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Abstract: The paper presents a proposed framework to optimize the tuned mass damper (TMD)
design, useful for seismic improvement of slender masonry structures. A historical masonry chimney
located in northern Italy was considered to illustrate the proposed TMD design procedure and to
evaluate the seismic performance of the system. The optimization process was subdivided into two
fundamental phases. In the first phase, the main TMD parameters were defined starting from the
dynamic behavior of the chimney by finite element modeling (FEM). A series of linear time-history
analyses were carried out to point out the structural improvements in terms of top displacement,
base shear, and bending moment. In the second phase, masonry’s nonlinear behavior was considered,
and a fiber model of the chimney was implemented. Pushover analyses were performed to obtain the
capacity curve of the structure and to evaluate the performance of the TMD. The results of the linear
and nonlinear analysis reveal the effectiveness of the proposed TMD design procedure for slender
masonry structures.

Keywords: masonry structures; seismic assessment; TMD; pushover analysis; nonlinear analysis

1. Introduction

Many important historical constructions are built in high seismicity areas and nowa-
days require interventions to improve their resilience. Considering the Italian historical
heritage, several buildings that were originally designed to resist only gravity loads suf-
fered serious damages during recent strong earthquakes, such as L’Aquila (2009) [1–5],
Emilia-Romagna (2012) [6,7], Amatrice (2016) [8,9], and Ischia (2017) [10,11]. Several re-
searchers have proposed different techniques to improve the seismic behavior of historical
buildings, for example, by the application of noninvasive and reversible systems [12–17].
Removeable systems are often required to restore the original structure. Therefore, it is
possible to improve the structure’s seismic response by invasive modification of the original
structure (solution 1) or by applying an auxiliary and reversible system that changes its
dynamic response (solution 2).

To improve the seismic behavior of slender masonry constructions, such as chimneys
or towers, the use of steel reinforcements rings attached to the primary structure by steel
rebars is commonly adopted (solution 1) [18]. In other cases, an inner spiral reinforcement
is applied, as shown in Figure 1. For these slender constructions, structural improvements
are necessary to overcome the dynamic effects caused by wind and/or seismic actions.
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Figure 1. The use of steel reinforcements rings to improve the seismic behavior of slender masonry constructions 

(invasive modification of the original structure (solution 1). (a) Outer reinforcement, and (b) inner reinforcement. 

Solution 2 is largely used in slender concrete [19–21] and steel [22–24] constructions. 

Possible examples of this solution are the chimney presented in [25] and the “Arquata 

Scrivia chimney” (Figure 2). In both cases, the used system was a tuned mass damper 

(TMD). TMDs have shown their effectiveness and robustness as vibration 

countermeasures tall and slender constructions, such as high-rise buildings and wind 

turbines . To design a TMD, different criteria should be considered, taking into account 

the possible distinct interactions of wind and earthquake with the structure. The 

application of the TMD on reinforced concrete and steel slender structures is deeply 

investigated [26–30]. However, there are no common examples of the application of a 

TMD on slender historical masonry construction. In the following, the criteria to design 

and optimize a TMD for a masonry slender structure are pointed out, considering, as an 

example, the case of a chimney part of a historical hydraulic plant. For this chimney, the 

owner requested a removable system to improve its seismic behavior. Furthermore, an 

appreciable combination of the TMD steel support structure with the existing masonry 

one was also needed. Figure 3 shows the first configuration with the TMD located at the 

top of the chimney. Another possible configuration of the TMD steel support structure is 

demonstrated in Figure 4 (second configuration). 
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system that changes its response under dynamic loads (solution 2). 
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modification of the original structure (solution 1). (a) Outer reinforcement, and (b) inner reinforcement.

Solution 2 is largely used in slender concrete [19–21] and steel [22–24] constructions.
Possible examples of this solution are the chimney presented in [25] and the “Arquata
Scrivia chimney” (Figure 2). In both cases, the used system was a tuned mass damper
(TMD). TMDs have shown their effectiveness and robustness as vibration countermeasures
tall and slender constructions, such as high-rise buildings and wind turbines. To design
a TMD, different criteria should be considered, taking into account the possible distinct
interactions of wind and earthquake with the structure. The application of the TMD on
reinforced concrete and steel slender structures is deeply investigated [26–30]. However,
there are no common examples of the application of a TMD on slender historical masonry
construction. In the following, the criteria to design and optimize a TMD for a masonry
slender structure are pointed out, considering, as an example, the case of a chimney
part of a historical hydraulic plant. For this chimney, the owner requested a removable
system to improve its seismic behavior. Furthermore, an appreciable combination of the
TMD steel support structure with the existing masonry one was also needed. Figure 3
shows the first configuration with the TMD located at the top of the chimney. Another
possible configuration of the TMD steel support structure is demonstrated in Figure 4
(second configuration).
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Figure 3. A 3D render of the real, tuned mass damper (TMD) design for a masonry slender structure proposed to the 

Italian Cultural Heritage. (a) The proposed first configuration with the TMD located near the top of the chimney, (b) steel 

TMD in detail, and (c) view of the historical hydraulic plant (Italy). 
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Figure 4. Proposed second configuration with the TMD located at the top of the chimney: (a) detail of the TMD support 

steel structure, and (b) a view of the damping devices. 
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Cultural Heritage. (a) The proposed first configuration with the TMD located near the top of the chimney, (b) steel TMD in
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In approaching a historical construction, two preliminary activities are required: (i) the
geometric survey and (ii) the dynamic tests [31]. With the geometric survey, it is possible
to determine the geometric characteristics of the main structural elements, which for the
chimney under study are the inner and the outer skin, the 8 meridians, and 11 parallels.
It should be highlighted that the chimney is characterized by a height equal to 50 m,
considering the presence of a 10 m height basement, which presents a stiffness significantly
greater than that of the chimney (Figure 5). For this reason, to define the dynamic behavior
of the historical chimney, only the upper slender part is considered.
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Figure 5. The historical masonry chimney under study.

The chimney presents the inner and outer skins from the base to 26.50 m in height. The
outer skin is characterized by a tapered section with a diameter ranging between 3.70 m at
the base to 2.62 m at the height of 26.50 m. Above the quote of 26.50 m, the chimney has
only one skin (the external one) with different thicknesses: 0.51 m from 26.50 m to 28.00 m,
0.37 m from 28.00 m to 28.90 m, 0.33 m from 28.90 m to 29.23 m, and 0.28 m up to the top.

Regarding the mechanical property of the masonry, flat jacks tests in different positions
of the chimney were executed to evaluate the compression resistance (fd) and Young’s mod-
ulus (Ed) [32]. After the test it was obtained a masonry compressive strength, fd = 4.96 MPa,
and a value of Young’s modulus Ed = 7150 MPa. As deeply discussed in [33,34], it is nec-
essary to reduce the value of the compressive strength obtained from the in situ tests by
the following:

fd,red = (fd/c1) · c2 = 3.55 MPa, (1)

where c1 = 1.2 is a coefficient that considers the number of tests carried out, and c2 = 0.86 is
a coefficient that considers the geometrical slenderness of the structure and the eccentricity
of the vertical loads acting on the considered structure.

2. TMD Optimization Framework

The main steps of the optimization procedure of the TMD design are summarized in
Figure 6. The proposed procedure is based on two main steps. In the first step, the dynamic
behavior of the analyzed structure is obtained through the implementation of a simplified
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finite element model to calculate the fundamental characteristics of the TMD after an
optimization process performed by the execution of linear time-history analyses. Defined
the TMD properties, expressed in terms of mass, equivalent stiffness, and equivalent
damping; in the second step, the operating limit of the optimized TMD is evaluated
considering a fiber model where the nonlinear behavior of the masonry is considered.
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Knowing the geometry and the mechanical characteristics of the masonry, a first
linear elastic finite element model (FEM_1—CASE A) of the chimney was implemented
through Midas GEN software [35], where the structure is schematized only with tapered
beam elements (Figure 7) in the typical cantilever configuration with a fully constrained
boundary condition at the base. An eigenvalue analysis was executed by updating the
stiffness value of the different sections that characterized the chimney under study to
reproduce the experimental results obtained from the dynamic test [36] performed by a
specialized Italian company in 2015 (Table 1). Four three-axis MEMS accelerometers have
(www.microseismic.com, accessed in 5 April 2021) were located along the tower in two
different configurations: Config. 1, a distance of 30 m, 38 m, 44 m and 50 m from the base
level; Config. 2, a distance of 10.5 m, 20 m, 30 m and 38 m from the base. The reference
point of all the measures was the accelerometer located at 38 m of height. The sampling
frequency was 128 Hz. After the tests, the well-known frequency domain decomposition
(FDD) technique was applied to estimate the fundamental mode of vibration and the
associated damping, as shown in Table 1.

For a better comparison between experimental and numerical results, in Table 1, the
DF index was reported, which is defined as:

DF = |(f FEM − f exp)/ f exp| · 100 (2)

where f FEM is the frequency value obtained from the finite element model, and f exp is the
one experimentally observed. The lower is DF, and the better is the agreement between the
compared frequencies.

www.microseismic.com
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Table 1. Fundamental frequencies of the chimney, with the corresponding participating masses.

Frequency
Hz

Damping
%

Mass
%

Mode FEM Dynamic Test DF Dynamic Test Trans.

1 0.863 0.861 0.23% 4.1 81.44
2 2.900 2.840 2.06% 1.6 14.66

The results show that the frequencies, which characterize the first and the second mode,
obtained from the FEM, are practically coincident with those evaluated after the dynamic
tests performed on the historical masonry chimney. It can be noted that considering the
total mass of the chimney equal to mT = 276,465.40 kg, the modal mass involved in mode 1
is mstru, I mode = 225,153.29 kg (= 81.4%) [37].

The seismic action is described using a set of seven spectrum-compatible accelero-
grams [38]. The accelerograms are compatible with the site elastic spectrum prescribed by
the code [33] and characterized by the parameters listed in Table 2.

Table 2. Response spectrum parameters.

Life of the Structure VN Year 50

Use category - II
Coefficient for use category Cu - 1
Reference life VR year 50
Probability of exceedance PVR % 10
Topographic coefficient ST - 1
Soil category - B
PGA g 0.094

After evaluating the dynamic behavior of the chimney (FEM_1—CASE A), the TMD
is introduced in the FEM (FEM_1—CASE B). The TMD is schematized by a nodal mass
linked to the chimney by a linear spring-damper element characterized by an equivalent
horizontal stiffness (kTMD) and related equivalent damping (cTMD) calculate according to
Equation (3a,b) as a function of the mass of the structure involved in the first vibration
mode as reported in [39,40]:

kTMD = mTMD · αopt
2 · ωs

2
, (3a)
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cTMD = 2 · ξopt · (kTMD · mTMD)0.5, (3b)

where αopt is the optimal coefficient of frequencies, defined as (Equation (4)):

αopt = [((1 − 0.5µ)0.5/(1 + µ)) + (1 − 2ξ2)0.5 − 1] − [2.375 − 1.034µ0.5 − 0.426µ] · ξ · µ −
(3.730 − 16.903µ0.5 + 20.496µ) · ξ2 · µ0.5,

(4)

µ represents the ratio between the TMD mass (mTMD) and the participating mass of
the structure involved in the first vibration mode (mstru, I mode), as shown in Equation (5):

µ = mTMD/mstru, I mode, (5)

ξ is the damping ratio of the structure considered, in this case, equal to 0.03. The
optimal equivalent viscous damping ratio (ξopt) is calculated considering Equation (6).

ξopt = [(3µ)0.5/(8 · (1 + µ) · (1 − 0.5µ))] + (0.151ξ − 0.175ξ2) + (0.163ξ + 4.98ξ2) · µ, (6)

andωs is defined as the pulsation depending on the frequency of the considered vibration
mode (in this case, the frequency of the first mode, fI), defined through Equation (7):

ωs = 2π · fI, (7)

Changing the µ ratio in the range 1–5%, as suggested in [13], a preliminary definition
of the TMD parameters is carried out for two different TMD mass positions: (i) at the
top of the chimney (40 m height) and (ii) at the top quote of the part of the double skin
(about 26.50 m). The optimal µ value (depending upon the values of kTMD and cTMD)
significantly reduces the base shear, base moment, and top displacement of the chimney
with an acceptable value of the TMD mass [41–43]. Table 3 shows the main TMD parameters
considered in this work for the two different positions. It is important to notice that the two
proposed TMD configurations are completely independent and designed to work around
the first fundamental frequency that characterizes the chimney’s dynamic behavior.

Table 3. TMD parameters for the two different positions are considered in this work.

Location
m

M
%

mTMD
kg

kTMD
kN/m

cTMD
kNs/m

40.00 2.5 5628.83 150.08 5.89
26.50 3.0 6754.60 177.75 7.65

The preferable solution, from a construction point of view, is the one where the TMD
is installed at quote 26.50 m, using a connection system with the steel structure (Figure 3b).
The main advantage of the 26.50 m height positioning of the TMD is the possibility to
avoid reinforcement of the upper part of the chimney, where only one skin is present.
Figures 8–10 show the optimization curves, expressed in terms of an average value of base
shear, bending moment, and top displacement as a function of µ, obtained by integration
of the dynamic equation of the structure under the set of seven spectrum-compatible
accelerograms [13,33] considering the TMD positioned at 26.50 m, while Figures 11–13
show the results of the optimization process for the case of the TMD positioned at 40.00 m.
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3. Results

From the FEM_1—CASE A, considering the design’s seismic action [33,34] and eval-
uated at the base section of the chimney, it obtained an axial force, FZ = 2711.20 kN, a
bending moment, MX = 3877.00 kNm, and a shear force, Fy = 151.00 kN. Moreover, the
top displacement is equal to 0.060 m is obtained. It is important to highlight that in this
case, the maximum compression acting on the chimney base section is equal to 2.35 MPa
less than the masonry compressive strength (3.55 MPa). On the contrary, more than half
of the base cross-section presents tensile stresses with the neutral axis (n) located at the
distance d = 1.60 m from the more compression edge of the section (Figure 14, where G is
the gravity center, c is the load application point, n indicates the neutral axis and e is the
eccentricity) and consequently several crack patterns can be formed.
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Figure 14. Compressive and tensile stresses distribution on the chimney base cross-section consider-
ing the design’s seismic action.

Considering that the tensile strength (ftd) of the masonry, which characterizes the
chimney, is equal to 0, the decompression moment (Md = 1556 kNm of the base section is
calculated through the well-known Equation (8):

ftd = (FZ/Ab)/(Md/W) = 0, (8)

where Ab is the area of the chimney base cross-section and W is the section modulus. The
obtained value of Md occurs for a seismic load equal to 41% of the design’s seismic action.

Considering the presence of the TMD (FEM_1—CASE B), the values of the actions act-
ing on the chimney base section are FZ = 2777.44 kN, MX = 2847.00 kNm, and Fy = 116.70 kN
leading to reductions compared to the results obtained for the chimney without the TMD
equal to 26.5% for the bending moment and 22.7% for the base shear. Furthermore, the
maximum value of the top displacement is equal to 0.042 m (30% lower than the one of
FEM_1—CASE A). In this case, the maximum value of the compression stress is equal to
1.86 MPa, significantly lower than the masonry compressive strength and the chimney base
cross-section results mostly compressed. In fact, the Md value is reached for 66% of the
design’s seismic action. Table 4 summarizes the comparison of the results above discussed
considering both the analyzed cases.

The presence of the TMD modifies the dynamic behavior of the system. Figure 15
shows the trend of the equivalent damping (ξe) as a function of r and calculated as indicated
in Equation (9):

ξe = Hampl/2, (9)
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It can be noticed that the equivalent damping that characterizes the chimney with
the TMD is ξe = 8.5% obtained considering the average value of the ξe calculated in
correspondence to the two lower peaks for r = 0.95 and r = 1.05.

Table 4. Comparison of the results obtained from the first linear elastic finite element model (FEM_1)—
CASE A and from the FEM_1—CASE B.

Response Case A Case B ∆

base shear kN 151.0.0 116.70 22.7%
base moment kNm 3877.00 2847.00 26.5%
top displacement m 0.060 0.042 30.0%
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To investigate the TMD functioning over the elastic behavior of the chimney, a fiber
model representing the structure without the TMD (FEM_2—CASE A) was implemented
to perform pushover analysis [44,45] to obtain the capacity curve of the masonry chimney
through the application of a modal load distribution proportional to the first vibration
mode. To consider the nonlinear behavior of the masonry, a compression elastic–brittle
constitutive law was adopted considering a tensile strength equal to 0. In particular, the
chimney’s fiber model is divided into beam elements having a height equal to 5 m, to
which the nonlinear properties of the masonry are assigned. Figure 16 reports the fiber
discretization of the base section.
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Figure 17 shows the capacity curve, expressed in terms of base shear and top displace-
ment and where the slope of the green line represents the elastic stiffness of the structure,
while the slope of the red line indicates the ultimate secant stiffness before exceeding the
compressive strength of the upper edge of the base section (Figure 18) corresponding to
the ultimate considered step, Stepult.
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Figure 18. Crushing of the upper edge of the section base due to exceeding the compressive strength.

Considering Stepult, the correspondence point on the moment-curvature (M-χ) dia-
gram of each section of the chimney are determined to obtain the scale factor to be applied
to the elastic stiffness of the cross-sections of the chimney calculated as the ratio between
the stiffness evaluated in correspondence to the considered point of the capacity curve and
the elastic stiffness of the analyzed cross-section. Figure 19 reports the M-χ diagram of the
base cross-section.
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The scale factor calculated for each section was applied to the corresponding section
of the FEM_1—CASE B to perform an eigenvalue analysis. If the TMD is involved in the
first two vibration modes, the TMD operating limit (Stepfun) is obtained. Differently, the
process is repeated iteratively considering steps closer to the elastic limit defined by the
capacity curve. Table 5 summarizes the ratio between the calculated stiffness obtained in
correspondence to the Stepfun and the elastic stiffness (Stepel,lim).

Table 5. The ratio between the calculated stiffness obtained in correspondence to the Stepfun and the
elastic stiffness (Stepel,lim).

Section
(m)

Stiffness Ratio
(% )

0–5 70%
5–10 78%

10–15 83%
15–20 83%
20–25 89%
25–30 92%
30–35 100%
35–40 100%

4. Discussion

Once the TMD was optimized, and the behavior of the masonry chimney with TMD
was investigated considering even the operation of the device over the elastic behavior
of the chimney, a standard approach through the execution of nonlinear time-history
analysis was executed to confirm the results obtained by the proposed procedure. The
seismic action used is represented by Accelerogram 1 of the seven spectrum-compatible
accelerograms mentioned in Section 2 (see Figure 20). Figures 21 and 22 show the trend
of the top displacement and the base shear of the chimney, with and without TMD, when
the structure remains within the elastic range. However, the showed results are valid to
the Stepfun. The optimized TMD benefits are confirmed by significant reductions in the
response obtained both in terms of top displacement and base shear. Consequently, the use
of the TMD is an effective solution to reduce the effects of the seismic action. This reveals
the TMD capabilities to protect slender historical masonry structures (as the chimney), not
only for concrete and/or steel structures. Furthermore, the procedure proposed represents
an alternative to the nonlinear time-history analyses, commonly used by the designers to
optimize the TMD parameters.
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Figure 22. Comparison of the base shear obtained by the nonlinear time-history analysis when the
structure remains within the elastic range.

Finally, Figures 23 and 24 show, respectively, the trend of the displacement and the
acceleration of the TMD. It is believed that the use of the TMD system to improve the
seismic behavior of slender historical masonry structures is vital as it can protect against
collapse. The TMD can protect the primary structure against the formation of widespread
crack patterns, which can significantly reduce the bending moment acting on the structure
and the resulting decompression effects. Furthermore, the proposed device configurations
represent a reversible system that is applicable to structures characterized by a particular
historical value.
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The further development of this study is to apply the proposed procedure to designing
TMDs for masonry structures characterized by more complex dynamic behavior.

5. Conclusions

In this paper, an optimization procedure to design TMDs for slender masonry struc-
tures was presented. The proposed procedure has two parts: linear and nonlinear analysis.
From the linear analysis, the TMD parameters are evaluated for different locations (related
to the geometry of the chimney understudy). With the execution of the nonlinear analysis,
the TMD’s effectiveness over the elastic behavior of the chimney is investigated. In particu-
lar, pushover analysis is performed to evaluate the structure’s capacity curve and obtain
the value of the stiffness reduction for each section of the chimney in correspondence to the
different points of the curve. This stiffness reduction is applied to the corresponding section
of the linear FEM of the chimney. The comparison between the structural behavior with
and without TMD cases is underlined for different stiffness values. The TMD functionality
under the seismic action is improved. The importance of considering a different range of
stiffness values is pointed out to improve the TMD functionality over the elastic range of
structural behavior. The following improvements, realized under the linear condition, are
still valid up to the Stepfun of the capacity curve: the top displacement was decreased from
0.060 m to 0.042 m (30%), the base shear was decreased from 151 kN to 116.7 kN (23%),
and the base moment was reduced from 3877 kN.m to 2847 kN.m (27%). Over the Stepfun,
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the stiffness reductions due to the crack pattern of the masonry contribute to the TMD
ineffectiveness. Moreover, the acceleration shown by the TMD system is less than 1 g.

The use of the TMD system to improve the seismic behavior of slender historical
masonry structures is vital as it can protect against collapse. The device can also protect the
primary structure against the formation of widespread crack patterns, which can signifi-
cantly reduce the bending moment acting on the structure and the resulting decompression
effects. Furthermore, the proposed TMD configurations represent a reversible system that
applies to structures characterized by a particular historical value.

Finally, the comparison between the results obtained by the execution of a nonlinear
time history analysis confirms the effectiveness of the optimized TMD, designed by the
proposed procedure, which can be applied to any type of slender masonry structure.
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