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Abstract: This paper presents several test cases that were used to validate the implementation of two
turbulence models in the UNS3D code, an in-house code. The two turbulence models used were
the Shear Stress Transport model and the Spalart–Allmaras model. These turbulence models were
explored using the numerical results generated by three computational fluid dynamics codes: NASA’s
FUN3D and CFL3D, and UNS3D. Four cases were considered: a flat plate case, an airfoil near-wake,
a backward-facing step, and a turbine cascade known as the Eleventh Standard Configuration. The
numerical results were compared among themselves and against experimental data.

Keywords: computational fluid dynamics; turbulence modeling; flat plate flow; backward-facing
step flow; airfoil flow; cascade flow

1. Introduction

Computational fluid dynamics (CFD) has become an integral part of the design
systems in aerospace and other engineering fields. The increase in computational power in
the last two decades allows us to tackle complex, engineering relevant problems. Using
today’s supercomputers, it has become customary to solve transport phenomena problems
with tens or hundreds of millions of grid points and generate results overnight.

As the hardware improves, the models used for predicting transport phenomena
should also improve. One standing challenge for flow simulation is the turbulence model-
ing. As direct numerical simulation is still too computationally expensive for engineering
relevant flows, the governing mass, momentum, and energy equations must be closed
using a turbulence model.

The widely used κ − ε turbulence model developed by Jones and Launder [1] cannot
properly capture the turbulent boundary layer up to flow separation. The first turbulence
model that accurately predicted separated airfoil flows was the Johnson–King model [2].
Being an algebraic model, the Johnson–King model was not easily extensible to three-
dimensional flow solvers. The κ −ω turbulence model proposed by Wilcox [3] improved
the prediction for adverse pressure-gradient flows. In addition, the model has a simple
formulation in the viscous sublayer. The κ −ω model, however, depends strongly on the
freestream values of the specific turbulent dissipation rate, ω f . This issues was addressed
by combining the κ −ω and κ − ε models, so that the former models the inner region of
the boundary layer and the latter models outer part. The resulting model, called the Shear
Stress Transport turbulence model [4], was developed to respond to the need for accurate
prediction of flows with strong adverse pressure gradients and separation. A turbulence
model that is less computationally expensive than the Shear Stress Transport turbulence
model is the Spalart–Allmaras model [5]. This is a one-equation model that models an
eddy viscosity-like variable, ν̃.

The purpose of this paper is to provide several cases that can be used to validate the
implementation of the Shear Stress Transport and the Spalart–Allmaras turbulence models.
The results generated using an in-house CFD code and two NASA codes, using a couple of
turbulence models, are compared with experimental data.
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The next section presents the physical model and provides details on the governing
equations. This is followed by a brief summary of the numerical method used to solve the
governing equations. The results section presents four validation cases, ranging from a flat
plate to a cascade of turbine airfoils.

2. Physical Model

The governing equations used by the CFD solvers include of the mass, momentum,
and energy conservation. These equations are supplemented by the equations used for
modeling the turbulence effects. This section briefly presents the integral form of the mass,
momentum, and energy conservation equations, as well as the turbulence models used in
this work.

2.1. Mass, Momentum and Energy Conservation Equations

For an arbitrary finite volume, Ω, bounded by a closed surface, ∂Ω, a small surface,
dS, with a unit normal vector, n̂, pointing outward from the control volume, the mass
conservation equation is

∂

∂t

∫
Ω

ρdΩ +
∮

∂Ω
ρ(~v · n̂)dS = 0 (1)

where ρ is the density and ~v is the velocity vector.
The momentum equation is

∂

∂t

∫
Ω

ρ~vdΩ +
∮

dΩ
ρ~v(~v · n̂)dS =

∮
(−pI + τ) · n̂dS (2)

where the scalar p is the pressure, µ is the dynamic viscosity coefficient, I is the identity
tensor, and τ is the viscous stress tensor.

The energy conservation equation for a calorically perfect gas is

∂

∂t

∫
Ω

ρEdΩ +
∮

∂Ω
ρH(~v · n̂)dS =

∮
∂Ω

k(∇T · n̂) + (τ ·~v)n̂dS (3)

where E is the total energy, H is the total enthalpy, T is temperature, and k is thermal conductivity.

2.2. Turbulence Models

Turbulence models are essential for producing accurate results when using Reynolds
averaging. They provide the closure needed for the Reynolds-averaged Navier–Stokes
(RANS) equations. The following sections describe the two turbulence models used in
this work: the Shear Stress Transport (SST) turbulence model and the Spalart–Allmaras
(S–A) turbulence model. Both turbulence models employ the Boussinesq eddy-viscosity
hypothesis, where the Favre-averaged turbulent shear stresses, τF, is defined by

τF
ij = 2µTSij −

(
2µT

3

)
∂ṽk
∂xk

δij −
2
3

ρ̄κδij. (4)

where µT is the turbulent eddy viscosity, Sij is the strain rate tensor, κ is the kinetic energy
of the turbulent fluctuations, and δij is the Kronecker delta.

2.2.1. Shear Stress Transport Turbulence Model

The Shear Stress Transport turbulence [4] model is a two-equation turbulence model
that is a combination of a high Reynolds number κ − ε turbulence model and the κ − ω
turbulence model by Wilcox [6]. κ denotes the kinetic energy of the turbulent fluctuations,
ε is the turbulence dissipation per unit mass, and ω is the root mean square fluctuating
vorticity (or the rate of dissipation of energy in unit volume and time). The goal of
combining the two models is to retain the best attributes of both models while fixing their
weaknesses. For example, as the κ − ω model is sensitive to the freestream values of ω,
the Shear Stress Transport model switches to the κ− ε model to resolve this issue. The Shear
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Stress Transport model is defined by the transport equations of the kinetic energy of the
turbulent fluctuations, κ,

∂(ρκ)

∂t
+

∂(ρvjκ)

∂xj
=

∂

∂xj

[
(µL + σκµT)

∂κ

∂xj

]
+ τF

ij
∂ui
∂xj
− β∗ρωκ (5)

and of the dissipation ω,

∂(ρω)

∂t
+

∂(ρvjω)

∂xj
=

∂

∂xj

[
(µL + σωµT)

∂ω

∂xj

]
+ τF

ij
∂ui
∂xj

Cωρ

µT
− βρω2+

+ 2(1− f1)
ρσω2

ω

∂κ

∂xj

∂ω

∂xj
. (6)

f1 is the blending function between the κ − ε and the κ − ω turbulence models. This
blending allows the Shear Stress Transport turbulence model to switch between the two
turbulence models depending on (i) the distance from the wall and (ii) the region of the
turbulent boundary layer is being analyzed. Variables β∗ and σω2 are constant coefficients.
Variables σω, σκ , Cw, and β are non-constant coefficients that utilize the blending function,
f1 [4].

2.2.2. Spalart–Allmaras Turbulence Model

The Spalart–Allmaras turbulence model [5] is a one-equation turbulence model that
solves the transport equation of an eddy viscosity-like variable, ν̃,

Dν̃

Dt
= P− D +

1
σ

[
∇ · ((νL + ν̃)∇ν̃) + cb2(∇ν̃)2

]
(7)

where P and D are the production and destruction source terms,

P = cb1(1− ft2)S̃ν̃ (8)

D =

(
cw1 fw −

cb1

κ2
SA

fv2

)[
ν̃

d

]2
. (9)

Constant coefficients include σ, cb1, cb2, cw1, and κSA. The value d is the distance to
the wall. Function fw is known as the wall function, as it is dependent on distance to wall,
d. Viscous function fv2 depends heavily on the ratio between the molecular kinematic
viscosity, νL, and the eddy-viscosity-like variable ν̃. The modified vorticity term, S̃, is
a function of the magnitude of vorticity, wall distance, and viscosities [5]. The Spalart–
Allmaras turbulence model is a popular turbulence model for turbomachinery flows as
it was designed for wall-bounded flows. As the Spalart–Allmaras turbulence model only
solves for one equation, it is also inherently less computationally expensive than Shear
Stress Transport.

The original turbulence model [5] has an additional trip term, ft1, used to model
transition to turbulence. Allmaras et al. [7] found that the two trip terms— ft1 and ft2—are
unnecessary to simulate fully turbulent flows. The implementation used in this work does
not use ft1 [8]. In addition, the implementation is based on the compressible version that
includes an update of the modified vorticity term [7].

3. Numerical Method

The turbulence models tested herein were implemented in three RANS solvers: CFL3D,
FUN3D, and UNS3D. The first two flow solvers were developed by NASA. The third flow
solver was developed at Texas A&M University. As detailed information is available for
the NASA codes, this section focuses on presenting the numerical method used in the
UNS3D code. UNS3D stands for Unstructured, Unsteady Three-Dimensional flow solver.



Appl. Sci. 2021, 11, 3377 4 of 21

3.1. Spatial Discretization

The UNS3D flow solver uses a finite volume method for its spatial discretization.
The UNS3D and the NASA’s FUN3D codes use a dual-mesh cell-vertex approach, while
the NASA’s CFL3D code uses a cell-centered approach. The cell-vertex approach has better
adaptability with mixed element grids. In addition, as for large grids the number of nodes
is smaller than the number of elements, the cell-vertex method is computationally more
efficient than the cell-centered method.

3.1.1. Convective Flux

UNS3D has several options for calculating the convective fluxes [9]. Herein, we
selected an upwind scheme developed by Roe [10] with the additional entropy correction
developed by Harten [11], known as the Roe’s flux-difference splitting scheme with the
Harten entropy fix. The upwind scheme was chosen for its stability and ability to capture
shock waves and boundary layers accurately.

3.1.2. Diffusive Flux

The diffusive flux describes flux of φ entering the control volume Ω due to the diffusion
of φ. The diffusive flux is proportional to the gradient of φ and is described as∮

∂Ω
kρ(∇φ · n̂)dS (10)

where k is a diffusivity coefficient, ρ is the density, and ∇φ is the gradient of φ. As the
gradients are stored at the nodes, a modified central scheme is used to calculate the edge-
based gradients. An ordinary central scheme provides uncoupling between the local terms
and the edge-based gradients. The following modification has been added to determine
the edge-based gradients:

∇φij =
1
2
(
∇φi +∇φj

)
−
[

1
2
(
∇φi +∇φj

)
· êij

]
êij +

φj − φi

~xj −~xi
êij. (11)

To calculate the diffusive flux, and for second-order spatial discretization, the gradients
at the nodes must be calculated. As UNS3D is an unstructured and cell-vertex dual-mesh
flow solver, there are specific numerical methods that can be used to calculate the gradients.
The following gradient methods are available in UNS3D: Green-Gauss, least-squares, least
squares with QR decomposition, and the Weighted Essentially Non-Oscillatory method.
The results presented in this paper were generated using the Least Squares with QR
decomposition as the primary gradient calculation method.

3.1.3. Second-Order Spatial Discretization

The state variables and their gradients, which are located at the nodes, are required
to define a piecewise, linearly-varying approximation for a continuous flow field [12].
To achieve a linear variation, the nodal values across edge “ij” are reconstructed and
defined as “left” and “right” state variables.

~QL = ~Qi +
1
2

Ψi

(
∇~Qi ·

(
~xj −~xi

))
~QR = ~Qj −

1
2

Ψj

(
∇~Qj ·

(
~xj −~xi

))
(12)

where Ψ is a limiter function. The limiter functions Ψ range from 0 to 1, and prevent non-
physical oscillations and spurious solutions in the vicinity of large gradients. The solution
limiters accomplish this by enforcing a monotonicity preserving scheme. The solution
limiters used in this work were those proposed by Venkatakrishnan [13], Carpenter [14],
and Dervieux [15].
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3.2. Temporal Discretization

The terms of the Navier–Stokes equations can be grouped into spatial and temporal
derivatives. The spatial derivatives consist of the source terms, and the convective and
diffusive flux terms. These spatial derivative terms are grouped together to form the
residual ~R, thus the Navier–Stokes equations can be written as

∂

∂t
~Qi(Ωi) = ~Ri (13)

where ~Qi is the state vector, Ωi is the control volume, and ~Ri is the residual at node i.
The UNS3D solver can integrate (13) using either an explicit or implicit method.

The results presented in this paper were obtained using only explicit time integration.
Explicit time-integration utilizes either a first-order, forward finite difference approximation
for the time derivative or a second-order scheme. The second-order time integration uses a
four-stage Runge–Kutta method. Implicit residual smoothing is also available in the UNS3D
solver. For unsteady simulations, UNS3D utilizes either single- or dual-time stepping.

3.3. Boundary Conditions

The implementation of boundary conditions can greatly affect the accuracy and
convergence of the solution. The boundary conditions in the UNS3D solver have weak
implementations. Weak implementation of boundary conditions refers to the scenario
when the boundary conditions are not being directly applied to the nodal values, but
instead to the boundary nodes created by the dual mesh. These boundary nodes are used
in determining the fluxes from the boundary, and it is in these fluxes that the boundary
conditions are satisfied.

3.3.1. Flow Boundary Conditions

For the subsonic inlet, the four conditions imposed from upstream infinity are the
two components of the angle of attack, the total pressure, and the total temperature.
The condition imposed from the interior of the domain is the outgoing Riemann invariant,
u + 2c/(γ− 1). For subsonic outlets, only one condition is imposed from downstream
infinity, which is a user-specified static pressure. The conditions enforced from the interior
of the domain are the entropy; tangential velocity; and the incoming and outgoing Riemann
invariants, u + 2c/(γ− 1) and u− 2c/(γ− 1), respectively.

The wall boundaries are either inviscid and viscous wall boundaries. All wall bound-
aries enforce the no-penetration condition [16]. This is the only condition for inviscid
walls. For viscous flows, the boundary conditions consist of the no-penetration and no-slip
conditions [17], p. 80.

Symmetry boundary conditions are used to truncate the computational domain when-
ever there is a plane of symmetry. Symmetry boundary conditions are also used to simulate
a two-dimensional (2D) flow field with a three-dimensional (3D) flow solver, creating
what is known as a quasi-3D simulation. There are two conditions that must be satisfied
with symmetry boundaries: no-penetration and the zero-gradient of state variables on the
planes of symmetry. For this paper, a strong implementation of the zero-gradient condition
was enforced, that is, both the boundary state vectors and state vectors on the symmetry
boundary had the zero-gradient condition applied [18].

3.3.2. Shear Stress Transport Boundary Conditions

The Shear Stress Transport turbulence model primarily utilizes Neumann boundary
conditions. The boundary conditions used are the recommended values from the original
reference for the Shear Stress Transport turbulence model [4]. These boundary conditions
are listed in Table 1.
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Table 1. Shear Stress Transport boundary conditions (L-length of computational domain, U∞-velocity
at upstream infinity).

Boundary κ ω

Wall κ = 0 ω = 10 6ν

β1(δd1)
2

Freestream 10−5U2
∞

ReL
< κ < 0.1U2

∞
ReL

U∞
L < ω < 10U∞

L

Inlet 10−5U2
∞

ReL
< κ < 0.1U2

∞
ReL

U∞
L < ω < 10U∞

L

Symmetry ∂κ
∂n = 0.0 ∂ω

∂n = 0.0

The symmetry boundary condition for the Shear Stress Transport turbulence model
follows the same structure as the governing equations, where the zero-gradient normal
is applied for κ and ω. For the freestream and inlet boundaries, Dirichlet boundaries are
enforced for a specific range. The freestream values of ω are obtained from turbulent
intensities [4,19]. For the outlet, the values of κ and ω are simply extrapolated. Periodic
boundaries are applied to κ and ω in the same manner as to the state vectors in the
full-order model.

3.3.3. Spalart–Allmaras Boundary Conditions

The Spalart–Allmaras turbulence model utilizes both the Dirichlet and Neumann
boundary conditions for its working variable ν̃. Dirichlet boundary conditions are applied
to the inlet/freestream and wall boundaries, while Neumann boundary conditions are
applied for symmetry boundaries. Table 2 lists the boundary conditions for the Spalart–
Allmaras turbulence model.

Table 2. Spalart–Allmaras boundary conditions.

Boundary Dirichlet Neumann

Wall - ν̃ = 0.0

Freestream - ν̃
νL

= 3− 5 (fully turbulent)

Inlet - ν̃
νL

= 3− 5 (fully turbulent)

Symmetry ∂ν̃
∂n = 0.0 -

The symmetry boundary condition for the Spalart–Allmaras turbulence model follows
the same structure as that of the governing equations, where the zero-gradient in the
normal direction is applied for ν̃. For the freestream and inlet boundaries, a ν̃/νL value
between 3 and 5 was used to simulate fully turbulent flows. For tripping the laminar-to-
turbulent transition, ν̃/νL must be less than 1. For the outlet, the value of ν̃ is extrapolated.
Periodic boundaries are applied to ν̃ in the same manner as the state vectors in the mass,
momentum, and energy conservation equations.

4. Results

The cases used for assessing the Spalart–Allmaras turbulence model follow the
NASA’s turbulence modeling resource website [20]. There are two versions of the UNS3D
code: a sequential version, UNS3D-SEQ, and a parallel version, UNS3D-PAR. Both the
parallel and sequential versions of UNS3D implemented the Spalart–Allmaras turbulence
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model and underwent the same tests. The Shear Stress Transport turbulence model was
also assessed using the same test cases. The results generated using UNS3D were com-
pared against experimental data and numerical results obtained using FUN3D and CFL3D.
The results of the sequential version of UNS3D used a coarser grid than that used by the
parallel UNS3D and the NASA codes FUN3D and CFL3D.

4.1. Turbulent Flat Plate

The first case investigated was the turbulent flow over a flat plate. The turbulent flat
plate case allowed one to validate the turbulence model against Coles’ Law of the Wake [21].
The velocity profile and distance from the wall were nondimensionalized to highlight the
different regions of the turbulent boundary layer such as the log-region sublayer. Both
the sequential and parallel versions of UNS3D were compared against the results from
NASA’s FUN3D and CFL3D [20]. These results include dimensionless turbulent viscosity
µT/µ∞, κ, and ω contours.

The computational domain and boundary conditions are illustrated in Figure 1. Two
levels of mesh refinement were used for this case: where the parallel code used the finest
grid and the sequential code used the third finest grid [20]. Figure 2 shows the coarse mesh.
Table 3 specifies the freestream boundary conditions for the various turbulence models and
codes. The freestream turbulence boundary conditions used in NASA’s FUN3D SST and
CFL3D SST were above the recommended range [4], which is

U∞

L
< ω∞ < 10

U∞

L
10−5 U2

∞
ReL

< κ∞ < 0.1
U2

∞
ReL

.

The values used by NASA FUN3D correspond to

ω∞ = 125
U∞

L
κ∞ = 1.125

U2
∞

ReL
.

Therefore, FUN3D used turbulent freestream conditions that were approximately two
orders of magnitude higher than the recommended range. UNS3D-PAR SST used values
of κ and ω that were in the recommended range:

ω∞ = 5
U∞

L
κ∞ = 0.05

U2
∞

ReL
.

We also generated UNS3D-PAR SST results using the turbulence boundary conditions
used by the NASA codes. In this case, UNS3D-PAR SST produced κ and ω contours that
were approximately 10 percent smaller in magnitude than the NASA results. The results
included in this paper for UNS3D-PAR SST used the turbulent boundary conditions in the
recommended range, as stated in Table 3.

Table 3. Turbulent Boundary Conditions for Flat Plate.

Code Mesh ν̃∞
νL

ω∞
νL
c2

∞
κ∞

1
c2

∞

UNS3D-SEQ SA 2× 137× 97 3.0 - -
UNS3D-PAR SA 2 × 545 × 385 3.0 - -
FUN3D SA 2 × 545 × 385 3.0 - -
UNS3D-SEQ SST 2 × 137 × 97 - 1× 10−6 9× 10−9

UNS3D-PAR SST 2 × 545 × 385 - 4× 10−8 4× 10−10

FUN3D SST 2 × 545 × 385 - 1× 10−6 9× 10−9
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Figure 1. Flat plate boundary conditions [20].

Figure 2. Flat plate coarse mesh.

Figure 3 shows a comparison of the dimensionless turbulent viscosity predicted by
the UNS3D-SEQ, UNS3D-PAR, and FUN3D codes using the Spalart–Allmaras turbulence
model. A good agreement was obtained among the solutions of the three codes. A similar
conclusion emerged by comparing the dimensionless turbulent viscosity predicted using
the Shear Stress Transport turbulence model, shown in Figure 4. The large values of the
turbulent viscosity extended farther away from the flat plate in the Spalart–Allmaras model
compared to the Shear Stress Transport model, as observed by contrasting Figures 3 and 4.
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(a) (b) (c)
Figure 3. Contours of µT/µ∞ for flat plate using Spalart–Allmaras turbulence model: (a) UNS3D-SEQ,
(b) UNS3D-PAR, and (c) FUN3D [20].

(a) (b) (c)
Figure 4. Contours of µT/µ∞ for flat plate using Shear Stress Transport turbulence‘model:
(a) UNS3D-SEQ, (b) UNS3D-PAR, and (c) FUN3D [20].

Figure 5 shows the contours of the kinetic energy of the turbulent fluctuations, κ,
produced by the Shear Stress Transport turbulence model. Similarly to the turbulent
viscosity results, a good agreement is obtained among the solutions of the three codes.

(a) (b) (c)
Figure 5. κ contours on flat plate using Shear Stress Transport turbulence model: (a) UNS3D-SEQ,
(b) UNS3D-PAR, and (c) FUN3D [20].

Figure 6 shows that the main differences between the ω contours generated by
UNS3D-PAR and FUN3D using the Shear Stress Transport model were located in the
region near the inlet of the domain. FUN3D ω contours started at high values and dis-
sipated as the flow went out of the domain. This difference was to be expected as the
turbulent boundary conditions for FUN3D were at least one order of magnitude higher
than those of the UNS3D-PAR. Overall, however, the UNS3D-PAR results were in good
agreement with those of FUN3D in the region near the wall.
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(a) (b) (c)
Figure 6. ω contours on flat plate using Shear Stress Transport turbulence model: (a) UNS3D-SEQ,
(b) UNS3D-PAR, and (c) FUN3D [20].

Figure 7 shows the variation of dimensionless velocity u+ = u/u∗, where u∗ is the
friction velocity, as a function of y+. A good agreement is observed among the results
generated by UNS3D-SEQ, UNS3D-PAR, and CFL3D codes, for both the Spalart–Allmaras
and Shear Stress Transport models.

log(y+) []

u
+

 [
]

1 0 1 2 3 4 5
0

5

10

15

20

25

30

x/L = 0.97 UNS3DSEQ SA

x/L = 0.97 UNS3DPAR SA

x/L = 0.97 CFL3D SA

x/L = 1.90 UNS3DSEQ SA

x/L = 1.90 UNS3DPAR SA
x/L = 1.90 CFL3D SA

log(y+) []

u
+

 [
]

0 2 4
0

5

10

15

20

25

30

x/L = 0.97 UNS3DSEQ SST

x/L = 0.97 UNS3DPAR SST

x/L = 0.97 CFL3D SST

x/L = 1.90 UNS3DSEQ SST
x/L = 1.90 UNS3DPAR SST

x/L = 1.90 CFL3D SST

(a) (b)

Figure 7. Law of the wake: (a) Spalart–Allmaras, and (b) Shear Stress Transport.

Figure 8 shows the skin friction coefficients predicted using the Spalart–Allmaras
and Shear Stress Transport models. For the Spalart–Allmaras model, the skin friction
coefficient was calculated using UNS3D-SEQ, UNS3D-PAR, and FUN3D codes. The agree-
ment among the results generated by these three codes was excellent. For the Shear
Stress Transport model, the skin friction coefficient was calculated using UNS3D-SEQ,
UNS3D-PAR, and FUN3D codes. The skin friction coefficient predicted by the UNS3D-SEQ
code was slightly smaller than the results predicted by the other two codes. Most likely,
this difference is due to the fact that UNS3D-SEQ used a coarser grid than the other two
codes, as shown in Table 3.
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(a) (b)

Figure 8. Skin friction coefficients for turbulent flat plate: (a) Spalart–Allmaras, and (b) Shear Stress Transport.

Figure 9 shows the predicted velocity profiles at two x/L locations: 0.97 and 1.90.
The results generated with the UNS3D-SEQ, UNS3D-PAR, and CFL3D codes agree well,
for both the Spalart-Allmaras and the Shear Stress Transport models.

(a) (b)

Figure 9. Velocity profiles on turbulent flat plate: (a) Spalart–Allmaras, and (b) Shear Stress Transport.

4.2. Two-Dimensional Airfoil Near-Wake

This test case is based off Model A airfoil, a convential airfoil that was experimentally
investigated by Nakayama [22]. Model A airfoil is a 10%-thick conventional airfoil with
a 61 cm chord. The angle of attack was 0 deg, the wind tunnel speed was 30 m/s, and
the freestream turbulence level was 0.02%. The boundaries of the computational domain,
shown in Figure 10, were 20 chords away from the airfoil. A detail of the mesh near the
airfoil is shown in Figure 11. The input flow parameters used in the numerical simulation
are listed in Table 4.
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Figure 10. Airfoil boundary conditions [20].

Figure 11. Detail of airfoil mesh.
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Table 4. Input parameters for Nakayama airfoil.

pref Tref Minlet Re µref
ν̃
ν ω∞

νL
c2

∞
κ∞

1
c2

∞

[Pa] [K] [-] [-] [Pa s] [-] [-] [-]

62,000 300 0.088 1,200,000 1.838 × 10−5 3 4 × 10−8 4 × 10−10

As with the turbulent flat plate case, the freestream values of κ and ω for UNS3D-PAR
SST were different from the values used for the FUN3D simulation. Figure 12 shows the
contour plots of the dimensionless turbulent viscosity µT/µ∞ at the airfoil’s trailing edge
predicted using the Spalart–Allmaras model. There is good agreement between the results
generated by the UNS3D-PAR and FUN3D codes. The turbulent viscosity predicted by
the UNS3D-SEQ code, which used the coarse grid, was similar to the two codes; however,
the lack of grid refinement at the trailing edge leads to a somewhat thicker wake.

(a) (b) (c)
Figure 12. µt/µ∞ contours on Nakayama’s airfoil predicted with Spalart–Allmaras model:
(a) UNS3D-SEQ, (b) UNS3D-PAR, and (c) FUN3D.

Figures 13 and 14 show the contour plots of the turbulent kinetic energy, κ, and the spe-
cific dissipation rate, ω, predicted using the Shear Stress Transport model. The agreement
among the results generated by the three codes is good. While there are few differences on
the turbulent kinetic energy contour plots, the specific dissipation rates are almost identical.

(a) (b) (c)
Figure 13. κ contours on Nakayama’s airfoil predicted with Shear Stress Transport model:
(a) UNS3D-SEQ, (b) UNS3D-PAR, and (c) FUN3D.
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(a) (b) (c)
Figure 14. ω contours on Nakayama’s airfoil predicted with Shear Stress Transport model:
(a) UNS3D-SEQ, (b) UNS3D-PAR, and (c) FUN3D.

Figure 15 compares the measured velocity profiles against the predicted ones at
seven locations in the airfoil’s wake. These locations, measured from the airfoil leading
edge, are: 1.01, 1.05, 1.20, 1.40, 1.80, 2.19, and 3.0 x/chord. The numerical predictions were
done using the UNS3D-PAR code with the Spalart–Allmaras and the Shear Stress Transport
models. The velocity profiles predicted using the Shear Stress Transport model matched the
experimental data better than the Spalart–Allmaras model, although the Spalart–Allmaras
model predicted the velocity profiles quite well.
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(a) (b)

Figure 15. Velocity profiles on Nakayama’s airfoil: (a) Spalart–Allmaras, and (b) Shear Stress Transport.

Figure 16 compares the measured turbulent shear stresses −u′v′ against the predicted
ones at the same seven locations in the wake. Both the Spalart–Allmaras and Shear
Stress Transport models were used in the UNS3D-PAR code. The two turbulence models
predicted the general shape of the shear stresses, although there were some differences
between the predicted results and the experimental data.
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Figure 16. Dimensionless turbulent shear stress profiles on Nakayama’s airfoil: (a) Spalart–Allmaras, and (b) Shear
Stress Transport.

4.3. Two-Dimensional Backward-Facing Step

The backward-facing step is a case proposed by Driver and Seegmiller [23] to test
how well the turbulence model simulates separated flows. The backward-facing step
case is a challenging problem as turbulence models generally have difficulty modeling
separated flows.

The test configuration had a 100 cm long × 15.1 cm wide × 10.1 cm high rectangular
inlet duct followed by a backward-facing step of H = 1.27 cm. The geometry of the
computational domain of the backward-facing step, shown in Figure 17, is defined as a
function of the step height, H. The experiment took place at atmospheric total pressure and
temperature. The freestream velocity was 44.2 m/s. The Reynolds number based on step
height was ReH = 36,000. The boundary conditions are also shown in Figure 17. A detail of
the mesh near the step is shown in Figure 18.

Figure 17. Backward-facing step geometry and boundary conditions [20].
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Figure 18. Detail of backward-facing step mesh.

Two grids were used for this test case: (1) the second coarsest and (2) the finest
grid provided by the NASA Turbulence Modeling [20]. The results generated with the
UNS3D-SEQ and UNS3D-PAR codes were compared against those generated with the
NASA FUN3D and CFL3D codes which used the finest grid. The sets of results pre-
sented herein include velocity profiles, turbulent shear stresses, skin friction coefficients,
and reattachment points.

Figure 19 compares the measured and predicted velocity profiles at four locations
downstream from the step: x/H = 1, 4, 6, and 10. The velocity profiles were calculated
using the UNS3D-SEQ, UNS3D-PAR, and CFL3D codes with the Spalart–Allmaras and
Shear Stress Transport models. There was a good agreement among the results of the
three codes, for both turbulence models. The Shear Stress Transport model matched the
experimental data better than the Spalart–Allmaras model near the step, at x/H = 1. Away
from the step, at x/H = 4, 6, and 10, the Spalart–Allmaras model captured the velocity
profiles better than the Shear Stress Transport model.

Figure 20 compares the measured and predicted friction coefficients. There is a rela-
tively good agreement among the results produced by the UNS3D-SEQ, UNS3D-PAR, and
CFL3D codes, using both Spalart–Allmaras and Shear Stress Transport models.

The experimental investigation found the reattachment point to be at 6.26 ± 0.01 [23].
The predicted location of the reattachment point varied depending on the turbulence
model. The Spalart–Allmaras model predicted an earlier reattachment, while the Shear
Stress Transport model predicted a delayed reattachment. The predicted locations of
reattachment point are summarized in Table 5.

Table 5. Location of reattachment point x/H on backward-facing step.

Spalart–Allmaras Shear Stress Transport

CFL3D 6.07 6.35
FUN3D 6.10 6.50
UNS3D-SEQ 6.27 6.79
UNS3D-PAR 6.01 6.83
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Figure 19. Velocity profiles on backward-facing step: (a) Spalart–Allmaras, and (b) Shear Stress Transport.
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Figure 20. Coefficient of friction on backward-facing step: (a) Spalart–Allmaras, and (b) Shear Stress Transport.

Figure 21 compares the measured and predicted turbulent shear stresses at four
locations downstream from the step. The results predicted using the Shear Stress Transport
model matched the turbulent shear stresses better than the Spalart–Allmaras model.
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Figure 21. Dimensionless turbulent shear stress on backward-facing step: (a) Spalart–Allmaras, and (b) Shear
Stress Transport.

4.4. Eleventh Standard Configuration

The Eleventh Standard Configuration contains two test cases from the experimental
data obtained in the annular test cascade at EPF-Lausanne on a two-dimensional turbine
cascade: (1) a subsonic, attached flow case, and (2) a transonic, separated flow case [24].
Herein, only the subsonic, attached flow case with stationary airfoils was simulated.

The airfoil chord is 77.8 mm, the pitch is 56.55 mm, and the stagger angle is −40.85◦.
The inflow angle is 15.2◦. The input flow conditions are listed in Table 6.

Table 6. Input parameters for eleventh standard configuration, case 100.

ptot Ttot Minlet ReL µref
ν̃
ν ω∞

νL
c2

∞
κ∞

1
c2

∞

[Pa] [K] [-] [-] [Pa s] [-] [-] [-]

124,600 330 0.31 446,000 1.846×10−5 3 4×10−8 4×10−10

Figure 22 shows the computational mesh for two adjacent airfoils. The flow, however,
was calculated over a single passage by using periodic boundary conditions to simulate
the rest of the cascade. A multiblock O4H-grid padded with inlet and outlet H-grids was
used to discretize the computational domain. The number of grid nodes varied between
39 k on the coarse mesh to 182 k on the fine mesh. Figure 22 shows the coarse grid. In the
x− y plane, the fine mesh used 401 × 101 nodes on the O-grid, 62 × 49 nodes on the block
prior to the leading edge, 82 × 29 nodes on the block downstream from the trailing edge,
305 × 25 above and below the airfoil, 160 × 97 at inlet, and 200 × 77 at outlet. One cell was
used the spanwise direction, as the flow was modeled as two-dimensional and the flow
solver was three-dimensional.
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Figure 22. Eleventh standard configuration computational grid.

Figure 23 shows a comparison of the measured and predicted Mach number over
the airfoil. The UNS3D-PAR code was used with the Spalart–Allmaras and Shear Stress
Transport turbulence models. The results generated by the coarse and fine meshes were
almost identical. Furthermore, the results generated by the two turbulence models were
almost identical. On the pressure side, the UNS3D-PAR code results matched the exper-
imental data well. Over the last one-quarter of chord, the predicted flow, however, had
a higher velocity than the measured one. On the suction side, the predicted flow had
a higher velocity than the measured one over 60% of the airfoil. The UNS3D-PAR code
results matched the experimental data better than the numerical results reported in [24].

Figure 23. Measured and predicted Mach number on the eleventh standard configuration.
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5. Conclusions

Four test cases were used to validate the implementation of the Shear Stress Trans-
port and Spalart–Allmaras turbulence models in the UNS3D code. Two versions of the
UNS3D code were considered: a sequential code, UNS3D-SEQ, and its parallel version,
UNS3D-PAR. The validation of the implementation was done using experimental data
and results generated by two NASA codes: FUN3D and CFL3D. The four cases considered
were (i) a flat plate case, (ii) an airfoil near-wake, (iii) a backward facing step, and (iv) a
turbine cascade known as the eleventh standard configuration. In all cases, the residuals of
the solutions were less than 10−11. The numerical results generated by the UNS3D codes
with the two turbulence models compared well with the experimental data and the results
of NASA codes FUN3D and CFL3D. The two turbulence models produced similar results.
Compared to the experimental data, the Spalart-Allmaras turbulence model did not predict
the turbulent fluctuations and skin friction coefficient as well as the Shear Stress Transport
turbulence model. The Spalart–Allmaras model predicted the velocity profiles better than
the Shear Stress transport model as the flow moved away from the backward-facing step.
Overall, the results generated with the Shear Stress Transport model were closer to the
experimental data, the only exception being the prediction of the reattachment point on the
backward-facing step, where the Spalart–Allmaras model outperformed the Shear Stress
Transport model. The computational time of the Shear Stress Transport model solution
exceeded that of the Spalart–Allmaras model by 4% to 38%. In addition, the solution
generated by the Shear Stress Transport model was more sensitive to the far-field boundary
conditions than that of the Spalart–Allmaras model.
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