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Abstract: This paper proposes a complete-information-based principal component analysis (CIPCA)-
back-propagation neural network (BPNN)_ fault prediction method using real unmanned aerial
vehicle (UAV) flight data. Unmanned aerial vehicles are widely used in commercial and industrial
fields. With the development of UAV technology, it is imperative to diagnose and predict UAV faults
and improve their safety and reliability. The data-driven fault prediction method provides a basis
for UAV fault prediction. A UAV is a typical complex system. Its flight data is a kind of typical
high-dimensional large sample dataset, and traditional methods cannot meet the requirements of
data compression and dimensionality reduction at the same time. The method used interval data to
compress UAV flight data, used CIPCA to reduce the dimensionality of the compressed data, and
then used a back propagation (BP) neural network to predict UAV failure. Experimental results show
that the CIPCA-BPNN method had obvious advantages over the traditional principal component
analysis (PCA)-BPNN method and could accurately predict a failure about 9 s before the UAV
failure occurred.

Keywords: fault diagnostics and prognostics; UAV flight data; interval data; complete-information-
based principal component analysis; BP neural network

1. Introduction

Unmanned aerial vehicles (UAVs) are very versatile and can be used in personal
and commercial fields such as aerial photography, agriculture, plant protection, minia-
ture selfies, express transportation, disaster relief, surveying and mapping, and electric
power inspection. In order to reduce costs, UAVs usually adopt non-redundant or low-
redundancy design. In addition, due to the lack of driver’s real-time observation and
judgment ability during flight, UAVs have a high accident rate. Improving the safety and
reliability of equipment has become a research hotspot [1]. The traditional UAV fault pre-
diction approach is to monitor a certain flight parameter, and when the parameter exceeds
the safe range, or when it is judged that it may exceed the safe range in the future, a risk
alarm is issued [2–4]. However, UAVs are complex systems, and sometimes it is difficult to
locate fault variables. In addition, due to the small number of fault samples, it is difficult to
support the establishment of mathematical models of variables to predict the next state
of risk variables [5]. Some scholars use the image returned by the UAV’s own camera
to locate and estimate the bounded domain of the UAV’s attitude and to perform fault
detection based on the landmark error of the UAV’s tracking image [6]. However, none
of these methods use all of the flight information. With the maturity of machine learning
methods, data-driven fault diagnosis methods have become a hot research topic, and there
are a lot of research studies and applications in many fields, such as bearings [7–9], power
distribution networks [10], and photo-voltaic array fault diagnosis [11]. The data-driven
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method uses all the information that the UAV system can collect. After using the machine
learning method, it does not rely on the original model of the system to judge the fault [12].
The construction of data-driven methods usually includes three steps: first, collecting
fault signals; second, extracting fault features; third, identifying and predicting fault [13].
Because the airborne equipment of UAVs record a large amount of flight parameter data
in real time, feature extraction and dimensionality reduction of the flight data are very
important tasks.

Flight data are real-time flight data collected by onboard sensors, which are a type of
signal data. Traditional signal data feature extraction methods including wavelet packet
transform (WPT), empirical mode decomposition (EMD), and local mean decomposition
(LMD). WPT is a signal feature extraction method that provides local features in the time
domain and frequency domain and recognizes sudden components of vibration signals. It
is an effective method for processing nonlinear and non-stationary signals [14,15]. EMD
is an adaptive processing method suitable for analyzing nonlinear and non-stationary
signals. The algorithm is based on the local characteristic time scale of the signal and
has the ability to adaptively decompose the complex signal into multiple independent
modal functions [16]. LMD is also an adaptive signal processing method used to adap-
tively de-compose nonlinear and non-stationary vibration signals into a series of product
functions [17]. WPT needs to determine the decomposition scale, so it is not an adaptive
signal data processing method and is not conducive to processing big data [18]. EMD can
adaptively determine the resolution of the signal in different frequency bands, but the
modal mixing problem often occurs [19]. LMD and EMD have some similarities, but LMD
is better than EMD in the processing of local signal features [20]. These methods are often
used in the field of fault diagnosis [21–24], but they have some problems. First, extracting
data features from the time and frequency domains will destroy the structure of the data
itself. Second, these methods will increase the number of variables and cannot achieve the
purpose of dimensionality reduction.

Principal component analysis based on interval data can solve the problems of com-
pressed data, feature extraction, and dimensionality reduction at the same time. In 1988,
Diday proposed symbolic data analysis (SDA), which has been widely used in various
fields [25]. Interval data are typical symbolic data, which express a range between the
upper and lower bounds. Compared with discrete data, interval data can grasp the internal
structural characteristics of data objects globally, which is more conducive to revealing
the rules implicit in the data. Therefore, interval data can represent the uncertainty and
variability of data and have important application value in decision support. Wang,
Guan, and Wu (2012) proposed the complete-information-based principal component
analysis (CIPCA), which can capture the complete information of the data interval and
find the meaningful structural information hidden in large-scale data. It is a more efficient
method for dimensionality reduction of large-scale numerical data [26]. The interval
data principal component method can distinguish fault types more accurately than the
traditional principal component analysis method [27]. The principal component analysis
method of interval data has been widely used in sensor fault diagnosis [28–30], spacecraft
fault diagnosis [31], and other fault diagnosis fields. This paper introduces CIPCA into the
UAV fault prediction and uses a back-propagation neural network (BPNN) to construct the
CIPCA-BPNN fault prediction model. For the purpose of failure prediction, we used real
labeled UAV flight data and selected flight data 30 s before the fault as fault data.

The rest of this paper is organized as follows. Section 2 describes the interval data and
CIPCA. Section 3 discusses the application process of CIPCA in UAV failure prediction.
Section 4 describes the experiment in this paper. Section 5 analyzes the experimental results.
In Section 6, the conclusions are given.
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2. Methods
2.1. Interval Data

Interval data refers to the idea that the feature of a sample point is not a definite value
but is a collection of all values contained in a range on the real number field, which can be
expressed as

x = {t|x ≤ x ≤ x, x ∈ R, x ∈ R, x ≤ x} (1)

where x is the lower bound of interval data, and x is the upper bound of interval data.
Interval data express a range between the upper and lower bounds. Compared with
discrete data, interval data can summarize the internal structural characteristics of the data
from a global perspective, and they are more conducive to explaining the rules implicit
in the data. Interval data can also be represented as an ordered array of upper and lower
bounds: x = [x, x].

For an n-dimensional vector X = (x1, x2, . . . , xn)
T , if each component in the vector

is interval data, that is, xi = [xi, xi], then X is called an n-dimensional interval vector. If

each datum in the n× p dimensional data matrix Xn×p = (xij)n×p is an interval datum, it
is called interval matrix:

Xn×p = (xij)n×p =


eT

1
eT

2
...

eT
n

 = (X1, X2, . . . , Xp) (2)

Each row in the matrix is an interval sample, and the number of columns p represents
the sample dimension. In fault diagnosis, the interval matrix can be used to describe the
data, and the observation value of each sample dimension is represented by a data interval.

2.2. CIPCA

The research object of interval data principal component analysis is an interval data
matrix Xn×p containing n samples; each sample is described by p interval variables:

Xn×p = (X1, X2, . . . , Xp)

=



[x11, x11] [x12, x12] · · · [x1p, x1p]

[x21, x21] [x22, x22] · · · [x2p, x2p]

...
...

. . .
...

[xn1, xn1] [xn2, xn2] · · · [xnp, xnp]


(3)

Many principal component analysis methods for interval data have been proposed.
Cazes, Chouakria, and Diday (1997) proposed vertices principal component analysis
(VPCA) and centers principal component analysis (CPCA) [32]. However, these two
methods have the disadvantage of using only local information. Wang, Guan, and Wu
(2012) proposed the complete-information-based principal component analysis for interval
data (CIPCA) [26]. This method uses all the information of the interval samples. The
modeling results always reflect the internal structural characteristics of the data and are
not easily affected by the size of the interval samples. Compared with VPCA and CPVA,
CIPCA has higher accuracy and stronger robustness.

The same as traditional principal component analysis, in CIPCA, the k-th interval
principal component Pk is a linear combination of p interval variables, i.e., Pk = u1kX1 +
u2kX2 + · · ·+ xpkXp, where uk = (u1k, u2k, . . . , upk)′ ∈ Rp subject to u′kuk = 1, and u′kul =
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0 (1 ≤ l, k ≤ p, l 6= k). Using variance to describe the information contained in the principal
component of the k-th interval, we have

DCI(Pk) = 1
n 〈Pk, Pk〉

= 1
n

〈
u1kX1 + u2kX2 + · · ·+ upkXp, u1kX1 + u2kX2 + · · ·+ upkXp

〉

= 1
n (u1k, u2k, . . . , upk)


〈X1, X1〉 〈X1, X2〉 · · ·

〈
X1, Xp

〉
〈X2, X1〉 〈X2, X2〉 · · ·

〈
X2, Xp

〉
...

...
. . .

...〈
Xp, X1

〉 〈
Xp, X2

〉
· · ·

〈
Xp, Xp

〉



u1k
u2k

...
upk


(4)

According to the principal component analysis, the sum of the variances of the first m
principal components P1, P2, . . . , Pm should reach the maximum, so m standard orthogonal
vectors u1, u2 . . . , um should be solved to maximize ∑m

k=1 DCI(Pk) and satisfy DCI(P1) ≥
DCI(P2) ≥ · · · ≥ DCI(Pm) at the same time; it can be expressed as

max∑m
k=1 u′kSCIuk

s.t.


u′kuk = 1
u′kul = 0

u′1SCIu1 ≥ u′2SCIu2 ≥ · · · ≥ u′mSCIum
l = 1, 2, . . . , m (l 6= k)

(5)

The modeling steps of CIPCA are as follows:
Step 1: Normalize all interval variables to obtain the standardized interval data matrix

X∗n×p. The normalization method is as follows:

x∗ij =

 xij − ECI(Xj)

DCI(Xj)
,

xij − ECI(Xj)

DCI(Xj)

 (6)

Step 2: Calculate the covariance matrix SCI of X∗n×p.
Step 3: Perform feature decomposition on SCI to obtain eigenvalues λ1, λ2, . . . , λp (λ1 ≥

λ2 ≥ · · · ≥ λp) and corresponding standard orthogonal eigenvectors u1, u2, . . . , up, and
retain the first m (m ≤ p) eigenvalues and eigenvectors. Record principal component
variance and principal component coefficient.

Step 4: Calculate the principal component score P1, P2, . . . , Pm of the interval.

2.3. BPNN

Artificial neural networks are supervised machine learning methods, which have
been applied in many fields [33,34]. In the field of machine learning, back-propagation
(BP) is a classical method used to train neural networks [35,36], which can deal with
complex nonlinear system problems and is widely used in the field of fault diagnosis and
prediction. A three-layer BPNN is shown in Figure 1. The first layer is the input layer of
the BP neural network; assuming there are n variables, the input vector x ∈ Rn, where
x = (x0, x1, . . . , xn−1)

T . The second layer is the hidden layer, with a total of l neurons,
and its output is h ∈ Rl , h = (h0, h1, . . . , hl−1)

T . The last layer is the output layer y ∈ Rm,
y = (y0, y1, . . . , ym−1)

T . wij is the weight of the i-th neuron in the input layer to the j-th
neuron in the hidden layer, and the threshold of the j-th neuron in the hidden layer is θj.
ujk is the weight of the j-th neuron in the hidden layer to the k-th neuron in the output
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layer, and the threshold of the k-th neuron in the output layer is ηj. The mapping from the
input layer to the hidden layer to the output layer can be expressed as

hj = f (
n−1
∑
i

wijxi − θj), j = 0, 1, . . . , l − 1

yk = f (
l−1
∑
j

ujkzj − ηk), k = 0, 1, . . . , m− 1
(7)

Figure 1. The structure of three-layer neural network.

The key to a BP neural network is to learn the weights and thresholds of the network
through samples. The learning process is composed of the forward propagation of signals
and the backward propagation of errors. Forward propagation means that after passing
through the input layer and the hidden layer, the input signal is output to the output layer;
if the desired output signal cannot be obtained, it is transferred to the reverse propagation
of the error signal. In the back propagation of the error signal, the error signal is fed back
layer by layer from the output layer, and each weight is adjusted by the error feedback, and
through this continuous correction, the network output is closer to the expected output.

3. Application
3.1. Flight Data of UAV

The flying parameter system of a UAV records the entire process data from the start to
the stop of the UAV, including attitude, altitude, power, navigation parameters, and other
indicators. With the development of machine learning technology, data-driven diagnosis
technology has become an important part of fault diagnosis. For UAVs, flight data are the
basis for fault diagnosis and prediction. But in the actual flight data, there are two problems.
First, the flying data set is huge. Airborne equipment usually records data in milliseconds,
and the number of samples recorded during a flight may reach hundreds of thousands.
Therefore, before using the flight data for analysis, the data should be compressed at the
variable level. Second, there are a large number of flight status indicators in flight data,
ranging from dozens to hundreds. The relationship between indicators is complicated, and
the correlation is serious. Therefore, it is necessary to reduce the dimensionality of the data
before using the flying parameter data for modeling. Using the idea of interval data and
CIPCA method can solve these two problems well.
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3.2. Compression Based on Flight Data

Due to the huge dimensions of flight data samples, if directly used for modeling, they
will increase the computer load and greatly decrease the efficiency of modeling. In addition,
the millisecond data collected by the sensors will obscure the information contained in the
flight process. Therefore, before fault diagnosis modeling, the sample dimension of the
flying parameter data should be compressed. The original data can be packaged using the
idea of interval data, retaining the maximum and minimum values of various variables
within a sample period of time, grasping the intrinsic characteristics of data objects globally,
and compressing massive data. For data with time labels, interval length needs to be
determined from the time dimension to ensure the timing of data and ensure that the time
represented by each data interval is equal. For data without a time label, interval can be
performed by other characteristics of the data. It is important to ensure that each interval
has the same meaning in at least one feature of the data.

Tm×p is the interval data matrix after compressing the original data; the compression
method can be expressed as

Tm×p = (T1, T2, . . . , Tp)

=



[
t11, t11

] [
t12, t12

]
· · ·

[
t1p, t1p

]
[

t21, t21

] [
t22, t22

]
· · ·

[
t2p, t2p

]
...

...
. . .

...[
tm1, tm1

] [
tm2, tm2

]
· · ·

[
tmp, tmp

]


(8)

where tij = min
([

xl,j, xl+1,j, . . . , xl+k,j

])
, and tij = max

([
xl,j, xl+1,j, . . . , xl+k,j

])
. The

length of time included in tij and tij is the time period spanned by xl,j, xl+1,j, . . . , xl+k,j.

After interval compression, the sample size of the original data can be greatly reduced, and
using the interval feature that retains the original data, less information is lost, which is
beneficial for subsequent modeling and analysis of failures.

3.3. Dimensional Reduction of Flight Data Based on CIPCA

Because the interval matrix Tm×p of the original data is obtained based on the interval
compression of samples, the dimension reduction method for interval data is needed when
reducing variable dimensions. According to the CIPCA in Section 2.2, first, standardize the
interval variable (T1, T2, . . . , Tp) and calculate the covariance matrix of Tm×p to obtain the
eigenvalues and the corresponding standard orthogonal eigenvectors, retaining the first q
eigenvalues and eigenvectors. The principal component score Pm×q of the interval data is
calculated. Pm×q is the interval type flight data, Xn×p, obtained by the original massive high-
dimensional flying parameter data after sample size compression and variable dimension
reduction.

3.4. Fault Prediction of UAV Based on CIPCA-BP

Based on the interval matrix Pm×q obtained above, a UAV fault diagnosis model
can be established through BPNN. From the interval matrix Pm×q, the minimum and
maximum values of the interval data are extracted and form the minimum matrix Pmin

m×q



Appl. Sci. 2021, 11, 3448 7 of 15

and a maximum matrix Pmax
m×q, respectively. Since pj∗ and pj∗ come from the same data

interval, Pmin
m×q and Pmax

m×q have the same status label vector y = (s1, s2, . . . , sm)
T .

Pmin
m×q =



p11 p12 · · · p1q

p21 p22 · · · p2q

...
...

. . .
...

pm1 pm1 · · · pmq


Pmax

m×q =


p11 p12 · · · p1q
p21 p22 · · · p2q

...
...

. . .
...

pm1 pm2 · · · pmq

 (9)

Using BPNN to establish fault prediction models for
(

Pmin
m×q, y

)
and

(
Pmax

m×q, y
)

, respec-
tively, the output layer uses linear functions to output the results; consequently, summarize
the results of the two models to obtain the final prediction results. The process of CIPCA-
BPNN is shown in Figure 2.

Figure 2. Complete-information-based principal component analysis–back-propagation neural network (CIPCA-BPNN)
fault diagnosis process. The sample state of the same flight is the same (y is the same). In the modeling stage, the data used
are the data of many flights, and the y of different states will be different.
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4. Experiments Description
4.1. Data

The data in this paper came from the experimental data of the multi-rotor UAV
VesperTilio of Volitation (Beijing) Technology Co., Ltd. (Beijing, China) The position
markers of some airborne sensors are shown in Figure 3. In the study, the flight data of
123 sorties of a multi-rotor UAV were collected and collated. Among them, 10 sorties failed,
and the other 113 sorties were normal flights. In order to realize the prediction of the fault,
we extracted the data of 30 s before the fault occurred as the fault data. Similarly, in each
normal flight, we also extracted continuous 30 s of data. There were a total of 16,471 fault
sample points, 237,414 normal sample points, and 56 flight parameters. Due to the problem
of sensor accuracy degradation and data loss in the fault state, the sampling frequency of
the fault state and the normal state were different.

Figure 3. Airborne layout sensors (VesperTilio of Volitation (Beijing) Technology Co., Ltd.).

As can be seen from Figure 4, the fault data fluctuated more than normal data, and
extreme fluctuations may have occurred suddenly. It was meaningless to use the data at
each time point as a sample for fault prediction, because at such time points, the fault data
may have been the same as the normal data. Therefore, we used the method of interval
data for analysis, and could retain the fluctuation characteristics of some data. It can be
seen from Figure 5 that the flight data variable had a large number of dimensions, and there
was a serious correlation between the variables. Therefore, before modeling, we should
have reduced the dimension of variables and removed the correlation between variables.

Figure 4. Comparison of fault data with normal data. The left side is the fault data, and the right side is the normal data.
The fault data is not stable.
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Figure 5. The correlation between variables of the data. The color is darker, the correlation between
variables is higher. (The figure shows the correlation coefficient of the corresponding variable.
Because the autocorrelation coefficient of the variable is 1, it is not shown in the figure.)

4.2. Experiments
4.2.1. Data Compression

Interval data can achieve the purpose of compressing data sample size. For flight
data, we can split data from the time dimension. In the experiment, the original flight data
of each sorting was set as a data interval every 0.1 s, and the maximum and minimum
values were extracted from the data interval to form the interval data matrix according to
the method in Section 2.1. The samples of each sort were in the same state, so the interval
processing of flight data did not affect the label of the samples (normal state or fault state).
The obtained interval data was used for the subsequent dimension reduction based on
CIPCA and the establishment of a fault prediction model based on BPNN.

4.2.2. Dimension Reduction

We used CIPCA to carry out variable dimension reduction on the obtained flight
interval data. The method is explained in Section 2.2. In addition, we compared the
dimensionality reduction results of traditional PCA as a comparison. The data used by
PCA were extracted from the original flight data of each sortie every 0.1 s, ensuring the
consistency of the data volume with CIPCA.

4.2.3. Fault Prediction

We used the interval data set obtained after dimensionality reduction by the CIPCA
method to train the CIPCA-BPNN fault prediction model. Since the interval data could not
be directly used to establish the BPNN model, according to the instructions in Section 3.4,
we extracted the “minimum” matrix and the “maximum” matrix from the flight interval
data set. We then used BPNN to train the “lower bound” base learner and the “upper
bound” base learner, respectively, and summarized the results to form an “ensemble”
learner. The method of summarizing the results was the weighted average.

In the failure prediction experiment, the label of the failure sample was 1 (y = 1), and
the label of the normal sample was 0 (y = 0). We used two-thirds of all data as the training
set, and the remaining one-third was the test set. We trained a single hidden layer BPNN
with the number of hidden neurons of 10, 15, 20, 35, 30, 35, 40, and 45 to find the optimal
model. The output function of BPNN was a linear function. We used the nnet package in R
to build the BPNN model on a computer with the AMD Ryzen 7 1700 Eight-Core Processor
3 GHz CPU and 32 GB RAM. In the comparative experiment of PCA-BPNN, the same
number of principal components as CIPCA-BPNN was used. The setting of PCA-BPNN
parameters was the same as CIPCA-BPNN.
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5. Results
5.1. Data Compression

The original data included 123 sorties of flight data, with a total of 253,885 sample
points. We used the interval method to compress the original flight data of each sortie.
After finishing, there were a total of 35,091 samples, including 2973 fault samples and
32,118 normal samples. After intervalization, the sample size was 13.82% of the original
data. The effect of data compression is obvious. It can reduce the number of samples, retain
the interval information of the original data, and alleviate the problem of data imbalance
to a certain extent (Table 1).

Table 1. Effect of data compression and dimension reduction.

Stage Number of
Samples

Number of
Faults

Number of
Normal

Imbalanced
Ratio

Number of
Variables

Raw data 253,885 16,471 237,414 14.41 56
Data compression 35,091 2973 32,118 10.80 56

Dimension Reduction 35,091 2973 32,118 10.80 5

5.2. Dimension Reduction

After intervalization, the flight data were well compressed at the sample level. How-
ever, there were still a large number of variables, and the relationship between those
variables was not clear. Besides, there may have been serious correlations. Therefore,
before training the fault prediction model, the CIPCA in Section 2.2 was used to reduce the
dimensionality of the intervalized flight data. In order to compare the effect of dimension-
ality reduction, we also used PCA to perform dimensionality reduction on the data. The
data used by PCA are described in Section 4.

It can be seen from Figure 6 that the cumulative variance interpretation curve of CIPCA
was located above the PCA, indicating that CIPCA had a stronger ability to interpret data
than PCA and could better cover the information of the data. When all five principal
components were extracted, CIPCA could explain more than 80% of the flight data, while
PCA could only explain less than 40% of the information.

Figure 6. Comparison of CIPCA and principal component analysis (PCA) cumulative variance explained.

When retaining the number of principal components, we ensured that the retained
principal components could explain most of the data information and chose as few principal
component numbers as possible because too many principal components would have
reduced the effect of dimensionality reduction. According to Table 2, the first five principal
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components of CIPCA could explain nearly 85% of the data information, so we chose to
retain the five to train BPNN for UAV failure prediction. Similarly, in order to compare
the prediction effect, the first five principal components of PCA were also selected for
modeling.

Table 2. Flight data variance explained by CIPCA and PCA.

Number of
Components

CIPCA PCA

Proportion
Explained

Cumulative
Explained

Proportion
Explained

Cumulative
Explained

1 0.367 0.367 0.107 0.107
2 0.206 0.573 0.074 0.181
3 0.163 0.736 0.064 0.245
4 0.056 0.792 0.060 0.305
5 0.051 0.843 0.059 0.364
6 0.042 0.885 0.058 0.423
7 0.027 0.912 0.053 0.475
8 0.019 0.931 0.050 0.526

5.3. Fault Prediction

We randomly selected two-thirds of the data to train the model and used the remaining
data as the test set to verify the predictive ability of the model. We selected accuracy,
precision, recall, F1 score, and AUC(Area Under Curve) as the evaluation indicators of the
model’s predictive ability and conducted 500 repeated experiments to obtain the average
value of each indicator. Taking the hidden layer of BP neural network with 30 neurons as an
example, the modeling time (500 repeated experiments) of CIPCA-BPNN and PCA-BPNN
was 599.76 min and 301.86 min, respectively.

As can be seen from Figure 7a, CIPCA-BPNN could predict failures well. Its accuracy
could reach more than 95% and precision was more than 90%; although the value of recall
changed greatly, when the number of hidden neurons was more than 20, it could also reach
90%. In addition, the ensemble classifier effect of CIPCA-BPNN was better than the two
base classifiers, indicating that the ensemble classifier used more data features, reflecting
the advantages of CIPCA-BPNN. Finally, the model effect got better and better with the
increase in the number of hidden neurons and tended to stabilize after the number of
hidden neurons reached 30. In practical applications, more than 30 hidden neurons can be
used to build a model, and a good prediction effect can be obtained.

We also constructed a PCA-BPNN prediction model and compared it with CIPCA-
BPNN under the same circumstances. It can be seen from Figure 7b that the accuracy and
precision of PCA-BPNN was slightly lower than that of CIPCA-BPNN and was much lower
than CIPCA-BPNN in recall. In fault prediction, recall is more important than accuracy
and precision because recall refers to the probability that a fault can be accurately predicted
when it actually occurs. The AUC curve in Figure 7c also shows that the prediction effect
of CIPCA-BPNN was better than that of PCA-BPNN. The details of each evaluation index
of the model’s prediction ability are shown in Table 3.

Table 3. Effects comparison of fault prediction by CIPCA-BPNN and PCA-BPNN.

Number of
Hidden Neurons

CIPCA-BPNN PCA-BPNN

Accuracy Precision Recall F1-Score AUC Accuracy Precision Recall F1-Score AUC

10 0.973 0.922 0.743 0.823 0.986 0.958 0.850 0.617 0.715 0.960
15 0.982 0.932 0.854 0.891 0.993 0.969 0.884 0.725 0.797 0.977
20 0.986 0.940 0.895 0.917 0.995 0.974 0.900 0.784 0.838 0.984
25 0.988 0.948 0.914 0.931 0.996 0.978 0.912 0.821 0.864 0.987
30 0.990 0.953 0.923 0.938 0.997 0.980 0.921 0.839 0.878 0.989
35 0.991 0.957 0.930 0.943 0.998 0.982 0.925 0.850 0.886 0.990
40 0.991 0.960 0.934 0.947 0.998 0.982 0.928 0.856 0.891 0.991
45 0.992 0.962 0.937 0.949 0.998 0.983 0.932 0.862 0.896 0.992
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Figure 7. Experimental results and comparison. (a) Fault prediction effect on test data by CIPCA-BPNN. The “lower
bond” is the result of lower bond based classifier; “upper bond” is the result of upper bond based classifiers; “ensemble” is
the result of ensemble classifier. (b) Comparison of fault prediction effect on test data between PCA-BPNN and CIPCA-
BPNN. “CIPCA-BPNN” is the result of CIPCA-BPNN’s ensemble classifier. (c) Comparison of ROC(Receiver operating
characteristic) curves on test data between PCA-BPNN and CIPCA-BPNN. “CIPCA-BPNN” is the result of CIPCA-BPNN’s
ensemble classifier.

In practice, if the fault can be accurately predicted before the fault occurs, it can help
us avoid the fault or take measures to reduce the loss that the fault may cause. In order to
achieve this goal, we calculated the CIPCA-BPNN test set prediction results at different
times before the failure. Our experiment divided the flight data into 0.1 s intervals, but in
practice, it is difficult to respond effectively to a fault with only a 0.1 s warning. Therefore,
we summarized the prediction results within 1 s and observed the prediction effect of the
model. For example, by summarizing the prediction results from 29 s to 30 s before the
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fault occurs, we can know that the model can accurately predict the occurrence of the fault
at 29 s.

We can see from Figure 8 that CIPCA-BPNN can predict the occurrence of a fault
before it occurs. When modeling with 30 or more hidden neurons, we had two time
windows that could predict in advance and accurately when a fault would occur. The
first window was 16 s before the fault occurred. At this time, the accuracy, precision, and
recall of the model were all close to 1, indicating that if the result of the model is “fault”
at a particular time, there was a nearly 100% possibility of a fault 16 s later. But the first
time window was very short, only 1 s. The second window was 9 s to 7 s before the fault
occurred. In that window, we had 2 s to react to the fault that would occur. In addition,
between 28 s and 2 s before the fault, the recall of CIPCA-BPNN was above 90%, and the
accuracy was close to 1, so CIPCA-BPNN could fully predict the fault within 30 s before
the fault occurred.

Figure 8. Failure prediction effect at each moment before failure by CIPCA-BPNN.

6. Conclusions

In this paper, we introduce the concept of interval data into fault prediction. Based on
actual UAV flight data, a CIPCA-BPNN fault prediction model was established. CIPCA
can achieve sample compression and dimensionality reduction of flight data on the basis
of retaining the vast majority of data features and can reduce the data imbalance ratio
to a certain extent. It can greatly shorten the modeling time of a fault prediction model,
improving the modeling quality. By comparison, it has more advantages than the traditional
PCA method. The experimental results show that the prediction effect of CIPCA-BPNN was
better than the traditional PCA-BPNN model and could accurately predict the occurrence
of a fault 9 to 7 s before the fault occurred. In the future, the model can be loaded into
UAVs for practical application. The prediction results of the model can give the UVA
operator precious time to deal with the failure before it happens, which has a strong
practical significance.
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