 20-bit binary vector. This value is selected as it implies that the probability
of any one element of a chromosome being mutated is approximately 0.5 [22]. This means
that with a probability of 50 percent, at least one bit of the chromosome will be mutated.

4.2.5. SDEP

For the extinction protocol to take place, in Tables 1 and 2, we set the stagnation
counter at 10 (K = 10) generations, and the top 20 percent of the population sorted by their
ranks in fitness value will be preserved in the targeted extinction process.

4.2.6. Evaluation Methodology

The performance of SDEP-GA is compared against Simple GA on all three classical
test functions. We adopt some parameters used in [23] to evaluate the performance of these
two algorithms: mean generation number (Mgn) and post-extinction number (Pen). The
definitions of these two parameters are as follows:

• Mgn: the average number of generations for the best result to be obtained in one
complete run

• Pen: the average number of generations needed to achieve a new best found solution
in an entire run

To assist in understanding the way these parameters function, an example will be
given below for each of the parameters described above. Suppose we run the experiment
for 5 runs, with each run having obtained the best result at 10th, 11th, 20th, 15th, 21st
generation, respectively. The Mgn will be the average of these five values: Mgn = (10 +
11 + 20 + 15 + 21)/5 = 15.4. This value shows that on average the best result is found at
the 15.4th generation. Suppose we are working on an optimization problem where we are
trying to find the global minimum of a function and these are the best results obtained
after each generation for 7 generations: 80, 92, 90, 78, 81, 83, and 74. To calculate the value
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of Pen, we first need to see how many times the best result is updated for one run, which
in this case over the duration of 7 generations. The best result is updated at the 1st, 4th,
and 7th generation, for a total of 3 times. The value of Pen will then be Pen = 7/3 = 2.33.
This value indicates that on average the algorithm will obtain a better result after every
2.33 generations.

Besides that, we will compare the performance of the two algorithms in terms of
accuracy. The average result of 30 runs will be used, where each run will have a total
number of 400,000 evaluations. Namely, we used a population size of 400 chromosomes in
the population and a maximum number of generations of 1000.

4.3. Results and Discussion

The summarized experimental results of Simple GA (SGA) and SDEP-GA using
random and targeted extinction is shown in Table 1.

Table 1. Summary of SDEP-GA with random and targeted extinction against SGA; 95% confidence
interval is presented after ± sign, and standard deviation is presented inside parenthesis. Minimum
results are in bold font.

Test Avg. Best
Function Algorithm Fitness Pen Mgn

Rastrigin

SDEP-GA

Random 7.87 ± 1.54 0.03 ± 0.00 711.60 ± 83.01
(4.14) (0.01) (222.31)

Targeted 2.75 ± 0.40 0.04 ± 0.00 887.37 ± 42.85
(1.06) (0.00) (114.75)

SGA 2.97 ± 0.48 0.05 ± 0.00 891.37 ± 46.59
(1.29) (0.01) (124.76)

Schwefel

SDEP-GA

Random −4773.83 ± 178.69 0.16 ± 0.01 702.16 ± 80.32
(478.55) (0.03) (215.11)

Targeted −4780.64 ± 183.33 0.16 ± 0.01 824.47 ± 59.61
(490.96) (0.03) (159.63)

SGA −4740.42 ± 191.99 0.16 ± 0.02 835.87 ± 47.22
(514.16) (0.04) (126.45)

Griewank

SDEP-GA

Random 0.03 ± 0.01 0.07 ± 0.00 687.93 ± 67.50
(0.02) (0.01) (180.78)

Targeted 0.02 ± 0.02 0.08 ± 0.00 785.50 ± 49.51
(0.04) (0.01) (132.58)

SGA 0.04 ± 0.02 0.08 ± 0.01 854.17 ± 72.29
(0.04) (0.01) (193.59)

With reference to the third column of Table 1, we can see that SDEP with targeted
extinction has a lower fitness value when compared to SGA for Rastrigin, Schwefel, and
Griewank. As these three test functions are all minimization problems, the lower fitness
value indicates that the algorithm scores better in terms of accuracy. In terms of Pen, we can
see that SDEP-GA has a lower or equal value when compared against SGA. This indicates
that the algorithm is able to find a better result within a shorter number of generations. In
other words, SDEP with targeted extinction evolves towards the right direction at a faster
rate compared to SGA. The lower value of SDEP-GA in Mgn shows that it is able to find a
close approximation of the ideal solution faster than SGA.

Figure 6 shows the fitness values of the three algorithms over the generations for
Rastrigin, which supports our argument. In Figure 6, note that we reversed the fitness for
convenience in understanding the graph. It can be seen that SDEP with targeted extinction
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reaches near-optimum earlier than SGA and achieves near-optimum points multiple times.
These results suggest that SDEP with targeted extinction is better in terms of accuracy as
well as the computation time to reach the solution when compared against SGA.

−30

−20

−10

0

0 10 20 30
Generation

F
itn

es
s

Algorithm

Random

SGA

Targeted

Figure 6. Fitness values over the generations for Rastrigin. Fitness values are inverted for convenience
(i.e., higher values are more accurate).

The overall running time of SDEP-GA is a slightly longer than that of SGA because
of the extinction overhead. Table 2 shows the running time in milliseconds for Rastrigin,
Schwefel, and Griewank functions, respectively. However, for complicated problems like
Griewank, there is not much difference in running time among the algorithms, because the
additional overhead for random and targeted extinction is relatively small.

Table 2. Overall running time (in milliseconds) of SGA, and SDEP-GA with random and targeted
extinction; 95% confidence interval is presented after ± sign.

Test Function Algorithm Running Time (in
Milliseconds)

Rastrigin

SGA 433.13 ± 5.23

Random Extinction 628.23 ± 16.79

Targeted Extinction 913.33 ± 82.83

Schwefel

SGA 455.36 ± 5.25

Random Extinction 719.36 ± 66.26

Targeted Extinction 832.13 ± 69.66

Griewank

SGA 830.70 ± 104.79

Random Extinction 870.00 ± 104.87

Targeted Extinction 996.8 ± 53.86

Tables 3–5 show the fitness results of SDEP-GA Random Extinction with various
parameters on Rastrigin, Schwefel, and Griewank functions, respectively. Note that the
optimal value is in bold.
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Table 3. Fitness results of SDEP with random extinction on Rastrigin (K is the stagnant counter); 95%
confidence interval is presented after ± sign, and standard deviation is presented inside parenthesis.
Minimum results are in bold font.

Extinction Probability (Pe)
0.1 0.3 0.5 0.7 0.9

K 6.82 ± 1.50 11.91 ± 1.83 16.04 ± 2.09 20.60 ± 2.51 33.39 ± 3.16
10 (4.01) (4.90) (5.58) (6.74) (8.46)

3.31 ± 0.69 4.15 ± 0.67 6.82 ± 1.65 8.32 ± 1.55 19.93 ± 2.82
100 (1.86) (1.80) (4.43) (4.15) (7.56)

2.92 ± 0.50 3.68 ± 0.72 4.46 ± 1.38 9.17 ± 2.24 14.31 ± 2.74
200 (1.34) (1.94) (3.70) (5.99) (7.34)

2.82 ± 0.44 3.72 ± 0.55 3.97 ± 0.72 4.75 ± 0.91 5.98 ± 0.90
300 (1.18) (1.48) (1.92) (2.44) (2.40)

3.49 ± 0.58 3.16 ± 0.57 3.48 ± 0.61 4.11 ± 0.73 4.22 ± 0.63
400 (1.55) (1.53) (1.65) (1.95) (1.69)

2.91 ± 0.45 3.35 ± 1.02 5.35 ± 1.64 6.94 ± 2.01 15.99 ± 3.33
500 (1.21) (2.73) (4.39) (5.39) (8.92)

Table 4. Fitness results of SDEP with random extinction on Schwefel (K is the stagnant counter); 95% confidence interval is
presented after ± sign, and standard deviation is presented inside parenthesis. Minimum results are in bold font.

Extinction Probability (Pe)
0.1 0.3 0.5 0.7 0.9

K −4779.91 ± 178.69 −4830.64 ± 192.21 −4739.18 ± 187.37 −4870.65 ± 193.91 −4903.66 ± 155.85
10 (478.55) (514.75) (501.78) (519.30) (417.37)

−4812.89 ± 171.71 −4745.69 ± 218.27 −4801.74 ± 193.10 −4793.12 ± 186.45 −4820.04 ± 171.53
100 (459.86) (584.53) (517.14) (499.33) (459.37)

−4878.61 ± 191.80 −4772.05 ± 180.67 −4669.98 ± 151.52 −4790.46 ± 252.18 −4685.11 ± 195.38
200 (513.66) (483.85) (405.77) (675.35) (523.23)

−4639.88 ± 216.00 −4821.38 ± 205.53 −4814.87 ± 197.89 −4810.89 ± 156.37 −4740.43 ± 191.03
300 (578.46) (550.41) (529.96) (418.77) (511.59)

−4849.50 ± 253.70 −4704.33 ± 179.80 −4629.31 ± 203.17 −4788.53 ± 250.73 −4766.24 ± 185.33
400 (679.43) (481.50) (544.11) (671.47) (496.31)

−4822.09 ± 174.10 −4637.11 ± 179.41 −4803.43 ± 203.50 −4779.93 ± 180.51 −4713.39 ± 217.27
500 (466.26) (480.48) (544.99) (483.41) (581.86)

Table 5. Fitness results of SDEP with random extinction on Griewank (K is the stagnant counter); 95%
confidence interval is presented after ± sign, and standard deviation is presented inside parenthesis.

Extinction Probability (Pe)
0.1 0.3 0.5 0.7 0.9

K 0.03 ± 0.01 0.04 ± 0.02 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.02
10 (0.02) (0.05) (0.02) (0.04) (0.07)

0.02 ± 0.01 0.05 ± 0.02 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
100 (0.02) (0.06) (0.02) (0.03) (0.04)

0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.01
200 (0.03) (0.03) (0.03) (0.05) (0.03)

0.03 ± 0.02 0.04 ± 0.02 0.03 ± 0.01 0.02 ± 0.01 0.03 ± 0.01
300 (0.04) (0.05) (0.03) (0.03) (0.04)

0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.04 ± 0.02
400 (0.04) (0.03) (0.03) (0.03) (0.05)

0.02 ± 0.01 0.02 ± 0.01 0.03 ± 0.01 0.03 ± 0.01 0.03 ± 0.01
500 (0.04) (0.03) (0.04) (0.03) (0.04)
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Taking a look at the performance of SDEP using random extinction in Tables 3–5
compared against SGA in Table 1, we can see that, for various values of two parameters (K
and Pe), unfortunately, neither algorithm clearly outperforms the other.

However, from Tables 6–8, and the summary table, Table 1, it can be seen that SDEP
using targeted extinction generally outperforms SGA. The reason for the poor performance
of random extinction when compared to the targeted extinction might be due to the removal
of certain crucial chromosomes during the random extinction process. This will set back
the overall evolution rate of the algorithm because the efforts of previous evolutions are
being wasted.

Table 6. Fitness results of SDEP with targeted extinction on Rastrigin (K is the stagnant counter and
fitness threshold T = 0.5); 95% confidence interval is presented after ± sign, and standard deviation
is presented inside parenthesis. Minimum results are in bold font.

Extinction Probability (Pe)
0.1 0.3 0.5 0.7 0.9

K 3.04 ± 0.47 2.78 ± 0.34 2.57 ± 0.57 2.87 ± 0.53 3.20 ± 0.39
10 (1.25) (0.90) (1.51) (1.42) (1.05)

3.04 ± 0.50 2.48 ± 0.53 3.02 ± 0.52 2.99 ± 0.47 2.63 ± 0.42
100 (1.33) (1.41) (1.38) (1.26) (1.11)

2.95 ± 0.60 2.60 ± 0.45 2.79 ± 0.57 3.06 ± 0.49 2.64 ± 0.51
200 (1.61) (1.20) (1.53) (1.31) (1.36)

2.41 ± 0.37 2.61 ± 0.44 2.78 ± 0.55 2.95 ± 0.52 3.11 ± 0.52
300 (0.97) (1.16) (1.46) (1.38) (1.38)

2.38 ± 0.49 2.95 ± 0.56 2.53 ± 0.41 2.75 ± 0.49 2.46 ± 0.42
400 (1.29) (1.49) (1.10) (1.29) (1.11)

2.43 ± 0.52 2.50 ± 0.44 2.43 ± 0.33 3.20 ± 0.53 2.43 ± 0.42
500 (1.38) (1.17) (0.88) (1.40) (1.10)

Table 7. Fitness results of SDEP with targeted extinction on Schwefel (K is the stagnant counter and fitness threshold
T = 0.5); 95% confidence interval is presented after ± sign, and standard deviation is presented inside parenthesis.
Minimum results are in bold font.

Extinction Probability (Pe)
0.1 0.3 0.5 0.7 0.9

K −4645.65 ± 196.66 −4612.80 ± 245.48 −4820.76 ± 215.67 −4839.10 ± 199.85 −4849.53 ± 233.43
10 (526.66) (657.41) (577.58) (535.20) (625.12)

−4888.51 ± 188.37 −4727.33 ± 241.21 −4857.66 ± 178.47 −4716.80 ± 207.79 −4842.42 ± 248.00
100 (504.47) (645.97) (477.94) (556.46) (664.15)

−4669.41 ± 189.33 −4778.05 ± 186.31 −4887.34 ± 164.99 −4779.97 ± 189.52 −4750.35 ± 197.91
200 (507.03) (498.95) (441.85) (507.53) (530.02)

−4676.04 ± 179.96 −4727.22 ± 207.94 −4798.06 ± 228.48 −4821.99 ± 151.12 −4908.28 ± 189.64
300 (481.94) (556.85) (611.89) (404.71) (507.86)

−4699.78 ± 201.81 −4780.60 ± 212.11 −4723.42 ± 214.60 −4675.31 ± 251.11 −4816.82 ± 194.22
400 (540.46) (568.02) (574.69) (672.48) (520.12)

−4712.69 ± 189.71 −4939.95 ± 171.60 −4873.40 ± 192.05 −4853.73 ± 213.47 −4746.26 ± 204.25
500 (508.05) (459.55) (514.32) (571.69) (546.99)
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Table 8. Fitness results of SDEP with targeted extinction on Griewank (K is the stagnant counter and
fitness threshold T = 0.5); 95% confidence interval is presented after ± sign, and standard deviation
is presented inside parenthesis.

Extinction Probability (Pe)
0.1 0.3 0.5 0.7 0.9

K 0.02 ± 0.01 0.04 ± 0.04 0.02 ± 0.01 0.02 ± 0.02 0.02 ± 0.01
10 (0.03) (0.09) (0.03) (0.04) (0.03)

0.03 ± 0.01 0.03 ± 0.02 0.02 ± 0.01 0.03 ± 0.02 0.03 ± 0.02
100 (0.03) (0.05) (0.03) (0.04) (0.03)

0.03 ± 0.02 0.02 ± 0.02 0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.01
200 (0.05) (0.03) (0.03) (0.05) (0.03)

0.03 ± 0.02 0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.02 0.02 ± 0.01
300 (0.05) (0.04) (0.03) (0.05) (0.03)

0.02 ± 0.01 0.03 ± 0.02 0.02 ± 0.02 0.03 ± 0.02 0.03 ± 0.02
400 (0.03) (0.05) (0.04) (0.03) (0.05)

0.03 ± 0.02 0.02 ± 0.01 0.02 ± 0.01 0.02 ± 0.01 0.04 ± 0.04
500 (0.04) (0.03) (0.03) (0.03) (0.09)

To investigate further the statistical significance in comparing the algorithms, we
perform a Friedman test [24] on our experimental results. Figure 7 shows a box and
whisker plot with Friedman test results. To alleviate multiple comparison errors, p-values
are adjusted using the Bonferroni method [25]. Note that a p-value < 0.05 means that the
experimental result in Table 1 is statistically significant.

**** **** *
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Friedman test, χ2(2) = 34.07, p = <0.0001, n = 30

pwc: Wilcoxon test ; p.adjust: Bonferroni

Figure 7. Box and whisker plot of Rastrigin results with Friedman test results. Note that a
p value < 0.05 means that the experimental result is statistically significant.

We also perform pairwise Wilcoxon signed-rank tests [26] to identify which pairs were
significant. Table 9 shows the pairwise Wilcoxon signed-rank test of the Rastrigin results. It
can be seen that SDEP with targeted extinction outperforms SGA, while SGA outperforms
SDEP with random extinction.
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Table 9. Pairwise Wilcoxon signed-rank test of Rastrigin fitness performance among SGA, SDEP with
random extinction, and SDEP with targeted extinction. The results in bold are statistically significant
with a 95% confidence level. p-values are adjusted using Bonferroni method.

SGA SDEP with Random
Extinction

SDEP with targeted extinction 0.03 0.0000000783
SDEP with random extinction 0.00000207

5. Conclusions

In this paper, we presented the results of an investigation aimed to explore a new
GA operator borrowed from nature, i.e., the stagnation-driven extinction protocol with
random extinction and targeted extinction. We defined SDEP-GA based on those two
operators, and tested their performance against SGA on three classical test functions for
GAs benchmarking purpose. The achieved result suggests that SDEP-GA using targeted
extinction is comparable or sometimes advantageous over SGA in terms of accuracy and
also computation time. However, the same cannot be said for SDEP-GA using random
extinction. These results encourage us to further investigate forms of GAs closer to natural
evolution, especially in the aspect of extinction process.

The pros and cons of our proposed algorithms are as follows:

• Random extinction randomly removes chromosomes, which expedites more explo-
ration for the population; however, it is prone to degrading the performance due to
removal of near-optimal solutions.

• Targeted extinction selectively removes chromosomes, which at once enables explo-
ration and preserves exploitation. However, it takes longer time due to internal sorting
and population management overhead.

From a theoretical point of view, we plan to investigate further the optimum value
of threshold values for SDEP, i.e., the number of generations of stagnation (K) to trigger
extinction protocol and the chromosomes to preserve in targeted extinction. We also plan
to improve SDEP-GA by mimicking how extinction takes place in nature and how it affects
the evolution of species. SDEP can also be added to other forms of GAs such as elitist GA.

From a practical point of view, we plan to measure the effectiveness and robustness of
the algorithm when dealing with real-world problems.
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