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Abstract: The reliability of load-bearing structures is normally secured through codes, a competent
structural design and proper execution inspection. Alternatively, the reliability can be obtained
via skilled test loading, which is a feasible technique both in the construction of new structures
and in the load-bearing verification of existing ones. Although the current codes lack instructions
for test loading, they are, however, used in special cases; for example, when the reliability of the
structures is doubtful due to a defect, or when the structure is suspected to have especially high
resistance variability. Test loading involves significant research questions that need to be addressed,
including: What is the test load in comparison with the expected maximum service time load or the
characteristic load? How can the instantaneous test load be compared with the actual long-term
service-time load? Does the test loading harm the structure, and what is the target reliability in
the test loading calculation? In this paper, we approach these questions from a theoretical point of
view and propose how a suitable test load can be chosen in practice using an approximate and a
precise approach.

Keywords: test loading; design; reliability; loading-resistance verification

1. Introduction

The trustworthiness of a structure is normally secured through codes, a competent
structural design and proper execution control. Skilled test loading is an alternative
technique that may be used as a partial or full replacement of special code stipulations,
comprehensive design calculations or special quality-control measures. The current codes,
however, lack detailed instructions for test loading. The Eurocodes [1–3] include general
guidelines for test loading without the reliability survey, which is the key focus of this
article. Apparently, for this reason, test loading is seldom applied in structural practice,
and its full potential is not normally understood.

The testing may occur before the assembly of the structure (e.g., grading timber boards
to various strength classes) or after the assembly. The theory and the principles presented
here apply to both cases.

Test loading is, nevertheless, sometimes an outstanding and even a superior alternative
to reliably verify the load bearing of a structure. Currently, it is applied in the following
exceptional cases only: (1) when the reliability of the structure is doubtful; for example,
due to a defect, it can be a feasible alternative to strengthening, demolishing or reduced
load; (2) when the reliability demand is especially high or when test loading is easy;
for instance, bridges are often test loaded; (3) when the material of the structure or the
joints have exceptionally high variability, for example, glue lam beam lamellas, I-joist
flanges and glued timber trusses are often test loaded. Video [4] discloses that I-joist
flanges are test loaded before the joist assembly. In North America, glued timber trussed
joists have been exploited extensively for several decades, and these joists are always test
loaded [5]. (4) Some geotechnical codes include rules for test loading; pull anchors, for
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instance, are always test loaded [2,3,6]. However, these test loads seem high, about twice
the characteristic load, and are set without a comprehensive probability examination.

Furthermore, the process of test loading involves several open research questions,
including: What is the required test load in comparison with the expected maximum service
time load or the characteristic load? How can the instantaneous test load be compared with
the actual long-term service time load, and is the test loading harmful for the structure?

The authors have successfully test loaded several long-span girders e.g., the 50-year-
old, 55 m span sports hall in the city of Lappeenranta, Finland, for which demolition had
been suggested by previous studies but which, through test loading, has been verified for
sufficient load-bearing capacity without strengthening (Figures 1 and 2). Based on these
experiences and on the following arguments, we see that test loading has the potential for
more extensive practical usage.
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Figure 1. Principle of the roof of the Lappeenranta sports hall: tension rods with pitched glue lam beams loaded by
10-point loads.
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Figure 2. View of the test loading, with weights on the floor lifted up.

The governing assumption for the combination of permanent and variable loads is
the independent load combination and semi-probabilistic mathematics [1–3,7–17]. The
authors have disclosed a new simple procedure and equations for combining permanent
and variable loads independently [18,19]. These equations are modified here for the test
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loading. In the authors’ opinion, the loads should be combined dependently [18,20]. The
test loading equations are presented here for the dependent load combination as well.

Test loading is a supreme technique in some cases due to its unique characteristics:
First, test loading ensures that the structure does not fail due to lack of strength; i.e.,

that the strength corresponds to the assumptions of the design. Whereas a normal structure
may fail on overload; i.e., due to the load exceeding the design load or due to the lack
of strength, a test loaded structure may fail only in the former case. This suggests that
for a test loaded structure, the given overall reliability can be achieved with lower target
reliability as compared to the normal case. Namely, surveys on structural failures show
that the cause of the failure is practically always the lack of strength, normally with no
overload [21]. Moreover, the overload (variable load) is such a rare occurrence that it
normally generates a warning in one way or another.

Second, a normal structure involves uncertainties and variabilities due to codes, design
and execution, but a test loaded structure does not, which is another reason why it can be
calculated for lower target reliability.

Third, if test loading is applied for an existing structure with a short remaining residual
service time, target reliability may be lowered, since the service time survived indicates
that a certain probability of survival and the short remaining time justifies the lowered
reliability demand.

In this paper, we adopt a theoretical point of view and propose how a suitable test
loading with lowered target reliability can be chosen in practice using an approximate and
a precise approach. The process of test loading is seen here as a partial or full alternative
of the Eurocodes as implemented in Finland. Our focus is, especially, on the Finnish
Eurocodes and timber structures [22]. The assumptions, terms and notations of these codes
are used [1,22]. Attention is paid to the characteristic variable load. All design codes are
based on its one-year 98th percentile and 0.64 probability in 50-year service time. In the
structural design, this load is multiplied with a safety factor (1.5 in the Eurocodes).

2. Target Reliability for the Test Loading Calculations

The target reliability index of the Eurocodes [1] in the normal reliability class RC2
is β50 = 3.83; i.e., the failure probability Pf50 is 1/15,400 in 50 years. This estimate for
reliability considers the possibility of a failure due to overload or lack of strength, as
well as the uncertainties and variabilities for the code directives, design calculations and
execution. A test loaded structure does not lack strength or have the above uncertainties
and variabilities. Therefore, test loading calculations can be made for a target reliability
lower than β50 = 3.83.

The proportion of uncertainty is normally assumed to be about 5–10% of the overall
safety factor. Furthermore, a test loaded structure may fail on the overload only, and
behavior variability for lacking strength is nonexistent. We assume here that the decreased
variability of this cause justifies about a 5–10% lower overall safety factor. The test loaded
structure may fail on the overload only, which normally gives a warning, and therefore a
0–5% lower overall safety factor may be applied. To sum up the effects explained above,
we assume that the test loaded structure may be designed for a 15% lower overall safety
factor. This rough estimate is used here in the approximative calculations only.

The statistics available on the causes of structural failures are scarce. The authors
have investigated structural failures over several decades and in their opinion, about
10% of the failures are due to overload, and 90% are due to other reasons. This estimate
was confirmed recently in verbal communication with the experts of the Finnish Safety
Investigation Authority (https://www.turvallisuustutkinta.fi (accessed on 8 January 2021)).
Consequently, the reliability calculations are made here assuming that the failure probability
in the test loading calculations is Pf50 = 1/1500, which is 10 times higher than the one in the
normal design, β50 = 3.2. The higher failure probability is justified as 90% of the failure
reasons are absent, and the failure domain is smaller. There are arguments for even lower
reliability and higher failure probability: the overload gives a warning, and the overall

https://www.turvallisuustutkinta.fi
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uncertainty is less. However, these arguments are disregarded, and it is assumed that they
compensate for the uncertainties of the test loading. β50 = 3.2 corresponds approximately
to RC1 of the Eurocodes. Thus, we assume here that the test loaded structure calculated for
RC1 has overall reliability equal to a normal structure calculated for RC2.

The literature on structural reliability recommends a target reliability of β50 = 3.2 in
normal design cases [10], which suggests that the test loading can be made for a reliability
of about β50 = 2.5. This option is not pursued here but the reliability calculations are made
for β50 = 3.2, which is considered unquestionably safe or excessively safe.

3. Instantaneous Loading Versus the Service-Time Loading

In some materials, such as timber and plastics, the resistance decreases with increased
load duration. In the design codes, such variable resistance is determined by separating the
loads into different duration classes specified by a modification factor, which determines
the resistance in proportion to the reference. Table 1 includes the modification factor Kmod
for solid wood in the European timber code [22].

Table 1. Modification factor Kmod for solid wood in service class 2 (normal dry climate) according to
the timber Eurocodes [22].

Load-Duration Class Examples of Loading Duration Factor Kmod

Permanent self-weight >10 years 0.6
Long-term storage 6–10 months 0.7
Medium-term imposed load, snow 1 week–6 months 0.8
Short-term snow, wind <week 0.9
Instantaneous wind, accidental load 1.1

The test loading is normally instantaneous with the load duration of a couple of
seconds only; i.e., its modification factor is Kmod = 1.1. Most timber structures are loaded
with a medium-term load (Kmod = 0.8). Thus, we may assume that, in this case, the test
load must be 1.375 (1.1/0.8) times the significant medium-term load to compensate for the
load-duration effect. Each load duration needs its own load-duration effects.

4. Harmful Effects

Test loading can potentially cause harmful effects, which increase along with the
rising test load. To overcome this difficulty, the following special precautions should
be considered:

• The structure must not give any noteworthy indication of cracking, such as a rupturing
sound during the loading.

• The structure must stay mainly in the elastic state during the loading; i.e., the deflection
must return to its unloaded state after the loading, and the load-deflection behavior
must be linear.

• The test load should be adjusted to be as low as possible to satisfy the reliability
demand. For example, it is feasible to utilize test loading for structures that are
unlikely to carry the full load during the service time. In this case, test loading can be
conducted for a lower load. If the actual load exceeds the test load, special measures
will be taken. The authors have used this method to test load defective long-span roof
girders. In this case, the critical load is a layer of snow. If the actual snow load exceeds
the critical load, action can be taken to remove the snow in order to reduce the load.
As the snow is removed directly when the critical limit is exceeded or close to that
limit, the load-duration effect can be omitted.

• Only a part of the structure is test loaded. This method can be applied, for example, in
a quality-assurance program.

The authors suggest that if the points above are considered appropriately, the proba-
bility for harmful effects will be negligible.
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5. Choosing the Test Load

This section proposes two alternative approaches for choosing the test load. The first
one is approximative and helps in understanding the concept. The second proposal is based
on the state-of-the-art probability theory. Both methods are based on the assumptions
explained above: in the approximate method, the test load is the same as the load factor,
which is set assuming that the test load safety factor is 15% lower than the normal one; i.e.,
γG = 1.35 and γQ = 1.5. In the second method, the test load is derived for the reliability
index β50 = 3.2 instead of β50 = 3.8.

A debatable issue is whether the loads should be combined independently with
lower overall safety or dependently with stricter criteria and higher design loads. In the
authors’ opinion, the latter is the correct approach [18,20]. However, the independent load
combination is applied in many codes and, therefore, results for both combination methods
are presented.

5.1. Approximate Method

In the Eurocodes, the variable load safety factor γQ = 1.5 is set for the most variable
loads like snow, VQ = 0.4. The live load has less variability, VQ = 0.2 [17], and a lower
safety factor can be used. VQ = 1.3 is assumed here. An even lower factor value could
be used, as disclosed in the next section. The Eurocodes [1] include the dependent load
combination rule (8.12) for joining these loads. The resulting dependent combination load
(gq)d is given by the equation:

1.35g + 1.5q = (gq)d (1)

The Eurocodes include two independent load combination rules (8.13a,b) and (8.14a,b).
The rule (8.14a,b), used in Finland, is applied here:

max(1.35g, 1.15g + 1.5q) = (gq)i (2)

As explained above, in the test loading, 15% lower load factors can be applied to
obtain the target reliability. Figure 3 illustrates the test load as a function of the load ratio
α; i.e., the ratio between the variable q load and the total load q+g:

α =
q

q + g
(3)
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Figure 3. The load factor γL and the test load γtest as a function of the load ratio α; i.e., a 15% lower
factor than used in the Eurocodes. The left and right graphs apply to VQ = 0.4, (e.g., snow), and
VQ = 0.2, (e.g., live load), respectively. Solid lines correspond to Equation (1), and dashed lines to
Equation (2).
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5.2. Probability Method

Test loading can be employed in cases with known or unknown resistance distribution.
These two cases need a different approach and are addressed here one by one. Both
methodologies have the same basic theory, which is tackled first.

5.2.1. Partial Factors vs. Design Values

In the current partial safety factor codes, the safety factors are unequal (γG 6= γQ).
The safety factors can be set equal (γG = γQ) by modifying the characteristic load of the
variable load. For example, if in the Eurocodes the characteristic value of the variable
load is increased by 11%, the load factors will be the same (γG = γQ = 1.35). The design
equation can be divided by the load factor when design value equations are obtained,
which reaches the same result as the partial factor equations.

If the partial factor design is applied for the test loading, the loads obtained relate
to multiplication by the load factors γG and γQ. These values can be divided by the load
factors when the test loads corresponding to the design values are obtained. Thus, the
same test loads are obtained in both methods. For simplicity, the design-value approach is
applied here.

5.2.2. Equations for Safety-Factor Calculation

Normally, permanent and variable loads are combined independently, but in the au-
thors’ opinion, the loads should be combined dependently, as the independent combination
contradicts the physics [20]. The dependent combination results in higher loads, and is
therefore safer and applied here. As a comparison, the results for the independent load
combination are given as well. The authors explained the dependent and the independent
safety factor calculation procedure earlier [18,19], and it is disclosed concisely here.

The notation of the Eurocodes is applied. The design point may be chosen arbitrarily.
It is set here at unity, where the characteristic values of all distributions are fixed; i.e., the
0.5 fractile of the permanent load, the 0.98 fractile of the variable load and the 0.05 fractile
of the material property.

The permanent load distribution, cumulative distribution FG(x, µG,σG) and density
distribution fG(x, µG,σG) are assumed to be normal with µG = 1, σG = 0.0915, VG =
0.0915. These parameter settings correspond with the permanent load safety factor of the
Eurocodes; that is, γG = 1.35.

The variable-load distribution, cumulative distribution FQ
(
x, µQ,σQ

)
and density

distribution fQ
(
x, µQ,σQ

)
are assumed to be Gumbel. The variable load-safety factor is

γQ = 1.5. The coefficient of variation is assumed VQ = 0.4, µQ = 0.4904, σQ = 0.1964
like snow; and VQ = 0.2, µQ = 0.6586, σQ = 0.1317, like a live load. In the de-
pendent load combination, the variable load distribution is in the 50-year mode; i.e.,

FQ

(
x; µQ

1.5 , σQ
1.5

)50
. In the independent load combination, the variable load distribution is in

the 5-year mode; i.e., FQ

(
x; µQ

1.5 , σQ
1.5

)5
[12–14,19], which is due to the reliability reduction

(αE = −0.7 in the FORM reliability calculation). The variable load ratio in the total load is
α = µQ/

(
µQ + µG

)
.

The distribution of the material properties is assumed to be log-normal, with cumu-
lative distribution FM(x, µM,σM) and density distribution fM(x, µM,σM). The material
parameters of the three materials examined here are given in Table 2.

Table 2. Parameters of the material properties.

VM µM σM

0.10 1.184 0.184
0.15 1.292 0.194
0.20 1.412 0.282
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When only the permanent load acts, the material safety factor γM can be solved by
the equation [18,19]:∫ ∞

0
FG

(
x,

µG
γG

,
σG

γG

)
fM(x, µMγM, σMγM)dx = 1− Pf50 (4)

If the variable load acts individually, the factor FG in Equation (4) is replaced by FQ.
The material safety factors for an individual permanent load γM,G, or variable load γQ,G,
are given in Table 3 for 5- and 50-year durations with b50 = 3.83; i.e., Pf50 = 1/15,400,
VQ = 0.4 and VQ = 0.2 γM,0.4, γM,0.4,Q5, γM,0.4,Q50, γM,0.2,Q5 and γM,0.2,Q50.

Table 3. Material safety factors for single loads for γG = 1.35, γQ = 1.5 and β50 = 3.83.

VM. γM,G γM,0.4,Q5 γM,0.4,Q50 γM,0.2,Q5 γM,0.2,Q50

0.10 1.031 1.281 1.509 1.073 1.231
0.15 1.114 1.268 1.512 1.080 1.253
0.20 1.218 1.285 1.554 1.116 1.311

The permanent load and the 5-year variable load are combined independently with
load ratio α, using the convolution equation to obtain the independent cumulative distri-
bution Fi(x, α) for the combination loading [18,19].

Fi(x, α) =
∫ ∞

−∞
fG

(
x− r,

µG(1− α)

γG
,
σG(1− α)

γG

)
FQ

[
r,
µQ α

γQ
,
σQ α

γQ

]5
dr (5)

The dependent load combination Fd(x, α) is calculated by adding up the partial
loadings by fractiles. The following recursive form is more appropriate for the actual
calculations [18–20] for the dependent combination distribution:

Fd(x, α) =

∣∣∣∣∣∣∣
y← root

[
FG

[
x− r, µG(1−α)

γG
, σG(1−α)

γG

]
− FQ

[
r, µQ α

γQ
, σQ α

γQ

]50
, r
]

Fd ← FQ

[
y, µQ α

γQ
, σQ α

γQ

]50 (6)

The material-safety factor for the independent and dependent load combinations is
calculated using Equation (4) with the distribution FG replaced by Fi and Fd, respectively.

Figure 4 gives the material-safety factors as a function of the load ratio α, calculated
via the equations above without considering the uncertainty of two materials (VM = 0.15,
0.2) and for two variable loads (VQ = 0.4 and VQ = 0.2). For α = 0%, only the permanent
load is acting, while for α = 100%, only the variable load is acting. The solid lines denote
the dependent load combination (and 50-year variable-load setting); dashed lines apply
to the independent load combination (and 5-year variable-load setting). The upper lines
denote VM = 0.2, and the lower ones VM = 0.15. The dotted lines apply to the dependent
load combination with VQ = 0.2, e.g., a live load.

Normally, the dependent load combination is about 10% higher than the independent
one. However, in this case, the dependent load combination was about 20% higher when
the proportion of the variable load was high.

The dependent safety factor curves are straight lines within about 1% accuracy at
loading ratios α = 20–80%. This approximation is applied later in this study.

Normally, the dependent load combination is about 10% higher than the independent
one. However, in this case, the dependent load combination was about 20% higher when
the proportion of the variable load was high.

The dependent safety factor curves are straight lines within about 1% accuracy at
loading ratios α = 20–80%. This approximation is applied later in this study.
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5.2.3. Equations for Test Loading Calculations

Test loading reduces the resistance distribution by eliminating low-resistance items
below the test load. The design point is set at unity; i.e., the characteristic values of the
distributions are fixed at unity.

Figure 6 demonstrates the idea in the actual permanent load and resistance distribution
of high-quality timber, β50 = 3.2, VM = 0.15, µM = 1.5. The test load is 1.071 obtained from
Equation (7). Test loading is not needed if the mean resistance is γM = 1.749 obtained from
Equation (4). The dashed lines apply the permanent load distributions; the solid lines are
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material distributions; the dotted lines are material distributions after test loading; and the
dash-dotted line applies to the resistance distribution where test loading is not needed.
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The equations for test loading are based on the safety factor calculation in Equa-
tions (4)–(6) above. When the structure is test loaded by the permanent load only, equation
derived from Equation (4), to calculate the test load γ to reach failure probability Pf50 is:∫ ∞

γ
FG

(
x,

µG
γ

,
σG

γ

)
fM(x, µM, σM)

1− FM(γ, µM, σM)
dx = 1− Pf50. (7)

The result for β50 = 3.2; i.e., Pf50 = 1/1500, µM = 1.5, VM = 0.15 is γ = 1.071.
The equation for the variable loading is:

∫ ∞

γ
FQ

(
x,

µQ

γ
,
σQ

γ

)50 fM(x, µM, σM)

1− FM(γ, µM, σM)
dx = 1− Pf50, (8)

and the result for the variable loading VQ = 0.20 and the same parameters as above is
γ = 1.241.

The test load γ for an independent load combination with load ratio α is calculated by:∫ ∞

γ

∞∫
−∞

fG

(
x− r,

µG(1− α)

γ
,
σG(1− α)

γ

)
FQ

(
r,

µQα

γ
,
σQ α

γ

)5
dr

fM(x, µM, σM)

1− FM(γ, µM, σM)
dx = 1− Pf50 (9)

5.2.4. Test Loading with Known Resistance Distribution

Test loading is currently applied in three cases where the resistance distribution is
known. Glue lam lamella scanning is sometimes applied to obtain beams with a high
resistance. I-joists are often test loaded to secure required reliability. Glued timber trusses
manufactured presently are always tested for a test load, which is 1.5 times the characteristic
load, (https://www.openjoisttriforce.com/ (accessed on 26 March 2021)).

In this test loading concept, the resistance distribution; i.e., distribution type, mean
µM and deviation σM, are first settled. Then, the manufacturer selects the characteristic
load. The higher the characteristic load, the higher the proportion of the structures that fail
in the test loading; that is, the selection of the characteristic load needs optimization.

In glued timber truss test loading, log-normal is a feasible distribution, coefficient of
variation is VM = 0.15–0.2 and the characteristic load is about µM /1.9. In Figure 7, test

https://www.openjoisttriforce.com/
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loads γ are given for β50 = 3.2 (Pf50 = 1/1500) and µM = 1.9; i.e., the mean resistance is 1.9
times the design point and the characteristic load values. In the left and right graphs of
Figure 3, VM = 0.15 and VM = 0.20, respectively; the solid lines correspond to the dependent
load combination and the dashed lines to the independent one; the upper lines depict the
case VQ = 0.4, and lower lines VQ = 0.2.
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Figure 7. Test-loads γtest needed for β50 = 3.2, µM = 1.9. In the left and right graph, VM = 0.15 and VM = 0.20, respectively;
the solid lines correspond to the dependent load combination and dashed lines to the independent one; the upper lines
depict the case VQ = 0.4 and lower lines VQ = 0.2, respectively.

The dependent test load values are about 20% higher than the independent ones, which
suggests that the test loads calculated for β50 = 3.2 may be excessively high. Figure 4 suggests
that the reliability of the current Eurocodes is less than intended for β50 = 3.8. Studies by
the authors show that the overall reliability of the current Eurocodes is about β50 = 3.2 if the
load combination is dependent. Therefore, as explained above, one can justify calculating
the test loads for a lower reliability than β50 = 3.2. However, this lower reliability is not
recommended here; instead, we emphasize that the results obtained for β50 = 3.2 are
probably excessively safe.

Thus, when the mean resistance is at least 1.9 times the characteristic load, the test
loads γtest can be calculated by for VQ = 0.2, VM = 0.15:

γtest = 0.92 + α·0.17 (10)

for VQ = 0.4, VM = 0.15:
γtest = 0.92 + α·0.35 (11)

for VQ = 0.2, VM = 0.20:
γtest = 1.03 + α·0.35 (12)

for VQ = 0.4, VM = 0.20:
γtest = 1.03 + α·0.28 (13)

where α is the proportion of the variable load in the total load.
If the structure is a timber structure, the γtest values above must be multiplied by the

load-duration factor, normally 1.375. For example, if the structure is a glued timber truss
that is used as a floor joist, VQ = 0.2 and VM = 0.15, and the load proportion is α = 0.7, then
the actual test load is γtest = 1.43 regarding the characteristic load. When the structure is
used as a roof joist, VQ = 0.4, and the test load is γtest = 1.60.

If the resistance of the actual structure is unknown, there is a substantial risk that the
structure fails in the test loading. However, the test loading would be a feasible option as
an alternative to demolition, restoration work or loading restrictions.
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In Figure 8, the test loads γtest are given as the function of the load proportion α,
assuming that the reliability is obtained from the loading only; i.e., the resistance of the
material is entirely unknown and has no resistance beyond the test load. The solid line
applies to the dependent load combination, β50 = 3.2. The dotted curves denote the
corresponding independent load combination. The upper lines refer to VQ = 0.4 and the
lower ones to VQ = 0.2, respectively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 14 
 

γ
te

st
 t

es
t 

lo
ad

/c
h

ar
. l

o
ad

 

 

 
 α(%) 

Figure 8. Test loads γtest needed for a structure with unknown resistance β 50 = 3.2. The solid lines 

apply to the dependent load combination, and the dotted lines to the independent combination, 

correspondingly; and the upper lines refer to VQ = 0.4 and lower ones to VQ = 0.2, respectively. 

In Figure 8, the required test loads are considerably higher than the one given in Fig-

ure 7, the reason being that the resistance includes no reliability. Due to the risk of failure, 

lower test loads can be applied by an expert evaluation in special cases: The test load can 

be set for a lower load than needed for the remaining service time. For example, the snow 

load is set to a fixed value. If the actual load exceeds this value, the excess load is removed. 

The authors used this method in the sports hall of the city of Lappeenranta. Alternatively, 

an evaluation is made about the resistance of the structure, and an estimate for the mini-

mum resistance is estimated and the test loading is conducted for the minimum resistance 

or for an estimated resistance distribution. For example, if one can assume that the re-

sistance corresponds to VM = 0.2 and the 5% resistance matches the characteristic values, 

the needed test load is obtained from Equation (13). 

5.2.6. Checking 

Two checks are given next to insure the validity of the equations above: 

The test load γtest for the permanent load VG = 0.0915, μM = 1.9, VQ = 0.2, β 50 = 3.2 is 

γtest = 0.92. We assume that the load has a coefficient of variability VG = 0; i.e., the occur-

rence probability is 0 when the load is less than unity and otherwise it is 1. Then, the 

material above unity has the failure probability 1/85,000, i.e., the material alone has lower 

reliability than needed. If the distribution is moved; i.e., if the distribution is multiplied 

by 0.859, the failure probability is the required one; i.e., 1/1500 at unity. As the actual dis-

tribution is less severe, the value 0.92 is truthful. 

The test load γtest for the permanent load VG = 0.0915, β 50 = 3.2 and unknown re-

sistance is γtest = 1.294; that is, the load distribution must be divided by 1.294. When doing 

so, the failure probability is 1/1500, which is the target probability at unity. 

6. Limitations 

Test loading is currently seldom applied for several reasons: 

• Comprehensive instructions for test loading are lacking in the current codes. 

• Test loading is an excess cost in comparison with the normal construction. 

0 20 40 60 80 100
1.2

1.4

1.6

1.8

2

1.2

G32 Q3250 G32−( )


100
 1+

G32 Q325020 G32−( )


100
 1+

32i 

3220i 

1000 

Figure 8. Test loads γtest needed for a structure with unknown resistance β50 = 3.2. The solid lines
apply to the dependent load combination, and the dotted lines to the independent combination,
correspondingly; and the upper lines refer to VQ = 0.4 and lower ones to VQ = 0.2, respectively.

In Figure 8, the required test loads are considerably higher than the one given in
Figure 7, the reason being that the resistance includes no reliability. Due to the risk of
failure, lower test loads can be applied by an expert evaluation in special cases: The test
load can be set for a lower load than needed for the remaining service time. For example,
the snow load is set to a fixed value. If the actual load exceeds this value, the excess load
is removed. The authors used this method in the sports hall of the city of Lappeenranta.
Alternatively, an evaluation is made about the resistance of the structure, and an estimate
for the minimum resistance is estimated and the test loading is conducted for the minimum
resistance or for an estimated resistance distribution. For example, if one can assume that
the resistance corresponds to VM = 0.2 and the 5% resistance matches the characteristic
values, the needed test load is obtained from Equation (13).

5.2.5. Checking

Two checks are given next to insure the validity of the equations above:
The test load γtest for the permanent load VG = 0.0915, µM = 1.9, VQ = 0.2, β50 = 3.2

is γtest = 0.92. We assume that the load has a coefficient of variability VG = 0; i.e., the
occurrence probability is 0 when the load is less than unity and otherwise it is 1. Then, the
material above unity has the failure probability 1/85,000, i.e., the material alone has lower
reliability than needed. If the distribution is moved; i.e., if the distribution is multiplied
by 0.859, the failure probability is the required one; i.e., 1/1500 at unity. As the actual
distribution is less severe, the value 0.92 is truthful.

The test load γtest for the permanent load VG = 0.0915, β50 = 3.2 and unknown
resistance is γtest = 1.294; that is, the load distribution must be divided by 1.294. When
doing so, the failure probability is 1/1500, which is the target probability at unity.
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6. Limitations

Test loading is currently seldom applied for several reasons:

• Comprehensive instructions for test loading are lacking in the current codes.
• Test loading is an excess cost in comparison with the normal construction.
• Test loading constitutes an excess procedure requiring special apparatus and knowledge.
• The structure might fail in the test loading, which might cause a significant economic

loss. On the other hand, if the structure fails in the actual use, the economic loss is
normally much higher.

• Test loading is normally feasible in structures that have only one critical load case.
Virtually all horizontal structures have one critical load case; namely, all simultaneous
vertical loads, and these structures are normally suitable for test loading.

• Test loading may cause harmful effects in the structure. For example, in a concrete
structure, cracks may occur even at a low overloading. On the other hand, most
structures, such as timber and metal structures, resist minor overloads well.

7. Discussion

It is common that the permanent and the variable load are assumed to be independent,
and therefore the independent combination is often used. Both methods reach the same
result for the permanent load [19], but the dependent load combination results in about
20% higher safety factors for the variable loads. The dependent load combination is safer
and therefore was applied here.

An important test loading application is the reliability assurance of a glued timber
trussed joist. If the mean resistance is 1.9 times the characteristic load and the coefficient of
resistance variation is 15%, the test loading for a floor joist is 1.27 times the characteristic
load for the permanent load and 1.50 times for the variable load VQ = 0.2; the combination
values are obtained from a linear interpolation.

8. Conclusions

Test loading was found to be advantageous in many ways, including the following
aspects. First, a test loaded structure never fails due to lack of strength; i.e., if it fails, it does
so on the overloading only. Second, the eventual failure is likely to give a pre-warning,
and third, the test loaded structure does not have uncertainties associated with codes,
design and execution. Consequently, test loading reliability calculations can be made for
a lower target reliability. In the authors’ opinion, the overall reliability of the Eurocodes
corresponds to approximately β50 = 3.2, and the test loading values may be set for a lower
reliability. However, the test load values given in this article are based on β50 = 3.2, and are
therefore safe in the authors’ opinion.
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