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Abstract: In this study, we developed a novel boundary-type meshless approach for dealing with
two-dimensional transient flows in heterogeneous layered porous media. The novelty of the proposed
method is that we derived the Trefftz space–time basis function for the two-dimensional diffusion
equation in layered porous media in the space–time domain. The continuity conditions at the interface
of the subdomains were satisfied in terms of the domain decomposition method. Numerical solutions
were approximated based on the superposition principle utilizing the space–time basis functions
of the governing equation. Using the space–time collocation scheme, the numerical solutions of
the problem were solved with boundary and initial data assigned on the space–time boundaries,
which combined spatial and temporal discretizations in the space–time manifold. Accordingly, the
transient flows through the heterogeneous layered porous media in the space–time domain could
be solved without using a time-marching scheme. Numerical examples and a convergence analysis
were carried out to validate the accuracy and the stability of the method. The results illustrate
that an excellent agreement with the analytical solution was obtained. Additionally, the proposed
method was relatively simple because we only needed to deal with the boundary data, even for the
problems in the heterogeneous layered porous media. Finally, when compared with the conventional
time-marching scheme, highly accurate solutions were obtained and the error accumulation from the
time-marching scheme was avoided.

Keywords: Trefftz method; space–time collocation; layered porous media; meshless method; transient

1. Introduction

The transport phenomena of flows through porous media have long been of research
interest in numerous branches of engineering and science [1–5]. As heterogeneous porous
media are more common than homogeneous soil in nature, flows in heterogeneous lay-
ered porous media have been widely explored [6–9], particularly utilizing mathematical
modeling, numerical simulations, and experimental investigations [10–12].

A variety of mesh-generated techniques, such as the boundary element method [13], finite
element method [14,15], finite volume method [16,17], and finite difference method [18,19],
have been proposed to analyze heterogeneous layered porous media. In contrast with
conventional mesh-generated techniques, meshfree approaches have attracted much at-
tention in recent years because of their characteristics of simplicity, meshfree, and the
capability to deal with engineering problems with complex geometry [20–26]. Of the wide
variety of meshfree approaches, the Trefftz method is one of the widespread boundary-type
meshless methods for dealing with steady-state Laplace-type problems, where computed
results are approximated as a series of basis functions, completely satisfying the governing
Laplace-type equations [27–29].

A comprehensive comparison of the collocation Trefftz method was proposed by Li
et al. [30]. It has been concluded that the collocation Trefftz method is the simplest algo-
rithm and provides the most accurate approximations with an optimal numerical stability.
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As the system of linear equations obtained from the collocation Trefftz method is ill-posed,
the application of the collocation Trefftz method is less widespread [31]. Prior studies have
demonstrated that applications of the collocation Trefftz method may be limited to linear
and stationary problems. Recently, a study on modeling the subsurface flow problems with
transient moving boundaries utilizing the Trefftz method was developed [12]. Moreover,
the space–time collocation Trefftz method was developed to deal with the transient ground-
water inverse problems [24]. However, the engineering applications of the Trefftz method
with complete Trefftz functions for dealing with transient fluid flow through heterogeneous
porous media have been less studied, which is what initiated this research.

The pore network model and the self-organized percolation (SOP) model may perform
well compared with computational fluid dynamics modeling and the lattice Boltzmann
method [32,33]. In contrast with other numerical methods, we developed a meshless
method using the Trefftz space–time basis function. The proposed method is rooted in the
Trefftz method, which is more like the semi-analytical method. Consequently, the proposed
method is advantageous for dealing with problems with complex geometry because of its
characteristics of simplicity and being meshfree. The proposed method may also be used
to integrate regional-scale hydrological models [34].

In this study, a novel meshless approach for modeling transient flows in heterogeneous
layered porous media is developed. In contrast to the conventional meshless method, the
proposed approach is categorized into the boundary-type meshless method, such that the
collocation points are placed only on the boundaries of the domain. Furthermore, we devel-
oped a boundary-type meshless method combining the conventional Trefftz method with
the space–time collocation scheme. The proposed method is advantageous for dealing with
engineering problems with a complex geometry because of its characteristics of simplicity
and being meshfree. Based on the superposition principle, numerical approximations were
approximated using the space–time basis functions of the governing equation. The numeri-
cal approximations of the problem were solved with boundary and initial data assigned on
the space–time boundaries, which combined spatial and temporal discretizations in the
space–time domain. Accordingly, the transient flows through the heterogeneous layered
porous media in the space–time domain are solved without adopting the time-marching
technique. The remainder of this research is organized as follows: the methodology is
introduced in Section 2. In Section 3, a convergence analysis is carried out to investigate
the accuracy and the stability of the proposed method. Several numerical examples are
presented in Section 4. Finally, specific discussion of this research is provided in Section 5.

2. The Methodology
2.1. Governomg Equations

The two-dimensional diffusion equation used to describe transient flows is expressed
as follows:

∂2h(r, θ, t)
∂r2 +

∂h(r, θ, t)
r∂r

+
∂2h(r, θ, t)

r2∂θ2 =
SS
k

∂h(r, θ, t)
∂t

, (r, θ, t) ∈ Ωt, (1)

where h is the total head, r is the radius, t is the time, θ is the polar angle, Ss is the volumetric
specific storage, k is the hydraulic conductivity, and Ωt is the space–time domain. For
modeling transient flows in a porous media, the initial and boundary conditions are
required, as follows:

h = H0(r, θ, t = 0), (r, θ, t) ∈ Ωt, (2)

h = HD(r, θ, t), (r, θ, t) ∈ ∂Ωt, (3)

hn =
∂h
∂n

= HN(r, θ, t), (r, θ, t) ∈ ∂Ωt, (4)

where H0 is the initial total head, HD is the Dirichlet boundary data, and HN is the
Neumann boundary data.
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2.2. The Space–Time Trefftz Method

The space–time Trefftz method utilizing Trefftz functions originates from the Trefftz
method [12,21,24]. For a simply connected domain, one usually locates the source point
in the space–time domain; the number of source points is only one for the proposed
space–time Trefftz method. The approximation of Equation (1) can be expressed as follows:

h(r, θ, t) ≈
m

∑
p=1

s

∑
q=1

ApqTpq(r, θ, t), (5)

where Apq is a unknown coefficient, Tpq(r, θ, t) is the basis functions [24], and m and s
denote the order of the basis functions. Considering the positive basis functions, we have
the following:

Tpq(r, θ, t) =
{

rq cos(qθ), rq sin(qθ), e−p2Dt J0

(
pr),e−p2Dt Jq(pr) cos(qθ), e−p2Dt Jq(pr) sin(qθ)

}
, (6)

where D is the hydraulic diffusivity expressed as D = k/SS, J0 is the Bessel function of the
first kind, and Jq is the Bessel function of the first kind of the q order. Considering transient
flows in heterogeneous layered porous media, we may write the following:

p = g

√
D1

Di
, (7)

where g ranges from 1 to m; D1 is the hydraulic diffusivity of first subdomain; and i denotes
the ith subdomain, which means that the proposed method is applicable to transient flows
in porous media including many layers. Inserting Equation (7) into Equation (6) obtains
the following:

Tpqi(r, θ, t) =

{
rq cos(qθ), rq sin(qθ), e−g2D1t J0(g

√
D1

Di
r),e−g2D1t Jq(g

√
D1

Di
r) cos(qθ), e−g2D1t Jq(g

√
D1

Di
r) sin(qθ)

}
. (8)

Applying the Dirichlet boundary condition obtains the following:

hi(r, θ, t) ≈ A1 +
s
∑

q=1
A2q r̂q cos(qθ)+

s
∑

q=1
A3q r̂q sin(qθ) +

m
∑

g=1
A4ge−g2 t̂ J0(g

√
D1
Di

r̂)+

m
∑

g=1

s
∑

q=1
Jq(g

√
D1
Di

r̂)[A5gq cos(qθ) + A6gq sin(qθ)]e−g2 t̂,
(9)

where A1, A2q, · · · , A6gq denote arbitrary constants that have to be evaluated, r̂ is the
dimensionless radius described as r̂ = r/R0, R0 is the characteristic length, and t̂ is the
dimensionless time written as t̂ = tD1/R2

0. Applying the Neumann boundary condition
obtains the following:

∂hi(r, θ, t)
∂n

≈
s

∑
q=1

A2qT2
′ +

s

∑
q=1

A3qT3
′ +

m

∑
g=1

A4gT4
′ +

m

∑
g=1

s

∑
q=1

A5gqT5
′ +

m

∑
g=1

s

∑
q=1

A6gqT6
′. (10)

where n is the outward normal direction. The notation in Equation (10) is listed in Table 1.

2.3. The Continuity Conditions of the Interface

To model transient flows in heterogeneous layered porous media, the domain de-
composition method (DDM) was utilized [35]. The continuity of the head and the flux
conservation at the interface between two layered porous media were considered.
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Table 1. The notation in Equation (10).

T2
′ q

R0

[ (
r̂q−1 cos(qθ) cos θ + r̂q−1 sin(qθ) sin θ

)
nx+(

r̂q−1 cos(qθ) sin θ − r̂q−1 sin(qθ) cos θ
)
ny

]
T3
′ q

R0

[ (
r̂q−1 sin(qθ) cos θ − r̂q−1 cos(qθ) sin θ

)
nx+(

r̂q−1 sin(qθ) sin θ + r̂q−1 cos(qθ) cos θ
)
ny

]
T4
′ − g

R0

√
D1
Di

(
J1(g

√
D1
Di

r̂) cos θnx + J1(g
√

D1
Di

r̂) sin θny

)
e−g2 t̂

T5
′ e−g2 t̂

 (
g

2R0

√
D1
Di
(Jq−1(g

√
D1
Di

r̂)− Jq+1(g
√

D1
Di

r̂)) cos(qθ) cos θ + qJq(g
√

D1
Di

r̂) sin(qθ) sin θ
r

)
nx+(

g
2R0

√
D1
Di
(Jq−1(g

√
D1
Di

r̂)− Jq+1(g
√

D1
Di

r̂)) cos(qθ) sin θ − qJq(g
√

D1
Di

r̂) sin(qθ) cos θ
r

)
ny


T6
′ e−g2 t̂

 (
g

2R0

√
D1
Di
(Jq−1(g

√
D1
Di

r̂)− Jq+1(g
√

D1
Di

r̂)) sin(qθ) cos θ − qJq(g
√

D1
Di

r̂) cos(qθ) sin θ
r

)
nx+(

g
2R0

√
D1
Di
(Jq−1(g

√
D1
Di

r̂)− Jq+1(g
√

D1
Di

r̂)) sin(qθ) sin θ + qJq(g
√

D1
Di

r̂) cos(qθ) cos θ
r

)
ny



An irregular domain, which was split into two subdomains, Ω1 and Ω2, as displayed
in Figure 1a, was considered. To model transient flows in heterogeneous layered porous
media, the irregular domain was divided into several sub-boundaries. The sub-boundaries
at the interface must satisfy the following boundary conditions:

h
∣∣Γ12 = h

∣∣Γ22 , k1
∂h
∂n
∣∣Γ12 = k2

∂h
∂n
∣∣Γ22 , (11)

where Γ12 and Γ22 are sub-boundaries at the interface shown in Figure 1a. Applying
the boundary data on boundary points, the following simultaneous linear equations are
obtained as follows:

AWcW = BW , (12)

AW =

 AΩ1 0Ω2

0Ω1 AΩ2

AI
∣∣Γ12 AI

∣∣Γ22

, cW =

[
cΩ1
cΩ2

]
, BW =

 BΩ1
BΩ2

BI

, (13)

AΩi =


1 r̂1 cos(θ1) r̂1

2 cos(2θ1) · · · Jq(
√

D1
Di

gr̂1) sin(qθ1)e−g2 t̂1

1 r̂2 cos(θ2) r̂2
2 cos(2θ2) · · · Jq(

√
D1
Di

gr̂2) sin(qθ2)e−g2 t̂2

...
...

...
. . .

...

1 r̂ν cos(θν) r̂ν
2 cos(2θν) · · · Jq(

√
D1
Di

gr̂ν) sin(qθν)e−g2 t̂ν

, (14)

AI =



(−1)i (−1)i(r̂1)
q cos(qθ1) (−1)i(r̂1)

q sin(qθ1) · · · (−1)i Jq(
√

D1
Di

gr̂1) sin(qθ1)e−g2 t̂1

(−1)i (−1)i(r̂2)
q cos(qθ2) (−1)i(r̂2)

q sin(qθ2) · · · (−1)i Jq(
√

D1
Di

gr̂2) sin(qθ2)e−g2 t̂2

...
...

...
. . .

...

(−1)i (−1)i(r̂v)
q cos(qθv) (−1)i(r̂v)

q sin(qθv) · · · (−1)i Jq(
√

D1
Di

gr̂v) sin(qθv)e−g2 t̂v

...
...

...
. . .

...
0 kiT2

′
(v) kiT3

′
(v) · · · kiT6

′
(v)


, (15)

where AΩ1 and AΩ2 are the Aw matrix depicted in Equation (13) for Ω1 and Ω2, respectively.
AI
∣∣Γ12 of the boundary Γ12 and AI

∣∣Γ22 of the boundary Γ22 are the AI matrices at the
interface. 0Ω1 and 0Ω2 are the zero matrices. cΩ1 and cΩ2 are vectors of the undetermined
coefficients of Ω1 and Ω2, respectively. BΩ1 and BΩ2 are vectors of the boundary values
of Ω1 and Ω2, respectively. ν and υ are the numbers of the subdomain and interface
points, BI =

[
0Γ12 0Γ22

]T, and 0Γ12 and 0Γ22 are zero vectors with a size of 2υ× 1 for the
Dirichlet and Neumann boundary conditions at the interface, satisfying flux conservation
and continuity of the head for the heterogeneous layered porous media problem.
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Figure 1. Collocation points on the (a) space domain and (b) space–time domain. Figure 1. Collocation points on the (a) space domain and (b) space–time domain.

By solving Equation (12), we can obtain two sets of unknown coefficients, cΩ1 and
cΩ2 , for subdomains Ω1 and Ω2, respectively. The computed head at the inner points
can then be computed by Equation (5), utilizing AΩ1 and BΩ1 for Ω1, and AΩ2 and BΩ2

for Ω2. In this study, the commercial program MATLAB backslash operator was utilized
to solve Equation (12). The schematic diagram for modeling the transient flows in the
heterogeneous layered porous media is displayed in Figure 2.

The continuity conditions at the interface of the subdomains are satisfied in terms
of the DDM, such that the proposed method is capable of dealing with transient flows in
heterogeneous layered porous media. Numerical solutions are approximated based on
the superposition theorem using the space–time basis functions of the governing equation.
Using the space–time collocation scheme, the numerical solutions of the problem are
solved with boundary and initial data assigned on the space–time boundaries, as shown in
Figure 1b. The spatial and temporal discretizations are then combined in the space–time
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domain. Accordingly, the transient flows through the heterogeneous layered porous media
in the space–time domain can be solved without using the time-marching scheme.
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End

Step 2 －  Apply the subdomain initial and boundary

                conditions using Equations (13), (14) and (15)

Step 3 －  Solve the heterogeneous layered porous media

                 problems using Equations (12) and (9)

Step 4 －  Compute the absolute error of the computed 

                 results

Step 1 －  Collocate the source and boundary points

Figure 2. The numerical procedure of this study.

3. Convergence Analysis of Transient Flows in Heterogeneous Layered Porous Media

In this section, convergence analysis of the transient flows in heterogeneous layered
porous media is carried out. To illustrate the accuracy of the approximations, the error
measures are defined as

RMSE =

√√√√ 1
NI

NI

∑
i=1

[h(ri, θi, ti)− ĥ(ri, θi, ti)]
2
, (16)

MAE = max{
∣∣∣ĥ(ri, θi, ti)

∣∣∣− |h(ri, θi, ti)|}, 1 ≤ i ≤ NI , (17)

where h(ri, θi, ti) is the exact solution, ĥ(ri, θi, ti) is the approximate solution, RMSE de-
notes the root mean square error, MAE denotes the maximum absolute error, and NI is
the number of scattered inner points. Here, the scattered inner points were uniformly
distributed in the space–time domain.

Transient flows in two-layered porous media satisfy the diffusion equation depicted in
Equation (1) in two dimensions over an irregular domain. The geometry for this problem is

∂Ωt =

{
(r, θ, t)

∣∣∣∣ r = 2
(
1 + 0.1tanh(10 sin(10θ + π

3 )),
0 ≤ θ ≤ 2π, 0 ≤ t ≤ 1

}
. (18)

The initial data for subdomains Ω1 and Ω2 are imposed as follows:

h1(r, θ, t = 0) = sin(r sin θ)r cos θ, (r, θ, t = 0) ∈ Ω1 (19)

h2(r, θ, t = 0) = sin(

√
D1

D2
r sin θ)r cos θ, (r, θ, t = 0) ∈ Ω2, (20)
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where h1(r, θ, t = 0) and h2(r, θ, t = 0) are the initial data for subdomains Ω1 and Ω2, re-
spectively. D1 and D2 are the hydraulic diffusivity in layer 1 and 2, respectively. The boundary
conditions for subdomain Ω1 and Ω2 are prescribed based on the following functions:

h1(r, θ, t) = e−2D1t sin(r sin θ)r cos θ, (r, θ, t) ∈ ∂Ω1, (21)

h2(r, θ, t) = e−2D1t sin(

√
D1

D2
r sin θ)r cos θ, (r, θ, t) ∈ ∂Ω2. (22)

The exact solution is the function as follows:

h = e−2D1t sin(

√
D1

Di
r sin θ)r cos θ, (23)

where Di is the hydraulic diffusivity of the ith subdomain. The hydraulic diffusivity and hy-
draulic conductivity in two subdomains were set to be D1 = 1 m2h−1 and D2 = 0.25 m2h−1,
and k1 = 2 m1h−1 and k2 = 1 m1h−1. The final elapsed time is 1 h. The boundary points
are collocated on the boundary, as illustrated in Figure 1b. For simulating transient flows
in two-layered porous media, DDM is utilized [35]. The domain boundary can be divided
into several subdomains.

The Dirichlet boundary conditions are based on Equations (21) and (22). The sub-
boundaries at the interface, including Γ12 and Γ22, must satisfy the continuity of flows and
the flux conservation based on Equation (11).

Figure 3a shows the error versus the order of the basis functions. It appears that
approximations with a high accuracy are acquired then the order is superior to 14. Addi-
tionally, promising results may be obtained when the order of the basis function ranges
from 14 to 26. It seems that the optimal order may depend on the nature of the prob-
lems. The relationship between the absoluter error and the number of boundary points
is displayed in Figure 3b. The results obtained illustrate that approximations with a high
accuracy are achieved when the number of boundary points is greater than 1800. From the
results of this convergence analysis, the number of the boundary points and the order of
the basis functions were determined to be 2000 and 15, respectively.
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following functions.  
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Figure 3. Convergence analysis: (a) error versus the order and (b) error versus the boundary point
number.

4. Numerical Examples
4.1. Transient Flows in Two-Layered Porous Media

Transient flows in two-layered porous media satisfy the diffusion equation depicted in
Equation (1) in two dimensions over an irregular domain. The geometry for this problem,
as shown in Figure 4a, is

∂Ωt =

{
(r, θ, t)

∣∣∣∣∣ r = |sec(3θ )| sin(6θ) ,
0 ≤ θ ≤ 2π, 0 ≤ t ≤ 1

}
. (24)
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The initial data for subdomains Ω1 and Ω2 are imposed as follows.

h1(r, θ, t = 0) = sin h(r sin θ)r cos θ, (r, θ, t = 0) ∈ Ω1 (25)

h2(r, θ, t = 0) = sin h(

√
D1

D2
r sin θ)r cos θ, (r, θ, t = 0) ∈ Ω2 (26)

The boundary conditions for subdomains Ω1 and Ω2 are prescribed based on the
following functions.

h1(r, θ, t) = e2D1tsin h(r sin θ)r cos θ, (r, θ, t) ∈ ∂Ω1 (27)

h2(r, θ, t) = e2D1tsin h(

√
D1

D2
r sin θ)r cos θ, (r, θ, t) ∈ ∂Ω2 (28)

The exact solution is the following function:

h = e2D1tsin h(

√
D1

Di
r sin θ)r cos θ. (29)

In this example, the hydraulic diffusivity and hydraulic conductivity in the two
subdomains were set to be D1 = 1

9 m2h−1 and D2 = 1 m2h−1, and k1 = 2 m1h−1 and
k2 = 6 m1h−1. The final elapsed time is 1 h. The order of the basis functions is 17. There
are 2026 boundary points for this domain. This example involves two-dimensional space
and one-dimensional time. The space–time domain is therefore transformed into a three-
dimensional object domain, as shown in Figure 4b. The boundary points are placed on the
boundary, as illustrated in Figure 4b. For simulating transient flows in two–layered porous
media, DDM is utilized [35]. The domain boundary can then be split into two subdomains.
The Dirichlet boundary conditions are prescribed based on Equations (27) and (28). Based
on Equation (11), the sub-boundaries at the interface, including Γ12 and Γ22, must satisfy
the continuity of flows and the flux conservation.

To compare the accuracy of our method with the analytical solution, the profiles
of the results at different times are selected, as presented in Figure 5. Figure 5 shows
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that the computed results adopting our approach are completely consistent with the
analytical solution.
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To examine the accuracy of our method, the absolute error of the approximate solutions
with the exact solution is evaluated. Figure 6 displays the absolute error at different
simulation times. From Figure 6, the MAE is in the order of 10−10, which indicates that our
approach may acquire results with a high accuracy.

To show the accuracy of the computed result from the proposed method and that from
conventional mesh-generated techniques, we conducted a comparison example where
transient flows in two-layered porous media satisfy the diffusion equation depicted in
Equation (1) in two dimensions over a rectangular domain. The length and the width of the
space domain are 4 m. The initial data for subdomains Ω1 and Ω2 are imposed as Equations
(25) and (26). The boundary conditions for subdomains Ω1 and Ω2 are prescribed based on
Equations (27) and (28). The exact solution for solving this example is as Equation (29).



Appl. Sci. 2021, 11, 3421 11 of 21

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 24 
 

 

(c) t = 1.0 h 

Figure 5. Comparison of the results for (a) t = 0.2 h, (b) t = 0.6 h, and (c) t = 1 h. 

  

(a) t = 0.2 h (b) t = 0.6 h 

Appl. Sci. 2021, 11, x FOR PEER REVIEW 13 of 24 
 

 

(c) t = 1.0 h 

Figure 6. Absolute errors at different times: (a) t = 0.2 h, (b) t = 0.6 h, and (c) t = 1 h. 

To show the accuracy of the computed result from the proposed method and that 

from conventional mesh-generated techniques, we conducted a comparison example 

where transient flows in two-layered porous media satisfy the diffusion equation depicted 

in Equation (1) in two dimensions over a rectangular domain. The length and the width 

of the space domain are 4 m. The initial data for subdomains 1  and 2
 are imposed 

as Equations (25) and (26). The boundary conditions for subdomains 1  and 2  are 

prescribed based on Equations (27) and (28). The exact solution for solving this example 

is as Equation (29). 

In this example, the hydraulic diffusivity and hydraulic conductivity in the two sub-

domains were set to be 12
1 hm 

9

1 −=D  and 12
2 hm 1 −=D , and 11

1 hm 2 −=k  and 

11
2 hm 6 −=k . The final elapsed time is 4 h. The order of the basis functions is 16. There 

are 2600 boundary points for this domain. 

This example was solved using both the finite difference method (FDM) and the pro-

posed method. For the FDM analysis, the spatial and temporal discretizations for the 

problem must be considered separately. The central difference approximation was 

adopted for the spatial discretization, and the implicit scheme was adopted for time dis-

cretization. For FDM, we considered each length of Δx along the x axis, each length of Δy 

along the y axis, and each length of Δt along the t axis to be 0.1 m, 0.1 m, and 0.001 h, 

respectively. We then compared the approximations of our method with those of the 

FDM. 

Figure 7 presents the absolute error versus the simulation time. From Figure 7, the 

magnitude of the absolute error increases with the simulation time in the FDM. However, 

our approach may avoid error propagation. The results demonstrate that highly accurate 

numerical solutions can be obtained using our approach. Moreover, the accuracy of the 

error is of the order of 10−7 to 10−8. 

Figure 6. Absolute errors at different times: (a) t = 0.2 h, (b) t = 0.6 h, and (c) t = 1 h.

In this example, the hydraulic diffusivity and hydraulic conductivity in the two
subdomains were set to be D1 = 1

9 m2h−1 and D2 = 1 m2h−1, and k1 = 2 m1h−1 and
k2 = 6 m1h−1. The final elapsed time is 4 h. The order of the basis functions is 16. There
are 2600 boundary points for this domain.

This example was solved using both the finite difference method (FDM) and the
proposed method. For the FDM analysis, the spatial and temporal discretizations for the
problem must be considered separately. The central difference approximation was adopted
for the spatial discretization, and the implicit scheme was adopted for time discretization.
For FDM, we considered each length of ∆x along the x axis, each length of ∆y along the y
axis, and each length of ∆t along the t axis to be 0.1 m, 0.1 m, and 0.001 h, respectively. We
then compared the approximations of our method with those of the FDM.

Figure 7 presents the absolute error versus the simulation time. From Figure 7, the
magnitude of the absolute error increases with the simulation time in the FDM. However,
our approach may avoid error propagation. The results demonstrate that highly accurate
numerical solutions can be obtained using our approach. Moreover, the accuracy of the
error is of the order of 10−7 to 10−8.
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4.2. Transient Flows in Two-Layered Porous Media

Transient flows in two-layered porous media satisfy the diffusion equation depicted
in Equation (1) in two dimensions over a rectangular domain, as depicted in Figure 8a.
Two cases with different combinations of composite porous media are considered. The
geometry for case I, as shown in Figure 8a, is

∂Ωa1 = {(x, y, t)|−5 ≤ x ≤ 0,−5 ≤ y ≤ 5, 0 ≤ t ≤ 3}, (30)

∂Ωa2 = {(x, y, t)|0 ≤ x ≤ 5, −5 ≤ y ≤ 5, 0 ≤ t ≤ 3}. (31)
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The hydraulic diffusivity and hydraulic conductivity in the two subdomains were set
to be D1 = 100 m2h−1 and D2 = 10 m2h−1, and k1 = 100 mh−1 and k2 = 10 mh−1. The
initial condition is

ha(x, y, t = 0) = 10 m. (32)

The boundary conditions are

ha(−5, y, t) = 10 m, (33)

ha(5, y, t) = 4 m, (34)

∂ha(x,−5, t)
∂n

=
∂ha(x, 5, t)

∂n
= 0, (35)

where ha is the total head for case I.
The geometry for case II, as shown in Figure 8b, is

∂Ωb1 = {(x, y, t)|−5 ≤ x ≤ −2, −5 ≤ y ≤ 5, 0 ≤ t ≤ 3}, (36)

∂Ωb2 = {(x, y, t)|−2 ≤ x ≤ 5, −5 ≤ y ≤ 5, 0 ≤ t ≤ 3}. (37)

The hydraulic diffusivity and hydraulic conductivity in the two subdomains are set
to be D1 = 10 m2h−1 and D2 = 100 m2h−1, and k1 = 10 mh−1 and k2 = 100 mh−1. The
initial condition is

hb(x, y, t = 0) = 4 m. (38)

The boundary conditions are

hb(−5, y, t) = 10 m, (39)

hb(5, y, t) = 4 m, (40)

∂hb(x,−5, t)
∂n

=
∂hb(x, 5, t)

∂n
= 0, (41)

where hb is the total head for case II.
As this example may not have an exact solution to investigate the accuracy, we compare

the approximations at the final time with the steady-state solution. The steady-state solutions
for this two-layered porous media are prescribed based on the following equations:

h
∣∣Γ12 = h

∣∣Γ22 =
L2k1h

∣∣Γ14 + L1k2h
∣∣Γ24

L2k1 + L1k2
, (42)

h1 =
h
∣∣Γ12 − h

∣∣Γ14

L1
(x + 5) + h

∣∣Γ14 , (43)

h2 =
h
∣∣Γ24 − h

∣∣Γ22

L2
(x + 5) + h

∣∣Γ22 − (h
∣∣Γ24 − h

∣∣Γ22 )
L1

L2
. (44)

In case I and case II, the final time is 3 h. The order of the basis functions is 15. There
exists 7200 boundary points for domain, as illustrated in Figure 9. For modeling transient
flows in two-layered porous media, the DDM was utilized [35]. The domain boundary can
then be divided into several subdomains. The Dirichlet boundary conditions are prescribed.
Based on Equation (11), the sub-boundaries at the interface, including Γ12 and Γ22, must
satisfy the continuity of flows and the flux conservation.

The profiles of total head at the final time were selected to express the approximations,
as shown in Figure 10. The approximations at the final time from our approach were further
compared with the steady-state solution. It is found that the approximations utilizing our
approach may agree well with the steady-state solutions. The absolute difference at the
final time is depicted in Figure 11. The absolute difference for case I and case II is in the
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order of 10−6 and 10−4, as given in Figure 11. Results demonstrate that our approach may
obtain reasonable results for modeling transient flows in two-layered porous media.
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4.3. Transient Flows in Four-Layered Porous Media

The last example is modeling of transient flows in four-layered porous media, as
depicted in Figure 12. The diffusion equation depicted in Equation (1) in two dimensions
over a rectangular domain is considered. The geometry for this example is defined as

∂Ω1 = {(x, y, t)|−4.5 ≤ x ≤ 0, −4.5 ≤ y ≤ 0, 0 ≤ t ≤ 3}, (45)

∂Ω2 = {(x, y, t)|0 ≤ x ≤ 4.5, −4.5 ≤ y ≤ 0, 0 ≤ t ≤ 3}, (46)
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∂Ω3 = {(x, y, t)|−4.5 ≤ x ≤ 0, 0 ≤ y ≤ 4.5, 0 ≤ t ≤ 3}, (47)

∂Ω4 = {(x, y, t)|0 ≤ x ≤ 4.5, 0 ≤ y ≤ 4.5, 0 ≤ t ≤ 3}. (48)
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The hydraulic diffusivity and hydraulic conductivity in the two subdomains are set to
be D1 = 4 m2h−1, D2 = 3 m2h−1, D3 = 1.5 m2h−1, and D4 = 1 m2h−1, and k1 = 4 mh−1,
k2 = 3 mh−1, k3 = 1.5 mh−1, and k4 = 1 mh−1. The initial condition is

h(x, y, t = 0) = 5 m. (49)
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The boundary condition is

h(x, y, t) =

√
253− 76x

3
− 76y

3
m. (50)

As this example may not have exact solutions to investigate the accuracy, we compare
the approximations at different simulation times with the numerical solutions using the
FDM. In this example, the final elapsed time is 3 h. The order of the basis functions needs to
be 20. There are 6400 boundary points that exist for each domain, as illustrated in Figure 13.
For simulating transient flows in four-layered porous media, DDM is utilized [35]. The
domain boundary can then be divided into several subdomains. The Dirichlet boundary
conditions are prescribed. At the interface, the sub-boundaries, including Γ12, Γ22, Γ13, Γ41,
Γ23, Γ31, Γ32, and Γ42, must satisfy the continuity of flows and the flux conservation based
on the following equations:

h
∣∣Γ12 = h

∣∣Γ22 , k1
∂h
∂n
∣∣Γ12 = k2

∂h
∂n
∣∣Γ22 , (51)

h
∣∣Γ13 = h

∣∣Γ41 , k1
∂h
∂n
∣∣Γ13 = k4

∂h
∂n
∣∣Γ41 , (52)

h
∣∣Γ23 = h

∣∣Γ31 , k2
∂h
∂n
∣∣Γ23 = k3

∂h
∂n
∣∣Γ31 , (53)

h
∣∣Γ32 = h

∣∣Γ42 , k3
∂h
∂n
∣∣Γ32 = k4

∂h
∂n
∣∣Γ42 . (54)
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The approximations at different simulation times from our approach are further com-
pared with those of FDM. To apply FDM, discretization in the spatial and temporal domains
must be considered. For the spatial discretization, the domain is divided into sections, and
second derivatives of the diffusion equation for each grid point are approximated using
central difference formulas. For the time discretization, the implicit scheme is adopted. For
FDM, we consider each length of ∆x along the x axis, each length of ∆y along the y axis,
and each length of ∆t along the t axis to be 0.225 m, 0.225 m, and 0.01 h, respectively. Then,
we compare the approximations of our method with those of FDM.

The profiles of the total head at different simulation times are selected to express the
approximations, as shown in Figure 14. From Figure 14, it is found that the approximations
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utilizing our approach may be consistent with the FDM results. The results illustrate that
our approach may obtain reasonable results for modeling transient flows in four-layered
porous media.
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5. Discussion

This study is rooted in the Trefftz method and demonstrates a promising numeri-
cal solution for dealing with two-dimensional transient flows in heterogeneous layered
porous media. The comparison of the proposed method with previous studies depicts the
following advantages.

Various mesh-based numerical approaches have been utilized for dealing with the
transient and heterogeneous groundwater flow equation. In contrast to conventional
mesh-generated techniques, we developed the meshless method using the Trefftz space–
time basis function. The proposed method is advantageous for dealing with engineering
problems with a complex geometry because of the characteristics of simplicity and be-
ing meshfree.

Contrary to the conventional meshless method, the proposed method is categorized
into the boundary-type meshless method, such that the collocation points are only placed
on the boundaries of the domain. Furthermore, the proposed method combines the
conventional Trefftz method with the space–time collocation scheme, such that no inner
points are required in the analysis and all collocation points needed to place the space–time
boundaries are presented for the modeling of the two-dimensional transient flows in the
heterogeneous layered porous media. As a result, both the initial and boundary data
are regarded as boundary conditions on the space–time boundary, which is especially
advantageous for an irregular domain shape.

Using the space–time collocation, the initial value problem for simulating transient
flows in heterogeneous layered porous media is considered to be a problem of the inverse
boundary value, where the time marching for the initial value problem can be avoided.
Accordingly, the proposed method is advantageous for dealing with inverse problems
as well.

On the other hand, the limitations of the proposed method may be raised, as we need
to derive the Trefftz space–time basis function for the two-dimensional diffusion equation
in layered porous media in the space–time domain, in which the Trefftz basis functions
are obtained from the general solutions using the separation of variables. The solutions of
the governing equation are then approximated numerically based on the superposition
principle utilizing the space–time basis functions of the governing equation. Consequently,
the proposed method is limited to the linear governing equation with accessible general
solutions.

6. Conclusions

A novel meshless method for dealing with two-dimensional transient flows in het-
erogeneous layered porous media is presented in this article. The following key findings
are given.

To deal with transient flows in heterogeneous layered porous media, the continuity
conditions at the interface of the subdomains are satisfied in terms of the domain decompo-
sition method. Numerical solutions are approximated based on the superposition principle
adopting the space–time basis functions of the diffusion equation. Utilizing the space–time
collocation scheme, numerical approximations are solved with boundary and initial data
assigned on the space–time boundaries, which combine spatial and temporal discretiza-
tions in the space–time domain. The transient flows through heterogeneous layered porous
media in the space–time domain may therefore be solved without using the time-marching
scheme, which is the novelty of this study.

The results obtained show that an excellent agreement with the exact solution can be
acquired. Additionally, the proposed approach may be relatively simple, because we only
have to deal with the boundary data even with problems in heterogeneous layered porous
media. Finally, compared with the conventional time-marching scheme, highly accurate
solutions can be obtained and the error accumulation from the time-marching scheme can
be avoided.
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Nomenclature

r radius
r̂ dimensionless radius
t time
t̂ dimensionless time
R0 characteristic length
θ polar angle
SS volumetric specific storage
i ith subdomain
k hydraulic conductivity
ki hydraulic conductivity of ith subdomain
D hydraulic diffusivity
D1 hydraulic diffusivity of subdomain 1
Di hydraulic diffusivity of the ith subdomain
Ωt space–time domain
Ωi space–time domain of ith subdomain
H0 initial total head
HD Dirichlet boundary data
HN Neumann boundary data
Apq vector of unknown coefficients
T basis functions
Ti basis functions of ith subdomain
Γ12 sub-boundaries at the interface
Γ22 sub-boundaries at the interface
Aw system matrix
AΩi matrix of the ith subdomain
h total head
AI interface matrix
cw vectors of unknown coefficients
cΩ1 vectors of unknown coefficients
cΩ2 vectors of unknown coefficients
Bw vectors of boundary values
BΩ1 vectors of boundary values
BΩ2 vectors of boundary values
BI vectors of interface
0Ω1 zero matrices
0Ω2 zero matrices
0Γ12 zero vectors
0Γ22 zero vectors
m order of the basis functions
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s order of the basis functions
J0 Bessel function of the first kind
Jq Bessel function of the first kind of the qth order
nx outward normal direction
ny outward normal direction
BΩ1 vectors of boundary values
BΩ2 vectors of boundary values
ν numbers of subdomain points
υ numbers of interface points
NI numbers of scattered inner points
L1 length of subdomain 1
L2 length of subdomain 2
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