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Abstract: Collision-free distributed path planning for the swarm of unmanned aerial vehicles (UAVs)
in a stochastic and dynamic environment is an emerging and challenging subject for research in
the field of a communication system. Monitoring the methods and approaches for multi-UAVs
with full area surveillance is needed in both military and civilian applications, in order to protect
human beings and infrastructure, as well as their social security. To perform the path planning
for multiple unmanned aerial vehicles, we propose a trajectory planner based on Particle Swarm
Optimization (PSO) algorithm to derive a distributed full coverage optimal path planning, and a
trajectory planner is developed using a dynamic fitness function. In this paper, to obtain dynamic
fitness, we implemented the PSO algorithm independently in each UAV, by maximizing the fitness
function and minimizing the cost function. Simulation results show that the proposed distributed
path planning algorithm generates feasible optimal trajectories and update maps for the swarm of
UAVs to surveil the entire area of interest.

Keywords: 3D trajectory planning; unmanned aerial vehicle; distributed path planning; PSO; area
surveillance; dynamic fitness function

1. Introduction

Unmanned Aerial Vehicles (UAVs), known as drones, gained much popularity in
the area of surveillance due to their capability in vertical take-off and landing, and high
maneuverability, which provides various benefits in various platforms or environments.
UAVs can be also used for surveilling [1] providing security to the larger government or
private area known as estates [2], and also can be used for sensing and data collection [3,4].
However, when defining a mission, path planning plays a basic and crucial role in the
whole system. Generally speaking, when designing a path for UAV, it should reflect various
factors, including dynamic target point, obstacles avoidance both statically and dynamically,
the shortest pathfinding, as well as mission planning while surveilling. Nowadays, UAVs
are widely used for various purposes, especially for surveilling because of the small size and
lightweight, easy operational procedure, and tremendous benefits of easy access from one
place to another place. UAVs are gaining more popularity in surveillance. For this reason,
path planning for UAVs is more crucial, and it plays a fundamental role in the autonomous
flight system for unmanned aerial vehicles (UAVs). It refers to the optimal path planning
problem of an unmanned aircraft, which can be formulated as an optimization problem
of finding the most compatible path from source to destination. The feasible trajectory is
usually correlated with the path minimizing certain optimization indexes, for example,
energy consumption, flight risk, path length, etc. of certain path planning missions.

1.1. Related Work

While thinking about generating path planning for UAVs, we have to consider the
scenario, whether it is a two-dimensional (2-D) environment or a three-dimensional (3-D)
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environment. There are various path planning strategies regarding both 2-D and 3-D
environments. As we are working with UAVs, which are related to the 3-D environment,
we have focused mainly on path planning in the 3-D environment. There are so many
path planning algorithms regarding the 3-D environment, which can be categorized into
five categories [5]. These include, (i) Sampling-Based Algorithms, like, visibility graph,
corridor map [6], Rapidly-exploring Random Tree (RRT) [7], 3-D Voronoi [8] (ii) Node
Based Optimal Algorithms, such as, Dijkstra’s Algorithm [9], A* algorithm [10], D* al-
gorithm [11], (iii) Mathematics Model-Based Algorithms, like, Linear Programming and
Optimal Control [12], Binary Linear Programming [13], Nonlinear Programming [14,15],
(iv) Bio-inspired Algorithms, which can be divided into two types, Evolutionary Algo-
rithm [16], and Neural Network [17], and (v) Multi-fusion Based Algorithms [18]. There
are various types of Evolutionary Algorithm, such as, Genetic Algorithm [19], Memetic
Algorithm [20], Particle Swarm Optimization (PSO) [21], and Ant Colony Optimization
(ACO) [22], which are notable for the path planning of UAVs in the 3-D environment. Evo-
lutionary Algorithms are the algorithms that update the results in iteration-by-iterations.
In our proposed 3-D path planning methodology, we used Particle Swarm Optimization
(PSO), due to its benefits like the advantages of easy implementation, simple parameter
settings, fast convergence speed, and for which the PSO algorithm has been widely used
in various fields, such as, functions optimization, neural networks training, and fuzzy
logic system control are notable. However, it has some limitations too, like premature
convergence, route self-crossing. The authors in [23] suggest that this problem can be
solved by using the following techniques, (1) adjust important parameters iteratively;
(2) random grouping inversion strategy for avoiding premature convergence. In terms
of area coverage, various techniques have been suggested by various authors, such as
the authors in [24] decomposed the concave region into a convex sub-region, then the
flight direction was determined based on the width of the convex polygon. Some adjacent
sub-areas were merged to avoid unnecessary repetitive movement. In [25], the authors
proposed a new approach relative to UAVs’ capabilities assessment by using hierarchical
fuzzy inference and established a cost model for UAVs’ mission execution. The authors
in [26], believed that a rectangle can be circumscribed by any polygon. The idea of poly-
gon region segmentation was adopted by the authors in [27]. The sweeping technique
was used for area decomposition by the authors in [28], to minimize the number of UAV,
turns inside the subareas by generating the optimal number of lanes. In [29], for moving
targets, the formation coverage search method was proposed. The authors in [30–33]
discussed distributed path planning using the PSO algorithm and the designing of the
quadrotor control.

1.2. Main Contributions

The objective of this paper is to develop a distributed path planner for multi-UAVs
with full coverage for certain operational areas with a priority-based mechanism. For
this, we propose a distributed trajectory planner based on Particle Swarm Optimization
(PSO) and Bresenham Algorithm. PSO is used to generate the optimal trajectory, while
the Bresenham algorithm is used for ensuring the full coverage of the operational area. To
generate the optimal trajectory, we propose a multi-objective fitness function, where energy
consumption and flight risk are taken care of, as well as the maneuverability and feasibility
of the paths are taken into consideration.

This paper is organized as follows, we provide a System Model for UAVs Path Plan-
ning and representation of the operational area in Section 2. In Section 3, we discuss the
mathematical model for optimal trajectory planning. In this section, we design the Dy-
namic Fitness Function of the Objective and Constraint function of UAVs. In Section 4, we
propose a distributed trajectory planner based on PSO and Bresenham algorithm. Section 5
contains Simulation results and discussions about our implementation of the proposed
trajectory planner. In Section 6, we conclude our paper.
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2. System Model for UAV Path Planning

We have built a Matlab-based operational environment where we mimicked a real-life
environment like terrain and flat surfaces to represent the 3-D environment. This work is a
continuation of our previous work [1], where we derived the optimal surveillance trajectory
for multiple UAVs and detected the existence of any illegal UAVs, which had a centralized
control system. In that scenario, the trajectory planner did not have the functionality of full
coverage for a certain operational area. In this paper, we developed a system model for
full coverage of the operational area for multi-UAVs in a distributed manner along with a
priority-based mechanism.

2.1. Problem Description

In our operational scenario, which is a 3D operational space with local maxima was
surveilled by the monitoring drones with specifications mentioned by Hu Teng et al. [1],
which were employed to detect the existence of illegal drones. During the surveillance, we
explain that the monitoring drone cannot infiltrate any sensitive or important area, which
is restricted by regulations. To avoid complexity or being destroyed as a hostile drone,
we stipulate that the monitoring drone cannot also access the ground-base station (GBs)
area, which is equipped with ground-based drone detection systems. Furthermore, the
communication between monitoring drones is done with each other in an ad-hoc manner
or UAV-to-ground link communication system. Therefore, monitoring drones can share
information mutually during the execution of flight assignments. In our implementation,
we set our operational area into a 20 × 20 grid matrix and differentiated the whole opera-
tional space into several small unit areas, known as cells, where some cells are considered
as restricted areas. Operational area representation and proposed trajectory planning are
discussed in the following sections.

2.2. Operational Area Representation

To resemble a real-life environment, we adopt a variation of the Foxhole Shekel
function in our paper to represent the terrain, shown in Figure 1, which is formulated as
expressed in Equation (1) [34],

Fk(x) =
10

∑
a= 1

0.1

∑10
b=1(xb − ηab)

2 + γa
(1)

where parameters η and γ are used to vary the shape of the terrain. We adopted this
terrain because there is a shortage of widely-accepted benchmarks in the field of trajectory
planning for UAVs. Therefore, the local maxima of the landscape can be considered
mountains [34].

Figure 1. Terrain representation.
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2.3. Trajectory Planning

In our proposed path planning, we generated a trajectory in a sequence of waypoints
in three-dimensional space using the particle swarm optimization algorithm [1]. Therefore,
vector form is used for encoding feasible path where the vector element Ti = (ai, bi, ci) can
be used for representing the ith waypoint, which can be shown as,

Tr = T1, T2, T3, . . . , TNw (2)

where Nw is known as the number of waypoints in a feasible trajectory, r and w are positive
integer numbers, and the number of trajectories is proportional to the number of waypoints.

3. Mathematical Model for Optimal Trajectory Planning

A technique in this paper is introduced based on a distributed path planning, where
each UAV is equipped with a PSO optimization algorithm. The trajectories are, thus, not
computed in a central unit, but in a distributed manner on the swarm of UAV. Therefore,
the communication between the swarm of UAV is only used to share position and location
among themselves, which is considered as a target to be tracked; each UAV then computes
its trajectory. Therefore, this results in a distributed path planning. To design a mathe-
matical model for an optimal trajectory planner we designed the required functions to
get dynamic fitness values. The design of function consists of three types, such as fitness
function, objective function, and constraint function. The mathematical model for these
optimal functions is discussed in the following sections.

3.1. Dynamic Fitness Function Design

In this section, we propose a multi-objective fitness function consisting of eight op-
timization indexes to assess the trajectories generated by the proposed multi-UAVs path
planning algorithm. We divided optimization indexes into two groups and assign different
priority levels. This is due to the different importance of optimization indexes during the
optimization process. They are known as, (1) the optimization objectives, which need to
maximize their value to derive an optimal trajectory, and (2) the constraints which must
satisfy by UAVs due to their physical limitations. Table 1 shows these classifications and
the equations to calculate them. Therefore, we formulate the dynamic fitness function as,

Fdynamic_ f itness = Fobj + Fconst (3)

where Fobj is the objective function, focusing to gain maximum values in terms of other
parameters, Fconst is the physical and environmental limitations, should be accomplished
before trajectory planning.

Table 1. Optimization index Classification.

Objective Function

Name Energy Consumption Flight Risk Estimation Surveillance Area
Importance

Abbreviation EC FRE SAI

Equation (5)–(10) (11)–(14) (15)–(17)

Value/Range [0, 1] [0, 1] [0, 1]

Constraint Function

Name Aerial
Constraint

Restricted
Area

Constraint

Turning
Angle

Constraint

Operational
Area

Constraint

Coverage
Range

Constraint

Collision
Avoidance

Abbreviation AC RAC TAC OAC CRC CA

Equation (19) (20) (21) (22) (23) (24)

Value/Range 0 0 0 0 0 0
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3.2. Objective Function Design

We defined the objective function as an optimization criterion to improve the quality of
path planning [1]. Therefore, we define the objective function as a weighted component of
energy consumption, flight risk estimation, and important area surveillance and formulated
the objective function as in Equation (4),

Fobj = −w1FEC − w2FFRE + w3FSAI (4)

where FEC, FFRE, and FSAI are defined to be in the range of [0, 1] and wi (i = 1, 2, 3) were used
for expressing the weight of the objective component. Our main focus was on generating
the optimum path with less energy consumption, environmental flight risk, but higher
surveillance. Therefore, we designate surveillance area importance as the positive and the
rest areas negative values.

3.2.1. Energy Consumption (EC)

Due to the physical limitations of small UAV, like battery power management, we
need to design the path for UAV carefully so that it can surveille the path within its limited
battery power. Therefore, it is always preferable to a path with less fuel consumption.
Assuming the UAV having constant velocity during the operation time, then we formulated
energy consumption, EC as,

FEC =
∑Nw−1

i=1 ECi

maxEC
(5)

where,
ECi = Pw ∗ ti,i+1 (6)

ti,i+1=
di,i+1

v
(7)

di,i+1 =

√
(xi+1 − xi)

2 + (yi+1 − yi)
2 + (zi+1 − zi)

2 (8)

where ECi is the energy consumption from the ith waypoint to (i + 1)th waypoint. Pw the
energy consumption of the UAV at velocity v for unit time, while ti,i+1 is the duration of
flight time taken by UAV from ith waypoint to (i + 1)th waypoint. di,i+1 is the Cartesian
distance of a flight from ith waypoint to (i + 1)th waypoint. We normalized the energy
consumption and formulated it as, max EC,

maxEC = (Nw − 1) ∗ Pw ∗
dmax

v
(9)

where,
dmax =

√
X2 + Y2 + Z2 (10)

where X, Y, and Z are the boundary condition of operation space in the 3-D environment.

3.2.2. Flight Risk Estimation (FRE)

Some physical limitations need to be overcome during flight time as those limitations
make the UAV vulnerable to harsh weather conditions during the surveillance, like rain,
strong winds or snow, etc. Additionally, flying at high altitudes can be another big risk as
higher altitudes pose stronger winds, which may increase the risk or uncertainty of being
accidentally destroyed. Based on the above scenario, we define two kinds of flight risks:

• Environmental Risk

The environment consists of a wide range of random characteristics variables which
makes it difficult to build a model that precisely measures the environmental risk. Therefore,
for removing complexity, we randomly generated an environmental risk value for each
waypoint. That is, environmental risk, rer

i, i + 1, between the ith waypoint and (i + 1)th
waypoint is defined as the sum of their environmental values.
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• High Altitude Risk

High altitude risk is an absolute difference in flying altitude between the two way-
points. High altitude risk, rhar

i, i + 1, can be formulated as,

rhar
i, i + 1 = η ∗ (zi+1 − zi) (11)

where η represents a constant parameter control.
Since the flying risk a location-dependent parameter, it changes accordingly to the

environment depending only on the weather conditions and flying altitude during the
flight time. Therefore, flight risk estimation can be formulated as from Equations (12)–(14),

FFRE =
∑Nw−1

i = 1 FREi

maxFRE
(12)

FREi = ϕERrer
i,i+1 + ϕHARrhar

i,i+1 (13)

where FREi is the flight risk estimation from the ith waypoint to the (i + 1)th waypoint,
ϕHAR is the total high altitude risk, and ϕER is total environmental risk. We normalized
the flight risk estimation and formulated it as, max FRE:

maxFRE = (Nw − 1) ∗ [ϕHAR ∗ Z + ϕER ∗ (2 ∗maxrer)] (14)

where maxrer represents the maximal environmental risk.

3.2.3. Surveillance Area Important (SAI)

We divided the whole operational area into three different important levels, which
are considered the cell edge area, middle area, and center area of the total operational area.
Cell edge areas are the areas that are located in the boundary line of operational areas,
and the middle areas are the adjacent cells or inner cells of our operational area. Since
the penetration of any illegal drones directly come from the edge area, we have assigned
the highest priority of surveillance to those areas, which means the cell edge area should
be surveilled first in our implementation. Whereas the center cells are the most secured
area among the total operational area, we assigned the least SAI Value for the center area.
In this way, we have assigned the order of priority to surveille whole area coverage. The
normalized SAI value can be calculated by Equations (15)–(17),

FSAI =
∑Nw

i=1 SAIi(t)
maxSAI

(15)

SAIi = ∑
cell xεN(i)

vcellx(t) (16)

maxSAI = Nw ∗ Ni ∗ vmax (17)

where SAIi(t) the SAI values of the ith waypoint, vcellx(t) is the cell value of x at the
tth flight time, Ni is the supervised cell set from the ith waypoint, vmax is the maximal
SAI value.

3.3. Constraint Function Design

A negative constraint function was designed to evaluate the feasibility of generated
path. This is due to the regulations of the external environment, which the UAV has to
follow like UAV cannot through a military base, sensitive govt. area etc. When they fulfill
the conditions, each constraint is set to be equal to 0, otherwise, a negative penalty value P
is given. A brief description of the constraint function is given below. We formulated the
constraint function as:

Fconst = AC + RAC + TAC + OAC + CRC + CA. (18)
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3.3.1. Aerial Constraint (AC)

While generating a feasible path, monitoring drones should consider terrain areas as
monitoring drones cannot go through the terrain area to avoid collisions with mountains.
To avoid collisions, the flying altitude of monitoring drones should be higher than the
terrain altitude. We represented terrain in aerial constraint which can be described as:

AC = 0, AC =
Nw

∑
i=1

ACi (19)

where,

ACi =

{
P, i f zj < Area(xi, yi)

0, otherwise

3.3.2. Restricted Area Constraint (RAC)

For some specific areas (e.g., government-sensitive regions), monitoring drones cannot
be allowed to enter due to the regulations. A legal path should be carefully designed to
avoid those forbidden areas. For simplicity, we assume that those forbidden areas are
rectangles. Therefore, the forbidden area constraint can be formulated as:

RAC = 0, RAC =
Nw

∑
i=1

RACi (20)

where,

RACi =

{
P, i f waypoint in range

(
xj, yj

)
0, otherwise

where,
range(xj, yj) =

{
lx ≤ xj ≤ ux

}
∩
{

ly ≤ yj ≤ uy
}

where Nw is the number of waypoints, lx, ly are the lower bounds of x and y, ux, uy is the
upper bounds of x and y.

3.3.3. Turning Angle Constraint (TAC)

The turning angle explains the maneuverability of a UAV during the flight from the
previous and current directions [1,35,36]. The Path for UAVs should be adequately smooth
to maneuver through easily [37]. Therefore, the turning angle of the UAV is required to be
less than the maximum turning angle [35]. This constraint can be formulated as follows,

TAC = 0, TAC =
Nw−1

∑
i=2

TACi (21)

where,

TACi =

{
P, i f θ > θmax
0, otherwise

where θ defines the turning angle of the UAV in 3-D directions (xi, yi, zi), and θmax is the
maximum tolerable turning angle.

3.3.4. Operational Area Constraint (OAC)

For feasible path planning, the UAV must stay inside the operational area to avoid
ambiguity. Thus, a negative penalty P is added in the constraint function if any unwanted
event occurs. The operational area constraint of a mission can be formulated as follows:

OAC = 0, OAC =
Nw

∑
i=1

OACi (22)



Appl. Sci. 2021, 11, 3417 8 of 20

where,

OACi =

{
0, i f waypoint in map

(
xj, yj

)
P, otherwise

where,
range(xj, yj) =

{
lx ≤ xj ≤ ux

}
∩
{

ly ≤ yj ≤ uy
}

where Nw is the number of waypoints, lx, ly are the lower bounds of x and y, ux, uy is the
upper bounds of x, and y, respectively.

3.3.5. Coverage Range Constraints (CRC)

For the whole coverage, UAV needs to surveille all the areas. If the path planning
includes the coverage area, no penalty is given. Otherwise, a negative value is given
as a penalty. When the trajectory is generated for each particle, its waypoint values are
compared with the important area’s waypoint value. The important area’s waypoints value
are divided into 4 sub-areas. If any value falls between those ranges, no penalty is given.
Otherwise, a negative penalty is given. Then, that waypoint’s value is updated accordingly.
Coverage range constraint can be formulated as:

CRC = 0, CRC =
Nw

∑
i=1

CRCi (23)

where,

CRCi =

{
P, i f waypoint i in Range

(
xj, yj

)
0, otherwise

where,
range

(
xj, yj

)
=
{

lx ≤ xj ≤ ux
}
∩
{

ly ≤ yj ≤ uy
}

where Nw is the number of waypoints, lx, ly are the lower bounds of x and y, ux, uy is the
upper bounds of x and y.

3.3.6. Collision Avoidance (CA)

When multiple UAVs are used for a complex surveillance mission, the paths should
be carefully designed for UAVs to remove the collisions among them, which is considered
one of the most important tasks for feasible path planning. For separated trajectories, a
minimum distance should be kept between UAVs to avoid collisions. Therefore, collision
avoidance constraint can be described as,

CA = 0, CA =
Np

w

∑
i=1

Np
w

∑
j=1

CAi (24)

where,

CAi=

{
P, i f dmn

ij < dmin

0, otherwise

where dmin is the minimum safe distance to avoid the collision, duv
ij is the Cartesian distance

between the ith waypoint of pth UAV trajectory and the jth waypoint of qth UAV trajectory.

4. Proposed Distributed Trajectory Planner Based on PSO and Bresenham Algorithm

In this section, we have demonstrated the working procedure of the proposed multiple
UAV distributed path planning, which is based on PSO and Bresenham algorithm, as we
explain in the following sections. We divided the whole operation area into 20 × 20 grids
and each cell has a specific cell value to keep the track of historical values of SAI.
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4.1. Particle Swarm Optimization

Particle Swarm Optimization (PSO), a relatively new family of algorithms that may be
used to find optimal or near-to-optimal solutions. It is an optimization technique that provides
an evolutionary-based search result on numerical and qualitative problems. It optimizes
a problem by iteratively trying to improve a candidate solution. It is inspired by group
behaviors in wildlife, for example, bird flocks, honeybees, ant colonies, and fish schooling.

In PSO, all particles are randomly initialized with velocity and position, and each
particle keeps finding a candidate solution. Then, in each iteration, the velocity and position
of each particle are renewed based on information about the previous velocity, the best
position ever occupied by the particle, which is known as a personal influence, and the best
position ever occupied by any particle in the swarm, known as a social swarm or global
swarm. The mathematical formulations are as follows.

Let, assume the number of the particle is P, D denoting the dimensionality of a particle,
and N stands for the iteration number. For any ith particle, position and velocity vector
can be represented as xi and vi, respectively. For standard PSO algorithm, there are two
kinds of cost values, i.e., pi, best for the individual best value of one particle, and global best
value gbest of all particles, which can be written as Equations (25) and (26):

pi,best = pi1,best, pi2,best, pi3,best, . . . , piN,best (25)

gbest = g1,best, g2,best, g3,best, . . . , gN,best (26)

After determining the two cost values, the velocity and position of each particle in
each dimension are renovated by using Equation (27) [1]:

vij(k + 1) = wvij(k) + n1r1
(

pi,best − xij(k)
)
+ n2r2

(
gbest − xij(k)

)
xij(k + 1) = xij(k) + vij(k + 1).

(27)

In Equation (27), r1 and r2 denoting the random values between 0 and 1, w is the
inertia coefficient which reflects the influence of the velocity in the previous iteration on the
current iteration. n1 and n2 are self-cognitive and social cognitive values, which indicate the
inheriting abilities from the particle itself and the whole swarm. Pseudocode for dynamic
fitness function using PSO can be shown in Algorithm 1.

Algorithm 1: Pseudocode for Dynamic Fitness Function using PSO.

1. Initialize cell SAI values;
2. while (CAC is not satisfied)
3. {
4. set monitoring UAV number = NMDr ;
5. for j = 1:NMDr
6. {
7. set iteration number = Niter ;
8. set particle number = Npar ;
9. for k = 1:Niter
10. {
11. for t = 1:Npar
12. {
13. randomly initialize xt and vt ;
14. initialize Pi,best = xt , gbest = xNpar ;
15. Update xt and vt using (26);
16. Compute the fitness value of xt using (3) to (23);
17. If(( f itness(xt) > f itness(Pi,best))
18. {Pi,best = xt ;}
19. If(( f itness(Pi,best) > f itness(gbest))
20. {
21. gbest = Pi,best ;
22. dynamic_ f itness = f itness(gbest);
23. }
24. }
25. }
26. update SAI value using Bresenham algorithm;
27. }
28. evaluate collisions among multiple UAVs.
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4.2. Bresenham Algorithm

Bresenham’s line algorithm is a line drawing algorithm to form a close approximation
to a straight line between two points by determining the points of an n-dimensional
raster. This algorithm is named after Jack Elton Bresenham who developed it in 1962
at IBM [38]. This algorithm is a well-known earliest developed algorithm in the field
of computer graphics. It is used for scan converting a line and involves only sixteen-
bit integer addition, subtractions, and multiplication operations. The original algorithm
extension can be used for drawing circles. In this method, the next point selected is the
one that has the least distance from the true line. It can be also called an incremental
error algorithm [39]. Some other algorithms are also frequently used in modern computer
graphics because they can support antialiasing. Since this algorithm has been used for
drawing a line from one particular point to another, we used this technique to ensure
we conducted surveillance for the whole operational area. When this algorithm draws a
line from one point to another point, it marks up the pixel or points between those two
points. Similarly, in our implementation, when monitoring drones surveille from one
waypoint to another waypoint (waypoints of best-paths which are generated through PSO
algorithm), it made the cell SAI value zero to the corresponding cell SAI values. By making
the cell SAI value to zero, we ensured that those cells have been visited by the monitoring
drones. Therefore, in the next flight time, monitoring drones were not required to surveille
those cells as there was a focus on surveilling the remaining cells. Therefore, we ensured
the whole surveillance of the operational area and avoided the repetition of previously
surveilled cells.

The working procedure of the Bresenham Algorithm can be described as follows.
Once a point is chosen at any step, the next point is,

• Either the one to its right (lower-bound for the line)
• On top, it is right and up (upper-bound for the line).

Bresenham’s algorithm is used to implement the construction of a straight-line trajec-
tory [40]. Assuming the initial position is (x1, y1), the direction to follow is the endpoint
(xend, yend), which is given by the straight line. The objective of the algorithm is to construct
a straight line approximately by deriving the sequence of positions in the grid. This is
achieved by moving at each step to the next position along the x-axis (i.e., from xi to xi+1)
and then by selecting yi or yi+1 which is the closest coordinate to the line. The points in the
grid are indicated as (xi, yi) where i is used for index labeling the points in the grid. Thus,
the y coordinate value at each step in the grid is chosen. While a decision parameter pi is
chosen, the calculation is done for each time step.

The algorithm is described as follows:

i. Start from the two-line, starting point (x1, y1) and endpoint (xend, yend) and then
calculate the constants where ∆x = (xend − x1) and ∆y = (yend − y1).

ii. Calculate the first value of the decision parameter by using the equation:

p0 = 2∆y− ∆x. (28)

iii. For each value of xi along the line, check the following condition, if pi < 0, the next
point needs to be selected as (xi+1, yi) and:

pi+1 = pi + 2∆y. (29)

iv. Otherwise, the next point to be selected is (xi+1, yi+1) and:

pi+1 = pi + 2∆y− 2∆x. (30)

Repeat the steps until the set destination i.e., (xend, yend) is reached
The pseudocode of the Bresenham algorithm is given in Algorithm 2:
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Algorithm 2: Pseudocode of Bresenham Algorithm.

1. Initialize waypoints and load variables x1, x2, y1, y2, d, i1, i2, dx, dy;
2. Current waypoints = x1, y1, Next waypoints = x2, y2;
3. Calculate dx = x2 − x1, dy = y2 − y1, d = dy/dx;
4. Calculate i1= 2 ∗ dy, i2 = 2 ∗ (dy − dx), d = i1 − dx;
5. Consider (x, y) as starting point and (xend, yend) as maximum possible value of x and y;
6. If dx < 0
7. {
8. x = x2;
9. y = y2;
10. xend = x1;
11. }
12. If dx > 0
13. {
14. x = x1;
15. y = y1;
16. xend = x2;
17. }
18. Generate point at (x, y) coordinates;
19. Check if the whole line is generated;
20. If x ≥ xend {stop};
21. Calculate coordinates of the next point;
22. If d < 0 {d = d + i1};
23. If d ≥ 0 {d = d + i2; increment y = y + 1};
24. Increment x = x + 1;
25. Draw a point of latest (x, y) coordinates;
26. Go to line 19;
27. End of Algorithm.

4.3. Distributed Path Planning for Multi-UAVs

The implementation of the proposed method is as follows: At the very beginning, it
initializes the SAI values of each cell and establishes a connection among the monitoring
drones. After establishing the connections, they share their positions and locations among
themselves. We assumed that drone uses vision-based techniques and communication are
done by mobile Ad-hoc manner [1].

After establishing the connections, the monitoring drone starts checking the area
by using the historical data of SAI values. If they are not all covered, they divide the
whole operation area into different important levels accordingly. Then, the target points
are set to surveillance priority according to a different important area. Then, individual
trajectories are generated for each monitoring drone, and objective and constraints value
will be checked for the feasibility of the paths. The monitoring drones keep communicating
with each other continuously and make the trajectory for the whole coverage.

Bresenham’s line drawing algorithm was used in this work to check if all the targeted
areas have been visited or not. When the monitoring drone flies from a one-way point to
another waypoint, the SAI value of those cells becomes zero (0). Therefore, after visiting all
the surveillance areas, it will check all the areas have been covered or not; if not, then it will
make the new path planning to cover all the areas. Thus, we could ensure the surveillance
of the whole operational area. The implementation step of distributive path planning,
including Pseudocode and Flowchart (Figure 2) for the whole operational scenario, as
shown in Algorithm 3, and Figure 1, respectively.
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Algorithm 3: Pseudocode for Distributed Path Planning

1. Initialize SAI value of each cell;
2. Initialize communication between UAVs;
3. Declare Number of UAVs = NUAV;
4. Locate UAVs in the map;
5. Initialize position and localization;
6. Update map for UAVs;
7. While SAI 6= 0
8. {
9. for k = 1: NUAV
10. {
11. Divide the area according to the importance;
12. Set target waypoints (bestpath) need to be covered;
13. Compute dynamic_fitness function;
14. Generate bestpath for all UAVs;
15. for i = 1: bestpath
16. {
17. Update Swarm of UAVs;
18. Surveille from current waypoint to next waypoint;
19. Remove historical waypoint from target point list;
20. }
21. }
22. Update and check, all SAI = 0 for the surveilled area;
23. }
24. Generate collision-free trajectory for multiple UAVs.

Figure 2. Path Planning Flowchart.

5. Simulation Results and Discussion

In this paper, we developed a Matlab-based operational environment to evaluate
the working performance of the proposed multi-UAV path planning system. The main
simulation parameters are listed in Table 2.
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Table 2. Simulation parameters.

Parameters Symbols Values

Grid Side (2-D environment) - 20× 20

Operational Space (3-D environment) - 20× 20× 1.5

Number of drones ND 4

Drone unit power Pw 20

Monitoring drone speed v 10 m/s

Number of particles Npar 32, 64, 128, 150, 256, 512

Number of iterations Niter 100

Minimum safe distance dmin 0.2 m

Initial SAI value vini
cellx 4 to 10

Initial environment risk re 1–5

For PSO algorithm parameter setting, the authors in [41] suggested the value of
important parameters, like inertia, is 0.7298 and both the cognitive value as 1.4960. The
authors in [42] suggested that inertia value can be selected within the value range from
0.4 to 0.9 and optimal value can be achieved by trial and error methodology, where the
cognitive value can be selected as 2.0. We conducted a simulation by using both values
and found that the second parameter value set has the better result, in terms of our
simulation parameters. Therefore, the resulting values of the parameter have been used
in this paper. We demonstrate the comparison between conventional PSO and PSO with
modified parameters (mPSO) in Figure 3a. The result shows that the fitness value of the
proposed modified-PSO (mPSO) algorithm converges faster to a stable value as the number
of iterations increases. In the simulation, mPSO achieved higher Fitness values in a much
shorter period of time than the conventional PSO, which led UAVs to surveille full areas in
a short period of time. As the fitness value is the major factor for our proposed trajectory
planner, we compared PSO and mPSO for their fitness value, in terms of the convergence
over the number of iterations. This is the reason why we followed mPSO for further
experimentation. These parameter values of PSO and mPSO are given in Table 3.

Figure 3. Fitness value, (a) comparison between Conventional PSO versus modified PSO, and (b)
effect of the number of particles on dynamic fitness value.

As we increased the number of particles, we observed an improvement in the dynamic
fitness function. The observed improvement of the dynamic fitness function is shown in
Figure 3b.
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Table 3. Comparison between Conventional PSO and m-PSO.

Parameter Name Conventional PSO PSO with Modified Parameters (mPSO)

Inertia value 0.7298 0.8

Personal Cognitive value 1.4960 2.0

Social Cognitive value 1.4960 2.0

In the objective function designing, we had to consider the impact of energy consump-
tion, flight risk estimation, and SAI value on each other, where all the values had been
normalized. It was supposed to have the optimal flight path, which consists of less energy
consumption and flight risk, and a higher SAI value. For this reason, we designed the
function by considering energy consumption and flight risk with a minimum value, where
the SAI value has to be the maximum value. Figure 4 represents the objective function
value curve and total fitness values under EC, FRE, SAI, respectively, where the number of
iterations is 100 and the number of particles is 150. It shows the trajectory optimization
performance of the flight time, in terms of energy consumption, fight risk, and surveillance
area importance. As the number of iterations increased, the energy consumption and flight
risk minimized and maintained a stable value, while their surveillance area importance
values maximized. From the simulation results shown in Figure 4, it is observed that the
simulation begins with the last value achieved from the dynamic fitness function. As the
number of iterations increased the energy consumption, flight risk, and SAI value con-
verged quickly and gradually improved the performance of the dynamic fitness function.
This ensured that at each iteration, the particles tried to minimize energy consumption
and flight risk, while maximizing the SAI value, which proves the effectiveness of our
proposed algorithm. The optimization performance of the path planner, in terms of energy
consumption and flight risk estimation, can be expressed as a fitness function that indicates
the effectiveness of path planning. Fitness function itself consists of two parts, (i) objective
value, (ii) constraints value. An optimal path should not have any kind of constraints in its
path planning, thus, all constraints should be zero. Figure 5a, demonstrates the effective-
ness of our paths where all the constraints are zero. Figure 5b,c show the objective value,
and total fitness value, respectively for the different part of fitness values in each waypoint.

Figure 4. Optimal objective values, (a) energy consumption, (b) flight risk, and (c) SAI value.

The SAI weight value has an impact on the total fitness value. Therefore, to find the
necessary optimal weight value for SAI we conducted various simulations, as shown in
Figure 6. As the weight value of SAI was expected to be positive, we selected a wide range
of positive values for our simulation. For a large value of the weight, the impact on EC,
FRE, and SAI was less. Therefore, we selected the weight value from a minimal positive
value. The weight values and corresponding impact on EC, FRE, and SAI, along with
objective values, are shown in Table 4.
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Figure 5. Different parts of fitness value in each waypoint, (a) constraints value, (b) objective value,
and (c) constraints value and objective value.

Figure 6. Impact of the weighted parameter value, (a) as SAI parameter weight value increases, SAI
value increases proportionally; (b) selection of the optimal weight value for SAI.

Table 4. Objective value varying SAI weight value.

Weight Value Energy
Consumption

Flight Risk
Estimation

Surveillance Area
Importance Objective Value

1 −0.3619 −0.6356 0.4597 −0.5978

2 −0.3577 −0.6186 0.9096 −0.0567

3 −0.3478 −0.5939 1.6792 0.7178

4 −0.3789 −0.5705 2.2389 1.2775

5 −0.3652 −0.5937 2.7986 1.8297

6 −0.3580 −0.5655 3.3583 2.3848

In our implementation, a full area coverage was based on distributed path planning.
We considered two scenarios of full coverage, with overlapping, and without overlapping,
respectively. In overlapping conditions, to cover the whole surveillance area, UAVs take so
many steps that are known as waypoints. Sometimes, it takes very high computational time
to complete the task. On the other hand, the second scenario is a non-overlapping condition,
which requires less computational time and converges faster. To make the environment less
complicated and faster and more convenient to converge, we only considered the second
scenario, in this study, which involves path planning with the non-overlapping condition.

Figure 7a, shows the optimal paths, followed by UAV1, UAV2, UAV3, and UAV4
started from the GBS set as the starting point and denoted by a green rectangular box.
After surveilling of the whole area, it again came back to the endpoint, marked as a yellow
rectangular box. In Figure 7a, the red rectangle box represents the restricted areas where
UAVs are not allowed to fly. With the edge cells having higher SAI value, UAVs need
to surveille those edge areas first having level-3 importance, then the inner areas having
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level-2 priority, and the center having least priority as level-1. We gave the cell edge area
more importance by considering that, generally when we design anything, we give more
importance to the center as our valuable infrastructure is situated in the center. In that
sense, edge areas received less importance, which may pose a great threat. Whenever
any threats begin, they commence from the outside region first not from the inside area.
Moreover, if we can prevent it earlier, before entering the sensitive area, we will be able to
lessen the threat much. That is the reason why we gave cell edge more importance. We
observed that the trajectories, generated for each flight time, avoid all the restricted areas
and reach the destination safely after full coverage of the surveillance area.

Figure 7. Distributed Path Planning for Multi-UAVs (a) 2-D environment, (b) 3-D environment.

Our operational area is based on a 3-D environment, while covering the distance
from one waypoint to another waypoint, UAV made changes in the X, Y, and Z-axis.
Altitude changes for all the UAVs during flight time are shown in Table 5 and the cor-
responding flight times for the UAVs can be seen in Table 6. Figure 7b also shows that
the ability of UAVs to decide to change in altitude and turning angle when hills or un-
structured environment appear in path planning shows that our system has dynamic
environment adaptability.

Table 5. Altitude changes of the UAVs.

No. of Waypoints
Altitude (Meter)

UAV1 UAV2 UAV3 UAV4

1 0.4827 0.4792 0.3403 0.5184

2 1.3508 0.3393 1.3211 0.8365

3 1.1563 0.9815 1.2727 0.4283

4 1.3724 0.2747 1.1685 0.9781

5 0.8549 0.8525 1.3761 0.0475

6 0.8316 0.1218 0.8848 0.1951

7 0.8528 0.0602 1.0310 0.5889

8 0.5366 0.5191 0.4815 0.5165
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Table 6. Flight chart of the UAVs.

UAV Number Distance Covered
in 2-D (Meter)

Time Required
for 2-D (Second)

Distance Covered
in 3-D (Meter)

Time Required
for 3-D (Second)

1 3,152 315.2 3,159 315.9

2 3,155 315.5 3,164 316.4

3 3,184 318.4 3,195 319.5

4 3,052 305.2 3,056 305.6

The proposed trajectory planner also ensures that the multiple UAVs do not collide
with each other while surveilling. The respective Fitness values of all four UAVs for full
coverage are shown in Figure 8.

Figure 8. The fitness value of all four UAVs in terms of the number of the waypoints, (a) UAV1, (b)
UAV2, (c) UAV3, and (d) UAV4.

In our simulation, the operating area was assumed to be 1 km × 1 km, with a per
cell value of 50 m. During the surveillance, UAVs took off from the starting point and
returned to the ending point. Table 6 shows the total distances covered by the UAVs
and the necessary flight time for both 2-D and 3-D cases and it is observed that in a 3-D
environment, UAVs cover more distance than in a 2-D environment. In our implementation,
we assume that a UAV can cover up to four cells from a single location. As a result of this
assumption, we can see that all of the UAVs have covered the entire operational region,
except the restricted area, which is not allowed to be surveilled.

Distributed Path Planning for Multi-UAVs in the 2-D and 3-D environment for the
larger-sized area is shown in Figure 9. To consider a larger size for our simulation we
have selected a 30 × 30 grid size having the area of 3 km × 3 km (per cell 100 m). In
our simulation where grid size was 20 × 20, each of the four UAV needs 8 waypoints to
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surveille the whole area. However, as the operational area size increased, the number of
the required waypoints also increased; that is, 11 waypoints for each of the UAV.

Figure 9. Distributed Path Planning for Multi-UAVs for larger size in (a) 2-D environment, (b) 3-D environment.

6. Conclusions

In this paper, we proposed a distributed 3-D path planning for multiple UAVs, based
on Particle Swarm Optimization with Bresenham Algorithm, to make an optimal trajectory
for multiple UAVs. We introduced a multi-dynamic fitness function that has optimization
indexes, such as energy consumption, flying risk, surveillance area importance (SAI), and
UAV maneuverability. Moreover, we also obtained the optimal weight of SAI for an objec-
tive value to obtain dynamic fitness to generate a collision-free trajectory for multiple UAVs.
To analyze the performance of the proposed optimal trajectory planner, we designed a
dynamic fitness function mechanism with a cost function. The numerical results of experi-
ments carried out in this research work show that the PSO, with Bresenham Algorithm, can
be applied for multi-UAVs to surveille the whole area of interest by generating an optimal
path. Currently, we carry out experiments for the swarm of four UAVs, and we evaluate
feasibility, robustness, and dynamic environment adaptability for our three dimensions
distributed trajectory planner to analyze the performance and effectiveness of the system.
The simulation results prove that our proposals can perform a collision-free distributed
trajectory planning for multiple UAVs to surveille the whole area of interest by flight time
and flight distance optimized manner. For future work, we will consider an unstructured
dynamic environment to perform three dimensions of distributed trajectory planning.
We may apply our developed distributed trajectory planner to interface with the drone
model for security purposes, to make a real-time application of multiple UAVs for full area
surveillance under a dynamic environment.
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EC Energy Consumption
FRE Flight Risk Estimation
SAI Surveillance Area Importance
AC Aerial Constraint
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CRC Coverage Range Constraint
TAC Turning Angle Constraint
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