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Abstract: Recently, several new metaheuristic schemes have been introduced in the literature. Al-
though all these approaches consider very different phenomena as metaphors, the search patterns
used to explore the search space are very similar. On the other hand, second-order systems are models
that present different temporal behaviors depending on the value of their parameters. Such temporal
behaviors can be conceived as search patterns with multiple behaviors and simple configurations.
In this paper, a set of new search patterns are introduced to explore the search space efficiently.
They emulate the response of a second-order system. The proposed set of search patterns have
been integrated as a complete search strategy, called Second-Order Algorithm (SOA), to obtain the
global solution of complex optimization problems. To analyze the performance of the proposed
scheme, it has been compared in a set of representative optimization problems, including multimodal,
unimodal, and hybrid benchmark formulations. Numerical results demonstrate that the proposed
SOA method exhibits remarkable performance in terms of accuracy and high convergence rates.

Keywords: metaheuristic methods; search patterns; second-order systems; evolutionary methods

1. Introduction

Metaheuristic algorithms refer to generic optimization schemes that emulate the oper-
ation of different natural or social processes. In metaheuristic approaches, the optimization
strategy is performed by a set of search agents. Each agent maintains a possible solution
to the optimization problem, and is initially produced by considering a random feasible
solution. An objective function determines the quality of the solution of each agent. By
using the values of the objective function, at each iteration, the position of the search agents
is modified, employing a set of search patterns that regulate their movements within the
search space. Such search patterns are abstract models inspired by natural or social pro-
cesses [1]. These steps are repeated until a stop criterion is reached. Metaheuristic schemes
have confirmed their supremacy in diverse real-world applications in circumstances where
classical methods cannot be adopted.

Essentially, a clear classification of metaheuristic methods does not exist. Despite this,
several categories have been proposed that considered different criteria, such as a source of
inspiration, type of operators or cooperation among the agents. In relation to inspiration,
nature-inspired metaheuristic algorithms are classified into three categories: Evolution-
based, swarm-based, and physics-based. Evolution-based approaches correspond to the
most consolidate search strategies that use evolution elements as operators to produce
search patterns. Consequently, operations, such as reproduction, mutation, recombination,
and selection are used to generate search patterns during their operations. The most
representative examples of evolution-based techniques, include Evolutionary Strategies
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(ES) [2–4], Genetic Algorithms (GA) [5], Differential Evolution (DE) [6] and Self-Adaptative
Differential Evolution (JADE) [7]. Swarm-inspired techniques use behavioral schemes
extracted from the collaborative interaction of different animals or species of insects to
produce a search strategy. Recently, a high number of swarm-based approaches have been
published in the literature. Among the most popular swarm-inspired approaches, include
the Crow Search Algorithm (CSA) [8], Artificial Bee Colony (ABC) [9], Particle Swarm Opti-
mization (PSO) algorithm [10–12], Firefly Algorithm (FA) [13,14], Cuckoo Search (CS) [15],
Bat Algorithm (BA) [16], Gray Wolf Optimizer (GWO) [17], Moth-flame optimization algo-
rithm (MFO) [18] to name a few. Metaheuristic algorithms that consider the physics-based
scheme use simplified physical models to produce search patterns for their agents. Some
examples of the most representative physics-based techniques involve the States of Matter
Search (SMS) [19,20], the Simulated Annealing (SA) algorithm [21–23], the Gravitational
Search Algorithm (GSA) [24], the Water Cycle Algorithm (WCA) [25], the Big Bang-Big
Crunch (BB-BC) [26] and Electromagnetism-like Mechanism (EM) [27]. Figure 1 visually
exhibits the taxonomy of the metaheuristic classification. Although all these approaches
consider very different phenomena as metaphors, the search patterns used to explore
the search space are exclusively based on spiral elements or attraction models [10–17,28].
Under such conditions, the design of many metaheuristic methods refers to configuring a
recycled search pattern that has been demonstrated to be successful in previous approaches
for generating new optimization schemes through a marginal modification.

Figure 1. Visual taxonomy of the nature-inspired metaheuristic schemes.

On the other hand, the order of a differential equation refers to the highest degree of
derivative considered in the model. Therefore, a model whose input-output formulation
is a second-order differential equation is known as a second-order system [29]. One of
the main elements that make a second-order model important is its ability to present very
different behaviors, depending on the configuration of its parameters. Through its different
behaviors, such as oscillatory, underdamped, or overdamped, a second-order system
can exhibit distinct temporal responses [30]. Such behaviors can be observed as search
trajectories under the perspective of metaheuristic schemes. Therefore, with second-order
systems, it is possible to produce oscillatory movements within a certain region or build
complex search patterns around different points or sections of the search space.

In this paper, a set of new search patterns are introduced to explore the search space
efficiently. They emulate the response of a second-order system. The proposed set of search
patterns have been integrated as a complete search strategy, called Second-Order Algorithm
(SOA), to obtain the global solution of complex optimization problems. To analyze the
performance of the proposed scheme, it has been compared in a set of representative opti-
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mization problems, including multimodal, unimodal, and hybrid benchmark formulations.
The competitive results demonstrate the promising results of the proposed search patterns.

The main contributions of this research can be stated as follows:

1. A new physics-based optimization algorithm, namely SOA, is introduced. It uses
search patterns obtained from the response of second-order systems.

2. New search patterns are proposed as an alternative to those known in the literature.
3. The statistical significance, convergence speed and exploitation-exploration ratio of

SOA are evaluated against other popular metaheuristic algorithms.
4. SOA outperforms other competitor algorithms on two sets of optimization problems.

The remainder of this paper is structured as follows: A brief introduction of the
second-order systems is given in Section 2; in Section 3, the most important search patterns
in metaheuristic methods are discussed; in Section 4, the proposed search patterns are
defined; in Section 5, the measurement of exploration-exploitation is described; in Section 6,
the proposed scheme is introduced; Section 7 presents the numerical results; in Section 8,
the main characteristics of the proposed approach are discussed; in Section 9, finally, the
conclusions are drawn.

2. Second-Order Systems

A model whose input R(s)-output C(s) formulation is a second-order closed-loop
transfer function is known as a second-order system. One of the main elements that make
a second-order model important is its ability to present very different behaviors depending
on the configuration of its parameters. A generic second-order model can be formulated
under the following expression [29],

C(s)
R(s)

=
ω2

n
s2 + 2ζωns + ω2

n
, (1)

where ζ and ωn represent the damping ratio and ωn the natural frequency, respectively,
while s symbolizes the Laplace domain.

The dynamic behavior of a system is evaluated in terms of the temporal response
obtained through a unitary step signal as input R(s). The dynamic behavior is defined
as the way in which the system reacts, trying to reach the value of one as time evolves.
The dynamic behavior of the second-order system is described in terms of ζ and ωn [30].
Assuming such parameters, the second-order system presents three different behaviors:
Underdamped (0 < ζ < 1), critically damped (ζ = 1), and overdamped (ζ > 1).

2.1. Underdamped Behavior (0 < ζ < 1)

In this behavior, the poles (roots of the denominator) of Equation (1) are complex
conjugated and located in the left-half of the s plane. Under such conditions, the system
underdamped response CU(s) in the Laplace domain can be characterized as follows:

CU(s) =
ω2

n

s(s + ζωn)
2 + ω2

n(1− ζ2)
. (2)

Applying partial fraction operations and the inverse Laplace transform, it is obtained
the temporal response that describe the underdamped behavior cU(t) as it is indicated in
Equation (3):

cU(t) = 1− e−ζωnt√
1− ζ2

sin

(
ωn

√
1− ζ2 + tan−1

(√
1− ζ2

ζ

))
. (3)

If ζ = 0, a special case is presented in which the temporal system response is oscillatory.
The output of these behaviors is visualized in Figure 2 for the cases of ζ = 0, ζ = 0.2,
ζ = 0.5 and ζ = 0.707. Under the underdamped behavior, the system response starts with
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high acceleration. Therefore, the response produces an overshoot that surpasses the value
of one. The size of the overshoot inversely depends on the value of ζ.

Figure 2. Temporal responses of second-order system considering its different behaviors: Under-
damped (0 < ζ < 1), critically damped (ζ = 1), and overdamped (ζ > 1).

2.2. Critically Damped Behavior (ζ = 1)

Under this behavior, the two poles of the transfer function of Equation (1) present a
real number and maintain the same value. Therefore, the response of the critically damped
behavior CC(s) in the Laplace domain can be described as follows:

CC(s) =
ω2

n

s(s + ωn)
2 . (4)

Considering the inverse Laplace transform of Equation (4), the temporal response of
the critically damped behavior cC(t) is determined under the following model:

cC(t) = 1− e−ωnt(1 + ωnt). (5)

Under the critically damped behavior, the system response presents a temporal pattern
similar to a first-order system. It reaches the objective value of one without experimenting
with an overshoot. The output of the critically damped behavior is visualized in Figure 2.

2.3. Overdamped Behavior (ζ > 1)

In the overdamped case, the two poles of a transfer function of Equation (1) have real
numbers but with different values. Its response CO(s) in the Laplace domain is modeled
under the following formulation:

CO(s) =
ω2

n

s
(

s + ζωn + ωn
√

ζ2 − 1
)(

s + ζωn −ωn
√

ζ2 − 1
) . (6)

After applying the inverse Laplace transform, it is obtained the temporal response of
the overdamped behavior cO(t) defined as follows:

cO(t) = 1 + e−(ζ−
√

ζ2−1)ωnt. (7)

Under the Overdamped behavior, the system slowly reacts until reaching the value of
one. The deceleration of the response depends on the value of ζ. The greater the value of ζ,
the slower the response will be. The output of this behavior is visualized in Figure 2 for the
case of ζ = 1.67.
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3. Search Patterns in Metaheuristics

The generation of efficient search patterns for the correct exploration of a fitness
landscape could be complicated, particularly in the presence of ruggedness and multiple
local optima. Recently, several new metaheuristic schemes have been introduced in the
literature. Although all these approaches consider very different phenomena as metaphors,
the search patterns, used to explore the search space, are very similar. A search pattern is a
set of movements produced by a rule or model in order to examine promising solutions
from the search space.

Exploration and exploitation correspond to the most important characteristics of a
search pattern. Exploration refers to the ability of a search pattern to examine a set of
solutions spread in distinct areas of the search space. On the other hand, exploitation
represents the capacity of a search pattern to improve the accuracy of the existent solutions
through a local examination. The combination of both mechanisms in a search pattern is
crucial for attaining success when solving a particular optimization problem.

To solve the optimization formulation, from a metaheuristic point of view, a popu-
lation of Pk

({
xk

1, . . . , xk
N

})
of N candidate solutions (individuals) evolve from an initial

point (k = 1) to a Maxgen number of generations (k = Maxgen). In the population, each in-
dividual xk

i (i ∈ [1, . . . , N]) corresponds to a d-dimensional element
{

xk
i,1, . . . , xk

i,d

}
, which

symbolizes the decision variables involved by the optimization problem. At each genera-
tion, search patterns are applied over the individuals of the population Pk to produce the
new population Pk+1. The quality of each individual xk

i is evaluated in terms of its solution

regarding the objective function J
(

xk
i

)
whose result represents the fitness value of xk

i . As
the metaheuristic method evolves, the best current individual b {b1, . . . , bd} is maintained
since b represents the best available solution seen so-far.

In general, a search pattern is applied to each individual xk
i using the best element b

as a reference. Then, following a particular model, a set of movements are produced to
modify the position of xk

i until the location of b has been reached. The idea behind this
mechanism is to examine solutions in the trajectory from xk

i to b with the objective to find a
better solution than the current b. Search patterns differ in the model employed to produce
the trajectories xk

i from to b.
Two of the most popular search models are attraction and spiral trajectories. The

attraction model generates attraction movements from xk
i to b. The attraction model is

used extensively by several metaheuristic methods such as PSO [10–12], FA [13,14], CS [15],
BA [16], GSA [24], EM [27] and DE [6]. On the other hand, the spiral model produces a
spiral trajectory that encircles the best element b. The spiral model is employed by the
recently published WOA and GWO schemes. Trajectories produced by the attraction, and
spiral models are visualized in Figure 3a,b, respectively.
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Figure 3. Trajectories produced by, (a) attraction, and (b) spiral models.

4. Proposed Search Patterns

In this paper, a set of new search patterns are introduced to explore the search space
efficiently. They emulate the response of a second-order system. The proposed set of
search patterns have been integrated as a complete search strategy to obtain the global
solution of complex optimization problems. Since the proposed scheme is based on the
response of the second-order systems, it can be considered as a physics-based algorithm.
In our approach, the temporal response of second-order system is used to generate the
trajectory from the position of xk

i =
{

xk
i,1, . . . , xk

i,d

}
to the location of b = {b1, . . . , bd}. With

the use of such models, it is possible to produce more complex trajectories that allow
a better examination of the search space. Under such conditions, we consider the three
different responses of a second-order system to produce three distinct search patterns. They
are the underdamped, critically damped and overdamped modeled by the expressions
Equations (8)–(10), respectively:

xk
i,j =

(
1− e−ζωnk√

1− ζ2
sin

(
ωn

√
1− ζ2 + tan−1

(√
1− ζ2

ζ

)))(
bj − xk

i,j

)
; (8)

xk
i,j =

(
1− e−ωnk(1 + ωnk)

)(
bj − xk

i,j

)
; (9)

xk
i,j =

(
1 + e−(ζ−

√
ζ2−1)ωnk

)(
bj − xk

i,j

)
; (10)

where i (∈ [1, N]) corresponds to the search agent while j (∈ [1, d]) symbolizes the decision
variable or dimension. Since the behavior of each search pattern depends on the value
of ζ, it is easy to combine elements to produce interesting trajectories. Figure 4 presents
some examples of trajectories produced by using different values for ζ. In the Figure, it
is assumed a two-dimensional case (d = 2) where the initial position of the search agent
xk

i is (0.5, 0.5) and the final location or the best location (1, 1). Figure 4a presents the
case of xk

i,1 ← ζ = 0 and xk
i,2 ← ζ = 1 . Figure 4b presents the case of xk

i,1 ← ζ = 0.1 and
xk

i,2 ← ζ = 0.5 . Figure 4c presents the case of xk
i,1 ← ζ = 1 and xk

i,2 ← ζ = 1.67 . Finally,
Figure 4d presents the case of xk

i,1 ← ζ = 0.5 and xk
i,2 ← ζ = 1 . From the figures, it is

clear that the second-order responses allow producing several complex trajectories, which
include most of the other search patterns known in the literature. In all cases (a)–(d), the
value of ωn has been set to 1.
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Figure 4. Some examples of trajectories produced by using different values for ζ. (a) xk
i,1 ← ζ = 0 and xk

i,2 ← ζ = 1 ,
(b) xk

i,1 ← ζ = 0.1 and xk
i,2 ← ζ = 0.5 , (c) xk

i,1 ← ζ = 1 and xk
i,2 ← ζ = 1.67 and (d) xk

i,1 ← ζ = 0.5 and xk
i,2 ← ζ = 1 .

5. Balance of Exploration and Exploitation

Metaheuristic methods employ a set of search agents to examine the search space
with the objective to identify a satisfactory solution for an optimization formulation. In
metaheuristic schemes, search agents that present the best fitness values tend to regulate
the search process, producing an attraction towards them. Under such conditions, as the
optimization process evolves, the distance among individuals diminishes while the effect
of exploitation is highlighted. On the other hand, when the distance among individuals
increases, the characteristics of the exploration process are more evident.

To compute the relative distance among individuals (increase and decrease), a diversity
indicator known as the dimension-wise diversity index [31] is used. Under this approach,
the diversity is formulated as follows,

Divj =
1
N

N

∑
i=1

∣∣∣median
(

xj
)
− xi,j

∣∣∣Div =
1
d

d

∑
j=1

Divj (11)

where median
(

xj) symbolizes the median of dimension j of all search agents. xi,j represents
the variable decision j of the individual i. N is the number of individuals in the population
Pk while d corresponds to the number of dimensions of the optimization formulation.
The diversity Divj (of the j-th dimension) evaluates the relative distance between the
variable j of each individual and its median value. The complete diversity Div (of the
entire population) corresponds to the averaged diversity in each dimension. Both elements
Divj and Div are calculated in every iteration.

Having evaluated the diversity values, the level of exploration and exploitation can
be computed as the percentage of the time that a search strategy invests exploring or
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exploiting in terms of its diversity values. These percentages are calculated in each iteration
by means of the following models,

XPL% =

(
Div

Divmax

)
× 100XPT% =

(
|Div− Divmax|

Divmax

)
× 100 (12)

where Divmax symbolizes the maximum diversity value obtained during the optimization
process. The percentage of exploration XPL% corresponds to the size of exploration as
the rate between Div and Divmax. On the other hand, the percentage of exploitation
XPT% symbolizes the level of exploitation. XPT% is computed as the complemental
percentage to XPL% since the difference between Divmax and Div is generated because of
the concentration of individuals.

6. Proposed Metaheuristic Algorithm

The set of search patterns based on the second-order systems have been integrated as
a complete search strategy to obtain the global solution of complex optimization problems.
In this section, the complete metaheuristic method, called Second-Order Algorithm (SOA),
is completely described.

The scheme considers four different stages: (A) Initialization, (B) trajectory generation,
(C) reset of bad elements, and (D) avoid premature convergence mechanism. The steps
(B)–(D) are sequentially executed until a stop criterion has been reached. Figure 5 shows
the flowchart of the complete metaheuristic method.

Figure 5. Flowchart of the proposed metaheuristic method based on the response of second-order
systems.

6.1. Initialization

In the first iteration k = 0, a population P0 of N agents
{

x0
1, . . . , x0

N
}

is randomly
produced considering to the following equation,

x0
i,j = rand·

(
bhigh

j − blow
j

)
+ blow

j i = 1, 2, . . . , N; j = 1, . . . , d (13)
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where bhigh
j and blow

j are the limits of the j decision variable and rand is a uniformly
distributed random number between [0,1].

To each individual xi from the population, it is assigned a vector ζi =
{

ζi,1, . . . , ζi,d
}

whose elements ζi,j determine the trajectory behavior of each j-th dimension. Initially, each
element ζi,j is set to a random value between [0,2]. Under this interval, all the second-
order behavior are possible: Underdamped (0 < ζ < 1), critically damped (ζ = 1), and
overdamped (ζ > 1).

6.2. Trajectory Generation

Once the population has been initialized, it is obtained the best element of the popula-
tion b. Then, the new position xk+1

i of each agent xk
i is computed as a trajectory generated

by a second-order system. Once all new positions in the population Pk are determined, it is
also defined the best element b.

6.3. Reset of Bad Elements

To each agent xk
i is allowed to move in its own trajectory for ten iterations. After ten

iterations, if the search agent xk
i maintains the worst performance in terms of the fitness

function, it is reinitialized in both position and in its vector ζi. Under such conditions, the
search agent will be in another position and with the ability to perform another kind of
trajectory behavior.

6.4. Avoid Premature Convergence Mechanism

If the percentage of exploration XPL% is less than 5%, the best value b is replaced by
the best virtual value bv. The element bv is computed as the averaged value of the best
five individuals of the population. The idea behind this mechanism is to identify a new
position to generate different trajectories that avoid that the search process gets trapped in
a local optimum.

7. Experimental Results

To evaluate the results of the proposed SOA algorithm, a set of experiments has been
conducted. Such results have been compared to those produced by the Artificial Bee
Colony (ABC) [9], the Covariance matrix adaptation evolution strategy (CMAES) [4], the
Crow Search Algorithm (CSA) [8], the Differential Evolution (DE) [6], the Moth-flame
optimization algorithm (MFO) [18] and the Particle Swarm Optimization (PSO) [10], which
are considered the most popular metaheuristic schemes in many optimization studies [32].

For the comparison, all methods have been set according to their reported guidelines.
Such configurations are described as follows:

• ABC: Onlooker Bees = 50, acceleration coefficient = 1 [9].
• DE: crossover probability = 0.2, Betha = 1 [6].
• CMAES: Lambda = 50, father number = 25, sigma = 60, csigma = 0.32586, dsigma =

1.32586 [4].
• CSA: Flock = 50, awareness probability = 0.1, flight length = 2 [8].
• MFO: search agents = 50, “a” linearly decreases from 2 to 0 [18].
• SOA: the experimental results give the best algorithm performance with the next

parameter set par1 = 0.7, par2 = 0.3 and par3 = 0.05.

In our analysis, the population size N has been set to 50 search agents. The maximum
iteration number (Maxgen) for all functions has been set to 1000. This stop criterion has
been decided to keep compatibility with similar works published in the literature [33,34].
To evaluate the results, three different indicators are considered: The Average Best-so-far
(AB) solution, the Median Best-so-far (MB) solution and the Standard Deviation (SD) of
the best-so-far solutions. In the analysis, each optimization problem is solved using every
algorithm 30 times. From this operation, 30 results are produced. From all these values, the
mean value of all best-found solutions represents the Average Best-so-far (AB) solution.
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Likewise, the median of all 30 results is computed to generate MB and the standard
deviation of the 30 data is estimated to obtain SD of the best-so-far solutions. Indicators
AB and MB correspond to the accuracy of the solutions, while SD their dispersion, and
thus, the robustness of the algorithm.

The experimental section is divided into five sub-sections. In the first Section 7.1, the
performance of SOA is evaluated with regard to multimodal functions. In the second Sec-
tion 7.2, the results of the OTSA method in comparison with other similar approaches are an-
alyzed in terms of unimodal functions. In the third Section 7.3, a comparative study among
the algorithms examining hybrid functions is accomplished. In the fourth Section 7.4,
the ability of all algorithms to converge is analyzed. Finally, in the fifth Section 7.5, the
performance of the SOA method to solve the CEC 2017 set of functions is also analyzed.

7.1. Multimodal Functions

In this sub-section, the SOA approach is evaluated considering 12 unimodal func-
tions ( f1(x)– f12(x)) reported in Table 1 from Appendix A. Multimodal functions present
optimization surfaces that involve multiple local optima. For this reason, these function
presents more complications in their solution. In this analysis, the performance of the SOA
method is examined in comparison with ABC, CMAES, CSA, DE, MFO and PSO in terms
of the multimodal functions. Multimodal objective functions correspond to functions from
f1(x) to f12(x) in Table 1 from the Appendix A, where the set of local minima augments
as the dimension of the function also increases. Therefore, the study exhibits the capacity
of each metaheuristic scheme to identify the global optimum when the function contains
several local optima. In the experiments, it is assumed objective functions operating in
30 dimensions (n = 30). The averaged best (AB) results considering 30 independent exe-
cutions are exhibit in Table 1. It also reports the median values (MD) and the standard
deviations (SD).

Table 1. Minimization results of multimodal benchmark functions.

ABC DE CMAES CSA PSO MFO SOA

AB 8.9132622 0.7932535 2.8976 × 10−19 55.918504 0.2012803 27.983271 0.1119774
f1(x) MD 8.4392750 0.7993166 2.4779 × 10−19 57.038263 4.1459 × 10−23 25.365199 1.0714 × 10−10

SD 2.6748059 0.1378538 1.5343 × 10−19 6.2032578 1.1022968 12.283254 0.2272439

AB 2 2 2 1,897,783.3 27.4 2 2
f2(x) MD 2 2 2 35,691.155 2 2 2

SD 9.9512 × 10−12 0 0 9,636,632.1 113.43495 0 0

AB 2 2 2 3,620,834.4 34.723128 2 2
f3(x) MD 2 2 2 676,981.46 9 2 2

SD 2.3308 × 10−11 0 0 7,265,352.7 113.36672 0 0

AB 0.1371551 0.002 1.7942 × 10−6 0.0862919 2.2285 × 10−8 5.5194 × 10−10 1.164 × 10−11

f4(x) MD 0.1349076 0.01 0 0.0892256 0 0 7.7118 × 10−12

SD 0.0399861 0.123 5.4833 × 10−6 0.0213332 1.2206 × 10−7 3.0231 × 10−9 1.0995 × 10−11

AB 13,781,291 1,331,987.7 22,307.195 44,274,761 82.539625 85.756149 71.964984
f5(x) MD 13,876,263 1,365,502.1 72.377516 46,153,728 81.698488 85.665615 72.362277

SD 3,237,147.7 306,385.34 50,923.637 10,118,180 7.1916726 3.2857088 0.9929591

AB 1.152 × 1085 5.850 × 1081 1.812 × 1083 6.429 × 1083 1.397 × 1081 3.0883 × 1081 1.0051 × 1081

f6(x) MD 4.622 × 1084 3.405 × 1081 7.928 × 1082 2.939 × 1083 5.977 × 1080 7.9607 × 1080 4.901 × 1080

SD 1.685 × 1085 7.33 × 1081 3.047 × 1083 7.551 × 1083 2.197 × 1081 5.6651 × 1081 1.9457 × 1081

AB 30.033333 30 30 58.766666 30 33.633333 30
f7(x) MD 30 30 30 59 30 30 30

SD 0.18257419 0 0 1.77498583 0 5.4550409 0

AB 9.2 8.0666666 1.0666666 19,543.266 0.0333333 2000.0333 0
f8(x) MD 9 8 0 19,797 0 0 0

SD 2.5784250 1.9464084 3.1941037 2077.7459 0.1825741 4842.3277 0

AB −745.05202 −1125.4815 −1127.8626 −725.09353 −1071.7869 −1031.2617 −1146.3478
f9(x) MD −743.4462 −1174.9722 −1132.5748 −719.10777 −1068.9596 −1033.6178 −1145.2467

SD 25.137593 78.706 25.809999 25.815652 34.055847 34.244188 10.928362
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Table 1. Cont.

ABC DE CMAES CSA PSO MFO SOA

AB 110,282.54 665,278.86 −4930 1,170,939.0 45,556.260 222,833.73 −501.79356
f10(x) MD 96,461.061 673,449.49 −4930 1,126,234.2 5076.8152 71,582.051 −332.82466

SD 44,933.417 129,147.27 3.7318 × 10−9 159,175.64 75,990.880 305,159.37 663.92006

AB −18.26109 −26.056561 −29.6576 −16.504756 −28.367666 −28.863589 −30
f11(x) MD −18.131984 −26.092349 −29.9286 −16.183447 −28.14029 −29.070145 −30

SD 1.6366873 0.5428906 0.466 1.16917142 1.5408536 1.2837415 0

AB 1502.3129 369.60375 786.36819 519.17242 196.95838 261.52332 11.905761
f12(x) MD 1457.6865 368.82916 778.72369 465.93238 213.00730 252.76747 0.3841574

SD 420.70611 35.389136 215.93893 228.69860 86.542862 106.52353 29.544101

According to Table 1, the proposed SOA scheme obtain a better performance than
ABC, CMAES, CSA, DE, MFO and PSO in functions f1(x), f4(x), f5(x), f6(x), f8(x), f9(x),
f10(x), f11(x) and f12(x). Nevertheless, the results of SOA exhibit similar as the obtained
by DE, CMAES and MFO in functions f2(x), f3(x) and f7(x).

To statistically validate the conclusions from Table 1, a non-parametric study is con-
sidered. In this test, the Wilcoxon rank-sum analysis [35] is adopted with the objective
to validate the performance results. This statistical test evaluates if exists a significant
difference when two methods are compared. For this reason, the analysis is performed
considering a pairwise comparison such as SOA versus ABC, SOA versus CMAES, SOA
versus CSA, SOA versus DE, SOA versus MFO and SOA versus PSO. In the Wilcoxon
analysis, a null hypothesis (H0) was adopted that showed that there is no significant differ-
ence in the results. On the other hand, it is assumed as an alternative hypothesis (H1) that
the result has a similar structure. For the Wilcoxon analysis, it is assumed a significance
value of 0.05 considering 30 independent execution for each test function. Table 2 shows
the p-values assuming the results of Table 2 (where n = 30) produced by the Wilcoxon
study. For faster visualization, in the Table, we use the following symbols N H, and I.
The symbol N refers that the SOA algorithm produces significantly better solutions than
its competitor. H symbolizes that SOA obtains worse results than its counterpart. Finally,
the symbol I denotes that both compared methods produce similar solutions. A close
inspection of Table 2 demonstrates that for functions f1, f4, f5, f6, f8, f9, f10, f11 and f12 the
proposed SOA scheme obtain better solutions than the other methods. On the other hand,
for functions f2, f2 and f7, it is clear that the groups SOA versus ABC, SOA versus CMAES,
SOA versus DE and SOA versus MFO and EA-HC versus SCA present similar solutions.

Table 2. Wilcoxon analysis for multimodal benchmark functions.

SOA SOA SOA SOA SOA SOA
Function vs. vs. vs. vs. vs. vs.

ABC CMAES CSA DE MFO PSO

f1(x) 7.13 × 10−9N 2.61 × 10−8N 2.40 × 10−11N 9.77 × 10−7N 3.97 × 10−11N 6.87 × 10−8N
f2(x) 1.21 × 10−12I 1I 1.21 × 10−12N 1I 1I 4.13 × 10−9N
f3(x) 1.21 × 10−12I 1I 1.21 × 10−12N 1I 1I 8.33 × 10−7N
f4(x) 6.48 × 10−12N 2.43 × 10−8N 6.48 × 10−12N 1.10 × 10−7N 1.18 × 10−7N 5.79 × 10−8N
f5(x) 3.02 × 10−11N 2.18 × 10−6N 3.02 × 10−11N 3.02 × 10−11N 8.30 × 10−1N 9.94 × 10−8N
f6(x) 3.69 × 10−11N 1.29 × 10−9N 2.87 × 10−10N 6.73 × 10−8N 1.75 × 10−5N 9.52 × 10−4N
f7(x) 3.34 × 10−1I 1I 1.57 × 10−12N 3.34 × 10−1I 2.23 × 10−5N 3.34 × 10−7N
f8(x) 3.96 × 10−6N 1.10 × 10−7N 7.87 × 10−12N 3.28 × 10−6N 2.45 × 10−1N 5.58 × 10−7N
f9(x) 2.97 × 10−11N 5.75 × 10−8N 2.97 × 10−11N 7.72 × 10−8N 4.20 × 10−4N 1.83 × 10−5N
f10(x) 3.02 × 10−11N 2.85 × 10−11N 3.02 × 10−11N 3.02 × 10−11N 2.57 × 10−7N 1.86 × 10−3N
f11(x) 2.80 × 10−11N 1.12 × 10−07I 2.80 × 10−11N 3.00 × 10−11N 8.88 × 10−1I 8.86 × 10−6N
f12(x) 3.02 × 10−11N 3.02 × 10−11N 3.02 × 10−11N 3.02 × 10−11N 1.78 × 10−10N 9.76 × 10−10N
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7.2. Unimodal Functions

In this subsection, the performance of SOA is compared with ABC, DE, DE, CMAES
CSA and MFO, considering four unimodal functions with only one optimum. Such
functions are represented by functions from f13(x) to f16(x) in Table 1. In the test, all
functions are considered in 30 dimensions (d = 30). The experimental results, obtained
from 30 independent executions, are presented in Table 3. They report the results in terms
of AB, MB and SD obtained in the executions. According to Table 3, the SOA approach
provides better performance than ABC, DE, DE, CMAES CSA and MFO for all functions. In
general, this study demonstrates big differences in performance among the metaheuristic
scheme, which is directly related to a better trade-off between exploration and exploitation
produced by the trajectories of the SOA scheme. Considering the information from Table 3,
Table 4 reports the results of the Wilcoxon analysis. An inspection of the p-values from
Table 4, it is clear that the proposed SOA method presents a superior performance than
each metaheuristic algorithm considered in the experimental study.

Table 3. Minimization results of unimodal benchmark functions.

ABC DE CMAES CSA PSO MFO SOA

AB 25.648891 23.234006 0.0382940 117,864.48 2433.8148 16,893.538 4.416 × 10−16

f13(x) MD 26.054364 22.218747 1.503 × 10−23 120,885.37 5.9145 × 10−10 10,737.418 4.1862 × 10−16

SD 8.3305663 5.5158397 0.1428856 14,742.855 4322.0341 19,501.276 2.4373 × 10−16

AB 0.0136600 0.0145526 1.2398 × 10−5 51.476735 4.0467 × 10−13 7.8643202 1.5 × 10−20

f14(x) MD 0.0144199 0.0144921 1.3237 × 10−20 51.798031 7.5065 × 10−14 2.8398 × 10−7 1.3059 × 10−20

SD 0.0041468 0.0037530 3.908 × 10−5 5.9378289 7.8227 × 10−13 14.024260 9.6811 × 10−21

AB 0.5442777 0.569612 19.789197 2466.2017 20 403.33365 1.2053 × 10−18

f15(x) MD 0.4952416 0.5733913 0.2257190 2478.7246 8.9126 × 10−12 200.00000 1.025 × 10−18

SD 0.1986349 0.1376955 39.959487 344.56578 66.436383 520.92974 6.4946 × 10−19

AB 0.0006647 1.8659 × 10−10 6.9743 × 10−10 0.0068342 5.6588 × 10−24 9.5555 × 10−19 0
f16(x) MD 0.0004306 1.2946 × 10−10 7.1112 × 10−10 0.0066858 3.6687 × 10−29 2.8339 × 10−22 0

SD 0.0006187 1.8814 × 10−10 4.3714 × 10−10 0.0032037 3.0973 × 10−23 3.3608 × 10−18 0

Table 4. Wilcoxon analysis for unimodal benchmark functions.

SOA SOA SOA SOA SOA SOA
Function vs. vs. vs. vs. vs. vs.

ABC CMAES CSA DE MFO PSO

f13(x) 2.80 × 10−11N 3.86 × 10−1N 2.80 × 10−11N 2.80 × 10−11N 1.75 × 10−9N 1.22 × 10−4N
f14(x) 5.51 × 10−9N 2.11 × 10−1N 2.72 × 10−11N 3.22 × 10−9N 1.07 × 10−4N 1.74 × 10−2H
f15(x) 1.58 × 10−1N 3.02 × 10−11N 3.02 × 10−11N 1.81 × 10−1N 5.26 × 10−4N 3.11 × 10−1N
f16(x) 1.21 × 10−12N 1.21 × 10−12N 1.21 × 10−12N 1.21 × 10−12N 1.21 × 10−12N 1.21 × 10−12N

7.3. Hybrid Functions

In this study, hybrid functions are used to evaluate the optimization solutions of
the SOA scheme. Hybrid functions refer to multimodal optimization problems produced
by the combination of several multimodal functions. These functions correspond to the
formulations from f17(x) to f20(x), which are shown in Table 1 in Appendix A. In the
experiments, the performance of our proposed SOA approach has been compared with
other metaheuristic schemes.

The simulation results are reported in Table 5. It exhibits the performance of each
algorithm in terms of AB, MB and SD. From Table 5, it can be observed that the SOA
method presents a superior performance than the other techniques in all functions. Table 6
reports the results of the Wilcoxon analysis assuming the index of the Average Best-so-far
(AB) values of Table 5. Since all elements present the symbol N, they validate that the
proposed SOA method produces better results than the other methods. The remarkable
performance of the proposed SOA scheme for hybrid functions is attributed to a better
balance between exploration and exploitation of its operators provoked by the properties
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of the second system trajectories. This denotes that the SOA approach generates an
appropriate number of promising search agents that allow an adequate exploration of
the search space. On the other hand, a balanced number of candidate solutions is also
produced that make it possible to improve the quality of the already-detected solutions, in
terms of the objective function.

Table 5. Minimization results of hybrid benchmark functions.

ABC DE CMAES CSA PSO MFO SOA

AB 396.75458 7.7178366 3.1526 × 10−9 20,330.245 334.63082 23,758.790 0.8147792
f17(x) MD 210.31173 7.7772734 2.7959 × 10−9 19,814.613 6.9181 × 10−7 20,077.849 4.3564 × 10−11

SD 497.02847 1.3190384 1.1535 × 10−9 2074.4742 1832.8485 18,166.603 2.5336865

AB 212.40266 75.917033 105.99474 731.38151 65.728942 161.36081 30.785661
f18(x) MD 212.09269 75.575979 31.783896 741.08639 65.904649 116.86683 28.998449

SD 25.805145 10.604761 84.809720 68.759154 14.502755 107.40820 3.5251022

AB 221,724.73 1264.0862 57.570417 70,494,770 87.951413 80.887783 31.999808
f19(x) MD 200,128.19 1278.1579 32.661016 65,110,859 84.267959 78.040599 31.999808

SD 114,341.27 268.82145 54.602147 23,890,494 25.256576 23.169503 6.4582 × 10−10

AB 319.57592 49.741282 97.542580 867.75158 122.92508 802.21444 30.307556
f20(x) MD 299.50312 49.708103 29.002196 879.05543 65.254961 685.34608 29

SD 64.709010 4.4720540 93.393879 103.61875 127.74698 500.43174 4.0252793

Table 6. Wilcoxon analysis for hybrid benchmark functions.

SOA SOA SOA SOA SOA SOA
Function vs. vs. vs. vs. vs. vs.

ABC CMAES CSA DE MFO PSO

f17(x) 4.35 × 10−11N 6.63 × 10−5N 2.92 × 10−11N 8.16 × 10−8N 5.40 × 10−10N 6.55 × 10−2N
f18(x) 1.16 × 10−7N 7.28 × 10−4N 3.02 × 10−11N 6.63 × 10−7N 2.01 × 10−1N 5.20 × 10−6N
f19(x) 3.02 × 10−11N 3.02 × 10−11N 3.02 × 10−11N 3.02 × 10−11N 1.17 × 10−4N 4.94 × 10−5N
f20(x) 4.91 × 10−11N 2.71 × 10−5N 2.98 × 10−11N 6.73 × 10−5N 5.43 × 10−11N 8.11 × 10−5N

7.4. Convergence Analysis

The evaluation of accuracy in the final solution cannot completely assess the abilities of
an optimization algorithm. On the other hand, the convergence of a metaheuristic scheme
represents an important property to assess its performance. This analysis determined the
velocity, which determined metaheuristic scheme reaches the optimum solution. In this
subsection, a convergence study has been carried out. In the comparisons, for the sake
of space, the performance of the best four metaheuristic schemes is considered adopting
a representative set of six functions (two multimodal, two unimodal and two hybrids),
operated in 30 dimensions. To generate the convergence graphs, the raw simulation data
produced in the different experiments was processed. Since each simulation is executed 30
times for each metaheuristic method, the convergence data of the execution corresponds to
the median result. Figures 6–8 show the convergence graphs for the four best-performing
metaheuristic methods. A close inspection of Figure 6 demonstrates that the proposed SOA
scheme presents a better convergence than the other algorithms for all functions.
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Figure 6. Convergence graphs in two representative multimodal-functions.

Figure 7. Convergence graphs in two representative unimodal functions.

Figure 8. Convergence graphs in two representative hybrid functions.

7.5. Performance Evaluation with CEC 2017

In this sub-section, the performance of the SOA method to solve the CEC 2017 set of
functions is also analyzed. The set of functions from the CEC2017 [36] represents one the
most elaborated platform for benchmarking and comparing search strategies for numerical
optimization. The CEC2017 benchmarks correspond to a test environment of 30 different
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functions with distinct features. They will be identified from F1(x) to F30(x). Most of these
functions are similar to those exhibited in Appendix A, but with different translations
and/or rotations effects. The average obtained results, corresponding to 30 independent
executions, are re-registered in Table 7. The results are reported in terms of the performance
indexes: Average Best fitness (AB), Median Best fitness (MB), and the standard deviation
of the best finesses (SD).

Table 7. Optimization results from benchmark functions of CEC2017.

ABC CMAES CSA DE MFO PSO SOA

AB 31,543,508.93 16,816,680,165 62,350,211,795 92,576,614.71 9,869,100,268 5,754,474,631 389,770,985.4
F1(x) MD 31,272,497.07 10,317,001,637 62,180,271,044 90,540,094.66 8,120,831,786 5,716,932,117 348,397,609.3

SD 11,711,445.55 18,287,769,833 6,701,490,748 19,876,885.3 6,276,129,768 3,760,493,838 175,590,731.3

AB 4.9441 × 1032 1.9584 × 1042 9.584 × 1043 4.6409 × 1032 1.32094 × 1037 1.8354 × 1043 2.4753 × 1019

F2(x) MD 8.92 × 1031 7.2683 × 1041 5.1378 × 1042 9.165 × 1031 5.8224 × 1031 1.5174 × 1031 4.8076 × 1017

SD 8.1141 × 1032 3.0961 × 1042 2.7242 × 1044 9.8904 × 1032 5.35797 × 1037 1.0053 × 1044 1.2579 × 1020

AB 143,585.796 206,258.738 105,227.778 184,983.575 141,570.4456 79,667.257 50,153.7766
F3(x) MD 143,614.585 201,904.141 104,066.094 187,839.624 132,229.1115 69,068.2299 47,032.1654

SD 17,888.2525 52,000.2984 14,953.9048 27,184.1578 57,378.84773 39,077.8042 20,560.6136

AB 558.75833 3855.6622 16,385.5764 558.09385 1026.441012 937.069787 547.952065
F4(x) MD 562.142677 3566.57161 16,520.3929 556.117066 856.5465617 890.326594 544.342148

SD 20.2914617 1429.47447 3040.62335 23.4459834 629.655489 361.015317 20.9881356

AB 730.381143 825.655628 951.170114 721.540918 692.7089629 629.566432 631.994737
F5(x) MD 732.333214 847.872393 951.759754 720.602523 694.7441044 634.793518 630.746916

SD 12.7345432 66.2497783 22.7361791 9.29337642 42.18671231 29.110803 26.6185453

AB 603.83984 669.750895 691.817816 604.901193 632.8602211 612.05324 609.329809
F6(x) MD 603.786524 668.724864 691.322797 604.969262 632.4713596 611.116445 608.748467

SD 0.60630828 9.3375723 6.33324596 0.550883 8.875276889 5.83130625 2.23326029

AB 977.074304 889.858004 1868.59237 983.896545 1085.414574 850.625181 933.44086
F7(x) MD 977.307172 899.416046 1847.81046 988.619865 1067.152488 837.191947 939.402368

SD 13.674818 39.0420544 125.687304 17.0217457 139.9764841 43.9666771 25.6723087

AB 1033.74747 1047.6713 1181.82055 1023.57155 991.3574401 914.911462 920.212894
F8(x) MD 1035.62163 1026.79246 1181.41759 1023.90313 992.7702619 916.328125 921.260403

SD 13.5776161 86.6169315 29.0041369 12.1336359 43.34646427 24.9852693 21.5473475

AB 1926.96476 900 15,096.7081 6434.26285 6487.6152 2436.07714 3251.16746
F9(x) MD 1839.55339 900 15,358.9047 6327.72188 5976.801998 2313.97194 2702.63581

SD 333.208904 0 1637.81695 887.500363 2250.718589 920.338184 1462.45439

AB 8559.09425 8026.51416 8695.92279 7235.23129 5260.902021 5136.84827 4524.56624
F10(x) MD 8598.36183 7995.60926 8710.13364 7246.56367 5291.679788 4941.91541 4512.99611

SD 327.683849 246.346496 312.712801 234.084094 711.3287215 845.232077 357.978315

AB 1594.97778 19,382.0122 7888.11046 1813.68615 4011.754904 1465.88225 1248.42954
F11(x) MD 1594.04404 18,978.0433 7566.7015 1774.91924 2427.207284 1465.34072 1247.83322

SD 90.044155 9762.53738 2030.84932 246.845029 3525.449844 125.920596 32.5337336

AB 22,035,530.6 4,281,754,760 8,661,838,227 92,723,516.6 91,292,958.57 354,557,569 4,401,381.17
F12(x) MD 20,991,516.3 4,358,279,185 8,610,836,607 93,208,101.7 23,663,273.6 246,467,712 3,700,514.39

SD 7,163,344.91 1,489,535,737 2,020,262,530 18,696,916.2 134,545,916.4 411,606,206 3,405,855.44

AB 19,266.9698 3,652,661,382 6,874,450,894 3,979,238.98 38,881,437.05 111,741,897 26,817.0052
F13(x) MD 18,527.1646 3,905,472,944 7,021,073,065 3,726,551.68 186,879.0885 4,517,059.75 16,966.594

SD 9421.82494 1,271,069,390 2,248,014,249 1659,861.04 193,180,811.6 371,472,002 23,502.6252

AB 131,154.772 6,816,811.85 2,093,007.76 270,517.596 369,042.9999 333,813.274 38,907.1977
F14(x) MD 109,800.311 5,506,707.5 1,692,106.9 248,357.925 137,669.8479 99,365.0474 24,004.7416

SD 74,612.9136 4,656,160.18 1,375,028.96 113,787.245 640,038.5333 1,180,870.46 40,344.6637

AB 8915.09332 519,343,539 512,525,748 522,995.483 58,693.31574 86,213.8881 7888.58976
F15(x) MD 5428.6522 428,173,625 475,300,661 514,399.613 35,343.82469 63,456.3421 3430.78723

SD 12,023.8419 350,472,927 266,935,668 282,908.145 74,805.66654 61,784.9118 8715.94813

AB 3371.67432 4820.88686 5247.63056 2937.15125 3160.316909 2823.54207 2647.38414
F16(x) MD 3388.42168 4838.74796 5230.02992 2987.83654 3135.128472 2823.76408 2599.69633

SD 194.740886 282.787939 336.291377 168.503372 330.2217186 407.164335 272.998599
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Table 7. Cont.

ABC CMAES CSA DE MFO PSO SOA

AB 2395.86777 3482.11031 3378.54815 2177.58318 2441.465302 2294.79893 2174.93599
F17(x) MD 2389.4562 3468.22585 3372.19373 2187.84011 2454.470182 2268.3003 2159.79812

SD 102.889656 285.667211 324.223747 85.3307491 250.2293907 294.2882 194.053384

AB 5,046,671.6 37,362,365 23,998,373.2 2,228,087.66 4,549,050.542 1,341,517.26 818,677.628
F18(x) MD 4,728,588.97 33,258,799.8 22,232,367.5 2,033,807.45 1,182,780.284 682,252.246 300,231.736

SD 2,468,179.06 22,078,270.5 13,062,667.1 914,951.248 9,866,226.402 1,857,506.17 1,622,268.27

AB 16,681.7816 620,387,919 616,153,747 551,809.083 16,702,987.12 13,973,268.1 4686.90195
F19(x) MD 7134.24743 509,584,907 600,010,030 481,336.814 143,655.9903 541,084.259 3334.90276

SD 24,639.1966 466,495,950 315,926,138 399,361.441 46,487,264.39 44,969,899.6 3974.19763

AB 2776.66582 2804.5126 2945.57725 2439.77572 2697.417352 2452.70485 2439.26615
F20(x) MD 2764.33673 2834.35184 2955.48441 2445.1877 2627.891978 2488.70557 2449.42599

SD 94.7983596 199.062724 106.815418 88.0385339 220.4185834 179.132846 147.240337

AB 2523.44927 2641.22467 2739.23609 2514.75813 2506.000485 2434.7453 2421.58999
F21(x) MD 2524.34506 2643.05906 2741.53087 2518.37232 2499.78219 2433.21201 2426.23287

SD 15.4046594 36.2479731 41.9080485 10.9762507 40.05305083 23.6970887 21.141776

AB 4836.58643 9577.04104 9095.47501 6970.19197 6645.22701 5532.20097 4165.49182
F22(x) MD 4242.35722 9932.08496 9075.49459 6750.16911 6848.788542 6523.54829 3767.22155

SD 2051.83573 1437.66121 763.435864 1310.37051 1508.145086 1932.03672 1801.85242

AB 2872.69194 3047.39462 3398.54677 2848.15024 2821.343894 2904.06627 2785.54406
F23(x) MD 2872.47313 3045.83859 3425.04431 2848.07645 2814.326953 2917.30159 2781.95288

SD 10.9306383 35.8015482 80.91846 9.83856624 34.39809682 57.5467798 22.306126

AB 3029.76315 3180.2796 3622.26109 3048.38906 2970.576725 3097.14113 2998.32425
F24(x) MD 3029.47271 3188.3269 3620.25868 3050.32895 2969.979831 3072.58458 2996.90489

SD 12.2834187 30.8119037 99.4471973 14.170605 27.40350786 61.1357559 35.0296809

AB 2918.77003 3333.22102 6228.94202 2976.74179 3234.960327 3006.6561 2931.4471
F25(x) MD 2919.85456 2980.52118 6253.4295 2977.53996 3142.80023 2992.45175 2927.85824

SD 9.81487821 759.162584 864.95632 16.7265818 310.0654881 102.116534 17.6935953

AB 5896.23764 8340.37382 11,171.1937 5643.82962 5776.420284 5702.64017 4464.46857
F26(x) MD 5889.23731 8393.26188 11,286.1812 5659.37067 5796.165191 5707.34766 4933.20537

SD 115.549909 452.740525 720.862035 138.81176 469.5232252 888.194496 945.460049

AB 3235.30385 3408.04414 4035.72773 3228.08324 3245.912414 3361.79871 3225.24773
F27(x) MD 3235.68049 3407.30733 4021.85789 3228.32551 3242.855656 3349.63975 3224.0298

SD 6.57578664 33.3663071 190.024017 3.10051948 23.16796867 69.4288619 11.3386465

AB 3328.57792 6580.85938 7194.47112 3389.18088 4365.338523 3623.74347 3292.31393
F28(x) MD 3326.19 6795.88776 7205.84449 3392.76022 4053.737772 3542.19939 3289.42285

SD 17.9291186 558.703896 801.137793 29.1593474 920.6971447 251.617478 36.390848

AB 4459.90622 5654.19067 6442.47253 4169.15715 4120.329591 4068.18331 3734.31699
F29(x) MD 4476.48304 5655.83405 6379.40471 4183.03085 4153.333265 4030.03404 3709.79866

SD 160.899424 250.599138 525.490575 134.81878 272.9470092 334.451062 167.593361

AB 401,261.311 629,251,110 736,794,634 317,868.587 876,056.4301 2,818,096.31 27,288.2215
F30(x) MD 343,273.6 484,558,438 795,847,326 289,961.292 213,206.5063 1,323,187.36 23,028.0874

SD 260,605.287 448,734,951 231,471,227 159,645.774 1,156,943.744 3,490,925.37 12,690.9933

According to Table 7, SOA provides better results than ABC, CMAES, CSA, DE, MFO
and PSO for almost all functions. A close inspection of this table reveals that the SOA
scheme attained the best performance level, obtaining the best results in 22 functions from
the CEC2017 function set. Likewise, the CMAES presents second place, in terms of most
of the performance indexes, while DE and CSA techniques reach the third category with
performance slightly minor. On the other hand, the MFO and PSO methods produce the
worst results. In particular, the results show considerable precision differences, which are
directly related to the different search patterns presented by each metaheuristic algorithm.
This demonstrates that the search patterns, produced by second-order systems, are able
to provide excellent search patterns. The results show good performance of the proposed
SOA method in terms of accuracy and high convergence rates.
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8. Analysis and Discussion

The extensive experiments, performed in previous sections, demonstrate the remark-
able characteristics of the proposed SOA algorithm. The experiments included not only
standard benchmark functions but also the complex set of optimization functions from
CEC2017. In both sets of functions, they have been solved in 30 dimensions. Therefore, a
total of 50 optimization problems were employed to comparatively evaluate the perfor-
mance of SOA with other popular metaheuristic approaches, such as ABC, CMAES, CSA,
DE, MFO and PSO. From the experiments, important information has been obtained by ob-
serving the end-results, in terms of the mean and standard deviations found over a certain
number of runs or convergence graphs, but also in-depth search behavioral evidence in the
form of exploration and exploitation measurements were also used.

The generation of efficient search patterns for the correct exploration of a fitness
landscape could be complicated, particularly in the presence of ruggedness and multiple
local optima. A search pattern is a set of movements produced by a rule or model that is
used to examine promising solutions from the search space. Exploration and exploitation
correspond to the most important characteristics of a search strategy. The combination
of both mechanisms in a search pattern is crucial for attaining success when solving a
particular optimization problem.

In our approach, the temporal response of second-order system is used to generate
the trajectory from the position of xk

i =
{

xk
i,1, . . . , xk

i,d

}
to the location of b = {b1, . . . , bd}.

Three different search patterns have been considered based on the second-order system
responses. The proposed search patterns can explore areas of considerable size by using a
high rate of velocity and the same time, refining the solution of the best individual b by
the exploitation of its location. This behavior represents the most important property of
the proposed search patterns. According to the results provided by the experiments, the
search patterns produce more complex trajectories that allow a better examination of the
search space.

Similar to other metaheuristic methods, SOA tries to improve its solutions based on
its interaction with the objective function or on a ‘trial and error’ scheme through defined
stochastic processes. Different from other popular metaheuristic methods such as DE, ABC,
GA or CMAES, our proposed approach uses search patterns represented by trajectories to
explore and exploit the search space. Since SOA employs search patterns, it presents more
similarities with algorithms such as CSA, MFO and GWO. However, the search patterns
used in their search strategy are very different. While CSA, MFO and GWO consider only
spiral patterns, our proposed method uses complex trajectories produced by the response
of second-order systems.

9. Conclusions

A search pattern is a set of movements produced by a rule or model, in order to
examine promising solutions from the search space. In this paper, a set of new search
patterns are introduced to explore the search space efficiently. They emulate the response
of a second-order system. Under such conditions, it is considered three different responses
of a second-order system to produce three distinct search patterns, such as underdamped,
critically damped and overdamped. These proposed set of search patterns have been
integrated as a complete search strategy, called Second-Order Algorithm (SOA), to obtain
the global solution of complex optimization problems.

The form of the search patterns allows for balancing the exploration and exploitation
abilities by efficiently traversing the search-space and avoiding suboptimal regions. The
efficiency of the proposed SOA has been evaluated through 20 standard benchmark func-
tions and 30 functions of CEC2017 test-suite. The results over multimodal functions show
remarkable exploration capabilities, while the result over unimodal test functions denotes
adequate exploitation of the search space. On hybrid functions, the results demonstrate the
effectivity of the search patterns on more difficult formulations. The search efficacy of the
proposed approach is also analyzed in terms of the Wilcoxon test results and convergence
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curves. In order to compare the performance of the SOA scheme, many other popular
optimization techniques such as the Artificial Bee Colony (ABC), the Covariance matrix
adaptation evolution strategy (CMAES), the Crow Search Algorithm (CSA), the Differential
Evolution (DE), the Moth-flame optimization algorithm (MFO) and the Particle Swarm
Optimization (PSO), have also been tested on the same experimental environment. Future
research directions include topics such as multi-objective capabilities, incorporating chaotic
maps and include acceleration process to solve other real-scale optimization problems.
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Appendix A

Table 1. List of Benchmark Functions.

Name Function S Dim Minimum

f1(x) Levy
sin2(πω1) +

d−1
∑

i=1
(ωi − 1)2

[
1 + 10sin2(πωi + 1) + (ωd − 1)2[1 + sin2(2πωd)

]] [−10, 10]n 30 f (x∗) = 0;
x∗ = (1, . . . , 1)

f2(x) Mishra 1 (1 + xn)
xn ; xn = n−∑n−1

i=1 xi [0, 1]n 30 f (x∗) = 2;
x∗ = (1, . . . , 1)

f3(x) Mishra 2 (1 + xn)
xn ; xn = n−∑n−1

i=1
(xi+xi+1)

2
[0, 1]n 30 f (x∗) = 2;

x∗ = (1, . . . , 1)

f4(x) Mishra 11

 1
n

n
∑

i=1
|xi | −

(
n
∏
i=1
|xi |
) 1

n
 2 [−10, 10]n 30 f (x∗) = 0;

x∗ = (0, . . . , 0)

f5(x) Penalty 1

π
30


10 sin2(πy1)

+∑n−1
i=1 (yi − 1)2[1 + 10 sin2(πyi + 1)

]
+(yn − 1)2

+ ∑n
i=1 u(xi , 10, 100, 4);

yi = 1 + xi+1
4 ;

u(xi , a, k, m) =

 k(xi − a)m , xi > a
0, −a ≤ xi ≤ a

k(−xi − a)m , xi < −a

[−50, 50]n 30 f (x∗) = 0;
x∗ = (−1, . . . ,−1)

f6(x) Perm1
n
∑

k=1

[
n
∑

i=1
(ik + 50)

{
(xi/i)k − 1

}]2
[−n, n]n 30 f (x∗) = 0;

x∗ = (1, 2, . . . , n)

f7(x) Plateau 30 +
n
∑

i=1
|xi | [−5.12, 5.12]n 30 f (x∗) = 30;

x∗ = (0, . . . , 0)

f8(x) Step
n
∑

i=1
(xi + 0.5)2 [−100, 100]n 30 f (x∗) = 0;

x∗ = (0, . . . , 0)

f9(x) Styblinski tang 1
2 ∑n

i=1
(
x4

i − 16x2
i + 5xi

)
[−5, 5]n 30 f (x∗) = −39.1659n;

x∗ = (−2.90, . . . , 2.90)

f10(x) Trid
n
∑

i=1
(xi − 1)2 −

n
∑

i=1
xi xi − 1

[
−n2, n2

]n 30

f (x∗) =
−n(n + 4)(n− 1)/6;
x∗ = [i(n + 1− i)]

for i = 1, . . . , n

f11(x) Vincent −∑n
i=1 sin(10 log xi) [0.25, 10]n 30 f (x∗) = −n;

x∗ = (7.70, . . . , 7.70)

f12(x) Zakharov ∑n
i=1 x2

i + (∑n
i=1 0.5ixi)

2 + (∑n
i=1 0.5ixi)

4 [−5, 10]n 30 f (x∗) = 0;
x∗ = (0, . . . , 0)

f13(x) Rothyp
d
∑

i=1

i
∑

j=1
x2

j [−65.536, 65.536]n 30 f (x∗) = 0;
x∗ = (0, . . . , 0)
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Table 1. Cont.

Name Function S Dim Minimum

f14(x) Schwefel 2 ∑n
i=1

(
∑i

j=1 xi

)2
[−100, 100]n 30 f (x∗) = 0;

x∗ = (0, . . . , 0)

f15(x) Sum2
d
∑

i=1

i
∑

j=1
x2

j [−10, 10]n 30 f (x∗) = 0;
x∗ = (0, . . . , 0)

F16(x)
Sum of different

powers
d
∑

i=1
|xi |i+1 [−1, 1]n 30 f (x∗) = 0;

x∗ = (0, . . . , 0)

f17(x) Rastringin +
Schwefel22 + Sphere 10n + ∑n

i=1
[
xi

2 − 10 cos(2πxi)
]
+

(
n
∑

i=1
|xi |+

n
∏
i=1
|xi |
)
+

(
n
∑

i=1
x2

i

)
[−100, 100]n 30 f (x∗) = 0;

x∗ = (0, . . . , 0)

f18(x)
Griewank +
Rastringin +
Rosenbrock

1
4000 ∑n

i=1 xi
2 −∏n

i=1 cos
(

xi√
i

)
+ 1 + 10n + ∑n

i=1
[
xi

2 − 10 cos(2πxi)
]
+

∑n−1
i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

] [−100, 100]n 30 f (x∗) = n− 1;
x∗ = (0, . . . , 0)

f19(x)
Ackley + Penalty2 +

Rosenbrock +
Schwefel2

(
−20exp

(
−0.2

√
1
n

n
∑

i=1
x2

i

)
− exp

(
1
n

n
∑

i=1
cos(2πxi)

)
+ 20 + exp

)
+(

0.1
{

sin(3πxi) +
n
∑

i=1
(xi − 1)2

[1 + sin2(3πxi + 1)] + [(xn − 1)2[1 + sin2(2πxn)]]
}
+ ∑n

i=1 u(xi , 5.100, 4)
)
+(

n−1
∑

i=1

[
100(xi+1 − x2

i

)
2 + (xi − 1)2]

)
+

(
n
∑

i=1
|xi |+

n
∏
i=1
|xi |
)

[−100, 100]n 30 f (x∗) = (1.1n)− 1;
x∗ = (0, . . . , 0)

f20(x)

Ackley + Griewnk +
Rastringin +

Rosenbrock +
Schwefel22

−20e−0.2
√

1
n ∑n

i=1 x2
i − e

1
n ∑n

i=1 cos (2πxi ) + 20 + e + 1
4000 ∑n

i=1 xi
2 −

∏n
i=1 cos

(
xi√

i

)
+ 1 + 10n + ∑n

i=1
[
xi

2 − 10 cos(2πxi)
]
+

∑n−1
i=1

[
100
(
xi+1 − x2

i

)2
+ (xi − 1)2

]
+ ∑n

i=1|xi |+ ∏n
i=1|xi |

[−100, 100]n 30 f (x∗) = n− 1;
x∗ = (0, . . . , 0)
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