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Abstract: In studies on the health impacts of air pollution, regression analysis continues to advance
far beyond classical linear regression, which many scientists may have become familiar with in an
introductory statistics course. With each new level of complexity, regression analysis may become
less transparent, even to the analyst working with the data. This may be especially true in count
data regression models, where the response variable (typically given the symbol y) is count data
(i.e., takes on values of 0, 1, 2, . . . ). In such models, the normal distribution (the familiar bell-shaped
curve) for the residuals (i.e., the differences between the observed values and the values predicted
by the regression model) no longer applies. Unless care is taken to correctly specify just how those
residuals are distributed, the tendency to accept untrue hypotheses may be greatly increased. The
aim of this paper is to present a simple histogram of predicted and observed count values (POCH),
which, while rarely found in the environmental literature but presented in authoritative statistical
texts, can dramatically reduce the risk of accepting untrue hypotheses. POCH can also increase the
transparency of count data regression models to analysts themselves and to the scientific community
in general.

Keywords: count data; correlation; regression models

1. Introduction

In count data regression analysis, the response variable takes on count values (i.e., 0,
1, 2, . . . ). The consequences of this property of the response variable can be understood by
comparison with classical linear regression analysis.

In classical linear regression analysis, for a set of n datapoints, the predicted value of
the response variable ŷi may be given by

ŷi = β̂0 + β̂1x1i + β̂2x2i + . . . + β̂mxmi f or i = 1, 2, . . . , n (1)

where x1, . . . , xm are the covariates, β̂0, . . . , β̂m are the parameters, and ŷi is the predicted
value of the response variable. ŷi is also the estimate of the expected value of the response
variable given the covariate values. Hence, (1) is referred to as the conditional mean model
(CMM).

The CMM residuals, i.e., the differences between ŷi and observed values yi, are
distributed about the conditional mean according to the normal probability density func-
tion (pdf):

f (resi) =
1

σ
√

2π
exp

(
−1

2

( resi
σ

)2
)

(2)
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where resi = yi − ŷi, the residual for the i − th observed value, and σ is the standard
deviation of the residuals. The closer resi is to 0, the higher the value of f (resi). If the
residuals are also identically distributed (i.e., come from the same, vast, imaginary pool
of residuals) and independently distributed (i.e., one residual is not useful in predicting
the value of another), then the pdfs may be multiplied together to form the normal-based
likelihood function:

Lnormal =
n
∏
i=1

1
σ
√

2π
exp

(
− 1

2
( resi

σ

)2
)

=
n
∏
i=1

1
σ
√

2π
exp

(
− 1

2

(
yi−(β̂0+β̂1x1 i+β̂2x2 i+...+β̂mxmi)

σ

)2
) (3)

The best estimates of CMM parameters may be found by adjusting them until they
maximize this normal-based likelihood function.

Several properties of this likelihood function allow classical regression analysis to be
transparent, both to the analyst working with the data and to the general audience review-
ing the published results. Maximizing the likelihood function corresponds to minimizing
the sum of the squares of the residuals, and thus a plot of the resulting conditional mean
shows it passing more-or-less through the middle of the scattering of observed values.
One senses that shifting or rotating that best-fit line would not improve the fit. Also,
the relatively simple R2, which varies from 0 to 1, and is a measure of the portion of the
variation in the response variable accounted for by the conditional mean model, is visually
represented in the plot.

In classical linear regression, the standard deviation appearing in the likelihood func-
tion can be estimated directly from the residuals to give a fairly reasonable representation
of the spread of the data, even if the residuals are not exactly normally distributed. This, in
turn, allows for p-values that tend to be relatively trustworthy. There is still a risk that a
covariate that is not truly associated with the response variable will have a low p-value due
to mere chance. This risk increases as the number of covariates under consideration for
inclusion in the CMM increases. Overfitting of the CMM (i.e., the inclusion of covariates or
other complexities that represent merely random effects rather than actual associations)
may then occur. However, the dataset can be divided into two subsets—training data
(to build the CMM) and testing data. The training data can be further subdivided for
k-fold cross-validation, with reductions in R2 or other simple measures to help detect the
presence of inappropriate covariates. Finally, because such covariates may elude even
k-fold cross-validation, the final CMM is applied to the testing data, and, again, reductions
in R2 or other simple measures will further aid in detecting false inference and overfitting.

Unfortunately, many of the above desirable features are not available in count data
regression analysis. To begin with, the CMM immediately becomes more complex with the
right side typically being exponentiated:

ŷi = eβ̂0+β̂1x1 i+β̂2x2 i+...+β̂mxmi (4)

If one plots the conditional mean through the scattering of observed values, the correct
placement of the line may now seem counter-intuitive because non-linearity in the CMM,
along with other factors, mean that the distribution of the observed values will not likely
be symmetric about the best fit line. Casual assessment of the goodness-of-fit by eye is
difficult, as can be seen, for example, in Figure 1, which shows candidates of best-fit lines
for childhood asthma data in Houston, Texas (Figure 1 will be discussed in more detail in
the next section). Furthermore, the normal pdf will now need to be replaced by any one
of dozens of probability mass functions (pmfs) to build the likelihood function. Incorrect
pmf selection can lead to underestimation of the spread of the data, resulting in falsely
low p-values [1], false inference, and overfitting. Worse still, there is no longer a simple,
universally recognized R2 or other intuitively appealing measures of goodness-of-fit that
can be conveniently used in k-fold cross-validation or in application to test data to help
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warn against overfitting. There are only various forms of the more difficult to interpret
pseudo-R2, and other measures, depending on the representation of the residuals [2]. This
may explain why authoritative “how-to” guides on data analysis in R may demonstrate
k-fold cross-validation for various model types but not for count data regression [3,4]. In
our literature review of the impact of air quality on respiratory health, we found k-fold
cross-validation and application of testing data was used [5], but never for a count data
response variable in a CMM.
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Figure 1. Emergency department childhood asthma arrivals in response to mold during summers of
2003–2011 in Houston, Texas.

Addressing all the ramifications of misspecification of the pmf in count data regression
analysis is beyond the scope of this brief commentary. The impact of misspecification on
p-values for covariate parameter estimates, and a simple strategy to reduce the tendency
for the underestimation to occur, are illustrated in the following sections.

2. Illustration of False Inference and Overfitting Due to pmf Misspecification

The consequences of misspecifying the pmf in count data regression analysis can be
seen in our own analysis of the relationship between air quality and childhood asthma
in Houston, Texas, during the summers of 2003–2011. Concentrations of aeroallergens
(mold and pollen) and anthropogenic contaminants (butane, nitrous oxide, ozone, sulfur
dioxide, and particulates) were initially included in the model as covariates. The number
of children arriving per day at particular hospital emergency departments for asthma was
the response variable. We initially assumed the Poisson distribution for the pmf. With this
pmf, a strong association between the response variable and the mold concentration was
found, with p-value < 10−15.

However, the most appropriate CMM and pmf among those being considered may be
identified as that which yields the lowest Akaike information criteria (AIC) value [6]

AIC = −2·ln(L) + 2·k (5)

where L is the likelihood function value for the selected pmf, and k is the number of
parameters that may be adjusted to increase L. The second term is thus a way of penalizing
the inclusion of parameters, as including an additional adjustable parameter will always
increase L, even if the parameter is not truly representative of actual statistical relationships.
Variations of the AIC may also be used. We use the original AIC here because it is commonly
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available in software packages. The chooseDist() function of the R gamlss package [7] runs
through dozens of pmfs for building likelihood functions, adjusts parameters to maximize
each, and then identifies the one with the lowest AIC. By using this process, dozens of pmfs
were found, which yielded a lower AIC than did the Poisson distribution. An alternative
pmf, the zero-inflated Poisson, which allows for a higher number of zeros than would be
expected for the Poisson and thus, in turn, has a substantially broader spread than the
Poisson would show for our dataset, was found to yield the lowest AIC among the dozens
of available pmfs. The resulting p-value for the mold covariate was now 0.051, a p-value
increase of many orders of magnitude compared to that provided by the Poisson pmf,
leading the mold covariate to be accepted as statistically significant only under far less
strict criteria.

Figure 1 shows a plot of the best-fit line through the data based on the Poisson pmf
(gray) and the zero-inflated Poisson pmf (green). Due to the non-linearity of the CMM and
other factors, one would be hard-pressed to say whether either of the lines fits the data
well, let alone which fits the data better to justify the use of one CMM or pmf over the other.
Indeed, as we will see in the following discussion of the generation and analysis of synthetic
data, radically different pmfs may yield essentially identical CMMs, completely eliminating
the usefulness of plots, such as in Figure 1, in determining which pmf is superior.

To show that the impact of pmf misspecification on p-values is not unique to pecu-
liarities of the somewhat small air quality and childhood asthma dataset we ourselves are
working with, we developed a synthetic dataset that readers are free to view, re-generate
with parameters of their choice, and re-test through the link provided in the data availabil-
ity statement below. Figure 2 shows how we generated the synthetic dataset and how the
reader could use the code to generate their own. The three blocks forming the left column
of the schematic are all the reader would need to select to build the synthetic dataset.
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For our synthetic dataset, which we analyzed in Table 1 below, the code provided
through the link was applied in R version 4.0.0 [8] to generate 1000 values for each of three
covariates, x1, x2, and x3, from the normal distribution with the mean µ = 10 and standard
deviation σ = 1. Parameter values were then assigned to create 1000 conditional mean
values as follows, with x3 excluded:

ŷi = e1+0.1x1 i+0.1x2 i f or i = 1, 2, . . . , 1000 (6)

Observed yi values were distributed about these ŷi values according to the negative

binomial pmf, which has a standard deviation of σi =
√

ŷi + αŷ2
i . (This is in contrast with

the Poisson distribution, which is less spread out, with σi =
√

ŷi.) A value of 0.5 was
chosen for α, the dispersion parameter.
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Table 1. Results for regression analysis using negative binomial (Neg. Bin.) pmf (Loptimal columns) and Poisson pmf
(LPoisson columns).

^
y=e

^
β0+

^
β1x1 as a

Conditional Mean Model

^
y=e

^
β0+

^
β1x1+

^
β2x as a

Conditional Mean Model

^
y=e

^
β0+

^
β1x1+

^
β2x+

^
β3x3 as a

Conditional Mean Model

LPoisson Loptimal LPoisson Loptimal LPoisson Loptimal

pmf Poisson Neg. bin. Poisson Neg. bin. Poisson Neg. bin.

σi
√

ŷi
√

ŷi + αŷi
2

√
ŷi

√
ŷi + αŷi

2
√

ŷi
√

ŷi + αŷi
2

α NA 0.515 NA 0.512 NA 0.511

AIC 15,054.0 7905.6 14,973.3 7900.9 14,960.1 7901.3

β̂0 (p-value)
1.52

(< 2× 10−16)
1.47

(7.6× 10−9)
0.85

(7.2× 10−16)
0.84

(0.017)
1.15

(< 2× 10−16)
1.17

(0.0072)

β̂1 (p-value)
0.15

(< 2× 10−16)
0.15

(1.2× 10−9)
0.15

(< 2× 10−16)
0.15

(1.1× 10−9)
0.15

(< 2× 10−16)
0.15

(9.3× 10−10)

β̂2 (p-value) NA NA 0.065
(< 2× 10−16)

0.063
(0.0099)

0.064
(< 2× 10−16)

0.063
(0.011)

β̂3 (p-value) NA NA NA NA −0.029
(0.00010)

−0.033
(0.20)

The results for each of the three CMMs are shown in Table 1 Loptimal columns. In each
case, the optimal pmf is, not surprisingly, the same one used to generate the data. In some
cases, adding covariates may cause a switch to a pmf with a less spread structure [1]. As
expected, x3, which was not used to generate the response variable, has a coefficient with a
p-value well above 0.05, and slightly increases the AIC. It is to be excluded from the CMM.

For comparison, results for the Poisson pmf, often used in the literature, appear in
the LPoisson columns. The p-values are now falsely low, sometimes by several orders of
magnitude. The false inference would now lead to including x3. The lowering of the AIC
value by including x3 shows that the AIC is inadequate for preventing CMM overfitting.

Hilbe, an author of more than 10 books on statistical modeling, has cautioned that
“Many analysts have been deceived into thinking that they have developed a well-fitted
model” because the spread of the residuals was greater than represented in their count
data regression model [1]. In our own dataset of childhood asthma and air quality in
Houston, the distribution of the daily arrivals to the emergency department appears to
be zero-inflated, i.e., there is an inexplicably high number of days with zero arrivals if
the observed values are assumed to be Poisson distributed about the conditional mean.
The zero-inflated Poisson pmf accounted for what is in effect an increase in the spread
of the residuals, thereby giving a more realistic p-value (0.051), which is many orders of
magnitude higher than that suggested by the Poisson pmf (< 10−15).

Utilizing the most appropriate pmf can dramatically reduce the risk of false inference
and overfitting. However, it must be noted that the AIC and related criteria do not establish
appropriateness in any absolute sense but only identify the best choice among a set of
choices. It could be that none of the choices is ultimately appropriate. In recognition of
this limitation of such criteria, and in recognition of limitations among various software
packages to select the most appropriate pmf, and to provide an intuitively appealing visual
check on the selected pmf and CMM, a predicted-and-observed count histogram (POCH)
is discussed in the following section.

3. The Predicted-And-Observed Count Histogram

Figures 3 and 4 are predicted-and-observed count histograms (POCH), similar to
what is presented but not formally named in authoritative count data regression analysis
texts [1,2]. Black dots and other markers are where the tops of the more traditional vertical
histogram bars would be to represent the number of times that the response variable takes
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on the count value. The black dots represent the number of occurrences of the observed
response variable values, while the green and gray markers represent the number of
occurrences predicted by the models. In Figure 3, for example, the black dot at the count
of 0 indicates that there were 0 childhood asthma emergency department arrivals on 57
of the summer days, while the gray square indicates that the Poisson pmf anticipates 0
arrivals to occur on only 40 of the summer days. Figure 3 shows that while the Poisson and
zero-inflated Poisson had similar performance in predicting the number of days for which
three or more arrivals occur, the zero-inflated Poisson pmf was a substantial improvement
overall for the lower arrival numbers. In Figure 4, the model having two covariates and
using the negative binomial pmf was clearly a better fit than was the three-covariate model
with the Poisson pmf. Though not shown in either POCH, the analyst may generate
predicted values from the pmf that best fits the observed histogram directly, i.e., without
a CMM, note the resulting AIC value, and thus have a baseline AIC value from which to
develop the CMM.
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In both Figures 3 and 4, the POCH shows Poisson pmfs (as opposed to the zero-
inflated and negative binomial pmfs) have a more narrow distribution than does the actual
data. It thus clearly warns that p-values with the Poisson pmf for these particular datasets
will be falsely low. Such charts immediately provide transparency of the complicated count
data regression analysis to the analyst working with the data and to the broader audience.

The POCH is easily generated for even the most complex count data regression analy-
sis models, including ones that incorporate smoothing splines, autoregressive parameters,
etc., as in generalized additive models and models in which the count data is binary, such
as in case-crossover studies. The POCH merely requires a predicted response variable
and a representation of the distribution of residuals, and so can be developed even for a
quasi-likelihood method [9].

A POCH helps assess the correctness of the pmf not only in regards to spread, but also
in regard to skewness, zero-inflation, hurdles, and other potentially important features. A
POCH will not entirely address every violation of statistical assumptions. For example,
one still needs to check for autocorrelation among residuals. However, where the POCH
does not directly address them, it may provide a solid starting point. For example, testing
for autocorrelation in count models requires standardizing the residuals before plotting the
autocorrelation function [2,10]. The POCH can help identify the correct pmf for the stan-
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dardization. Once the final model is selected, perhaps including autoregressive parameters,
the POCH should be re-generated to re-confirm the appropriateness of the model.
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individual authors. We recommend that publishers require a POCH for articles involving 
count data regression models. 
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