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Abstract: Vibration-condition monitoring aims to detect bearing damages of rotating machinery’s
incipient failures mainly through time–frequency methods because of their efficient analysis of
nonstationary signals. However, by having failures with impulse behavior, short-term events have a
tendency to be diluted under variable-speed conditions, while information on frequency changes
tends to be lost. Here, we introduce an approach to highlighting bearing impulsive failures by
measuring short-term spectral components to deal with variable-speed vibrations. The short-term
estimator employs two sliding windows: a small one that measures the instantaneous amplitude
level and tracks impulsive components and a large interval that evaluates the average background
amplitude. Aiming to characterize cyclo-non-stationary processes with impulsive behavior, the
emphasizing high-order-based estimator based on the principle of spectral entropy is introduced. For
evaluation, both visual inspection and classifier performance are assessed, contrasting the spectral-
entropy estimator with the widely used spectral-kurtosis approach for dealing with impulsive signals.
The validation of short-time/-angle spectral analysis performed on three datasets at variable speed
showed that the proposed spectral-entropy estimator is a promising indicator for emphasizing
bearing failures with impulse behavior.

Keywords: spectral kurtosis; spectral entropy; bearing failure; vibration monitoring

1. Introduction

The adequate condition monitoring of bearing vibrations enables the reliable operation
of mechanical equipment under complex working situations. To this end, health-condition
monitoring assesses the development of internal fluctuating vibration amplitudes gener-
ated by bearing failures that deteriorate rotating machinery [1]. Vibration monitoring is
widely employed to detect bearing damage of incipient failures in gas, steam, and wind
turbines [2–4], and electric vehicles [5]. In domain-based vibration monitoring, signal-
processing methods that effectively synchronously obtain information from time and
frequency domains are preferred to deal with nonstationary data. Among time–frequency
methods, the following are the most prominent: Empirical mode decomposition that has
some limitations, such as border effect evidence, unreliable stopping criterion, and low
spectral resolution (separating closely spaced spectral components) because of mode mix-
ing [6]; wavelet transforms that have an energy-leakage issue for which mother wavelet
selection must be appropriate because the contents of the daughter wavelets need to be
closely matched with each considered signal [7]; short-time Fourier transform (STFT), with
the constraint of nonreachable simultaneous best time and frequency resolution [8]. How-
ever, the STFT method is widely adopted in preprocessing nonstationary vibration signals
to discard redundant information and present more powerful fault characteristics [9].
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To date, several moment-based values were reported to measure the damage degree of
rotating machinery to fault spectrum sparsity or envelope spectra exhibiting discrete peaks
at corresponding fault frequencies. In particular, kurtosis (also related to `1/`2 norms [10])
measures the spikiness of a vibration signal [11], better estimating the resonance frequency
band of bearing impulsive failures [12,13]. However, kurtosis is sensitive to impulsive noise
structure, so that it tends to decrease in value when the frequency of the impulses increases
or impulses overlap [14]. Sparse filtering with generalized `p/`q norms [15] was also
employed with more flexible ruling parameters (p and q) to characterize bearing faults [16].
However, a large value of p measures sensitivity to outliers, while a small p makes the
measure ineffective in sensing sparsity [17]. Entropy is another useful tool in detecting the
dynamic characteristics of nonlinear vibration signals, providing robustness to noise and
adequate cluster ability, independent of prior knowledge [18]. Estimation types commonly
used in fault diagnosis include approximate energy entropy and sample entropy [19],
which may be dependent on intrinsic parameters and have limited ability to capture long-
term correlations. To cope with this issue, a multiscale approach is proposed that shortens
the time series at higher scales, which results in higher fluctuations of entropy values at
scale factors [20]. Permutation entropy can also be applied in the analysis of vibration
signals [21]. However, entropy methods tend to exclude high-frequency information,
yielding limited diagnostic performance in identifying bearing health states [22].

Generally, the STFT approach depends on the length of the applied window and
its shape. In this regard, bearing-fault analysis uses a rectangular window with a fixed
length with the limitation of power leakage and insensitive tracking of impact signal
components [23]. This difficulty mainly concerns the event identification of highly localized
time samples. To cope with this issue, the sliding SFFT approach of bearing-fault waveforms
is often computed (sliding entropy [24] or sliding kurtosis [25]). Although the sliding
strategy enhances the time resolution of measures, it may compromise the quality of
probability function estimation due to fewer data being available within the working
window [26].

Here, we introduce an approach to highlighting impulsive bearing failures. Af-
ter mapping the vibration signal into the angular domain, we propose filtering with an
angle-varying transfer function to magnify failures’ impulsive behavior when dealing with
variable-speed records. Namely, we measured short-term spectral components by oper-
ating two sliding windows: a small one that measures the instantaneous amplitude level
and tracks impulsive components, and a large interval that evaluates average background
amplitude. Aiming to characterize cyclo-non-stationary processes with impulsive behavior,
the emphasizing high-order-based estimator based on the principle of spectral entropy is
introduced. For evaluation purposes, both visual inspection and classifier performance
were assessed, contrasting the spectral-entropy estimator with the widely used spectral-
kurtosis approach for dealing with impulsive signals. The validation of short-time/-angle
spectral analysis, performed on three datasets at variable speed, showed that the proposed
spectral-entropy estimator is a promising indicator for emphasizing bearing failures with
impulse behavior.

The rest of the paper is organized as follows: Section 2 briefly discusses squared-
envelope-spectrum estimation and emphasizing impulsive components; Section 3 describes
the experiment setup and the simulation framework of rolling-element bearing faults to
test the methodology at instantaneous angular speed; Section 4 discusses the validation
results performed by three vibration signal collections. Lastly, Section 5 outlines the main
conclusions of the paper.
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2. Methods
2.1. Estimation of Squared Envelope Spectrum

In practice, vibration-signal analysis is performed on envelope spectrum x̃∈RK, which
is the absolute average over L periodograms, as follows:

x̃[k] =
1

Lεw

L−1

∑
l=0

∣∣∣∣ Fn→k
{|X̂[l, n]|2}

∣∣∣∣2 (1)

where Fn→k{·} stands for Fourier transform, and X̂ ∈ CL×N is the analytical signal of
X∈RL×N used to calculate the square envelope of the filtered vibration signal, as follows:

X[l, n] = F -1
k→n
{SX [l, k]ΞΞΞ[l, k]} (2)

where ΞΞΞ ∈ CL×K is a filter mask that emphasizes the impulsive components generated
by rolling-element bearing failures, and matrix SX ∈ CL×K holds the short-time Fourier
transform (STFT) of a vibration signal computed over sliding window wτ , defined as below:

SX [l, k] :=
N−1

∑
n=0

x[n]wτ [n− l] exp (−j2πnk), l ∈ L (3)

where x∈RN , x ⊆ X, is a cyclo-non-stationarity signal spanned over the domain of ob-
servation (either time or angular) that is sampled as x[n] := x(n/ fs), at sampling fre-
quency fs, wτ [n] is window of length τ used to implement short-term analysis, and εw =

∑n∈N |wτ [n]|2 is the real-value energy of wτ .

2.2. Spectral Filter Emphasizing Impulsive Components

For characterizing cyclo-non-stationary processes, different approaches to filter mod-
eling can be used to highlight the presence of impulsive components in envelope spectrum
X̃, including the following moment-based estimators:

– Spectral kurtosis (SK): provided there is a cyclostationary process, the highlighting
filter (noted as ξ1∈RK) is modeled through kurtosis, having elements defined by the
following absolute value moment [27]:

ξ1[k] =

〈
|SX [l, k]|4

〉
l〈

|SX [l, k]|2
〉2

l

− 2, k ∈ K, ξ1 ⊆ Ξ (4)

where
〈
| · |n

〉
l stands for the empirical moment of the n-th order, averaging represen-

tation SX over l domain.
– Spectral entropy (SE): an entropy-based filter (noted as ξ2∈RK) is proposed that is

modeled as follows:

ξ2[k] = H{SX [l, k] : ∀l∈L}, ξ2 ⊆ Ξ, (5)

where H{·} is the VQ entropy proposed in [28].

To deal with the nonstationarity of vibration signals, the moment-based estimator can
be performed within a wider window of spectral matrix SX , as below:

ΞΞΞ[l, k] = ξ i{xM[n + l]}[k], i = 1, 2, (6)

where xM[n] = [x[n], · · · , x[n + M− 1]] is a subvector of size M<N extracted from x.
In the following, when sliding filter ΞΞΞ[l, k], is denoted as sliding spectral kurtosis (SSK)
if computed by ξ1{·}. Otherwise, the sliding filter is denoted as sliding spectral entropy
(SSE) if computed by ξ2{·}.
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3. Experiment Setup

For evaluation purposes, a visual inspection of the proposed filtering methodology
was initially performed for inner race faults at variable speed, employing a simulated
envelope spectrum computed from the tested vibration signal. As outlined in Figure 1,
after completing the shared procedures of segmentation and spectrogram estimation, we
also assessed the proposed filtering approach’s influence by appraising the classification
accuracy of failures in parallel with testing both filtering approaches for impulsive compo-
nents: spectral kurtosis and spectral entropy. Thus, the validation of the proposed filtering
methodology was achieved in three real-world vibration-signal collections (the tailored
software to support the validating pipeline of the proposed short-time/-angle spectral
analysis is now publicly available at https://github.com/juccaicedoac03/tf-Comp-ex_vib):
(1) The SAFRAN dataset, which holds a challenging record of aircraft engines dealing with
variable speed in a run-up test. (2) the Case Western Reserve University (CWRU) dataset,
which consists of 59 records from two damaged bearings at constant speed; and (3) the
Universidad Nacional de Colombia (UNC) dataset, which holds 42 variable-speed signals,
including a concrete set of testing bearing failures.

For the above datasets, each vibration signal was mapped into the angular domain to
remove the shaft speed’s influence before validating the filtering approaches, the baseline
versions (SK and SE) and their proposed sliding versions (SSK and SSE). We also fixed the
set parameter as shown in Table 1, namely, the sliding STFT window wτ to compute SK and
SE (as suggested in [29]), and length M of the segment xM to calculate SSE and SSK. To feed
the classifier, the single-trial feature vectors extracted from SK and SE are: ξ1[k], and ξ2[k]
(see Equations (4) and (5)). To deal with the poor time alignment of time–frequency sets
ΞΞΞ[l, k], the mean and standard deviation (STD) through time index l were extracted as a
feature from SSK and SSE. The classification procedure was implemented using Python
library Scikit-learn, and the following working parameters were selected. The initial feature-
selection step employed a support vector machine with C = 0.1 (selecting features with
nonzero coefficients and stochastic gradient descent optimization), and cross-validation
was carried out through a leave-one-out scheme handling 100 trials.

Input
signal x[n]

Windowing
xM

Spectrogram
SX

Spectral
Kurtosis ξ1

Spectral
Entropy ξ2

Emphasizing
Filter Ξ

Enhanced
envelope

spectrum x̃

Sliding spectral moment-based estimators

Figure 1. Validating pipeline of proposed short-time/-angle spectral analysis for vibration monitoring.

Table 1. Testing dataset parameters: wτ , sliding short-time Fourier transform (STFT) window; M,
length segment for computation of either sliding spectral entropy (SSE) or sliding spectral kurtosis
(SSK) estimator. All parameters measured in samples.

Parameter Simulation SAFRAN CWRU UNC

wτ 256 256 256 256
M 2048 4096 8192 32,768

Samples per revolution 128 256 400.67 1024

Simulation Framework of Rolling-Element Bearing Faults

To reproduce records with constant instantaneous angular speed (IAS) to be tested, we
initially created a fault record with a rolling-element bearing (REB) using a superposition
of periodic impulses at the fault frequency (i.e., the average time between impacts) using
the model suggested in [30]:

https://github.com/juccaicedoac03/tf-Comp-ex_vib
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x[n] = ∑
i∈I

ais[n− iT − τi] + η[n], (7)

where {ai}I
i=1 is the set of real-value amplitudes, {η[n]}n∈N is additive white Gaussian

noise, s[n] is a function that models an impact over time domain n, and {τi} is a random
variable that adds small variations within fault-frequency period T, which remained
constant between impacts.

Table 2 presents the REB faults modeled by a frequency that depends on REB geometry,
including contact angle, pitch diameter, and ball diameter. The top row of Figure 2 presents
an REB failure in the ball-pass frequency inner race (BPFI), modeled by impulse function
s[n]=sin(2π5000t) exp(−0.22π5000t), having a resonance frequency of 5 kHz and a fault
frequency of 5.875 times the rotational speed fixed at 50 Hz. Figure 2a,b display an example
of clean and noisy records, respectively, showing that the resonance band was at 5 kHz
on both representations of power spectral density (PSD; marked in orange). However,
the failure is not visible on either spectrogram.

Table 2. Adjusted frequencies of rolling-element-bearing (REB) failures. Note: fr, instantaneous
angular speed (IAS); d, REB diameter; D, pitch circle diameter; N, number of REBs; and Φ, con-
tact angle.

Failure Model

Ball-pass frequency inner race (BPFI) N fr
(
1 + d

D cos Φ
)
/2

Ball-pass frequency outer race (BPFO) N fr
(
1− d

D cos Φ
)
/2

Fundamental train frequency (FTF) fr
(
1− d

D cos Φ
)
/2

Ball spin frequency (BSF) D fr

(
1−

( d
D cos Φ

)2
)

/d
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Figure 2. Modeling of REB failures. Figures in top row (a,b) show the spectrograms estimated for constant IAS and the
figures bottom row (c,d) show the spectrogram of time-varying IAS. Left-hand side, corresponding plots of the clean
signal; right-hand side, signal perturbed by noise at 3 dB.
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To simulate a record that presents time-varying IAS, an additional function φ[n] was
introduced to rule the time-varying fault period, resulting in the following framework to
model an REB angle-varying failure signal:

y[n] = ∑
i∈I

ais[φ[n]− iT − τi] + η[n], (8)

With the aim of removing the influence of variable speed on failure detection, the ruling
function must fulfil composition operation n = φ[n] ◦ φ−1

1 [n], such that the uniform angular
resampling holds (or computed order tracking): y[φ−1[n]]=yγ[n], where yγ[n] is a version
of y[n] with unitary speed, and γ represents the angular domain.

The bottom row in Figure 2 shows an example of simulated REB failure with variable
speed, linearly increasing from 25 to 150 Hz. Thus, the period between impulses becomes
time-varying, but impulse function’s resonance frequency s[n] remains at 5 kHz. Trans-
forming the signal into the angular domain removes the influence of speed, yielding a
vibration signal at a constant speed of 1 Hz.

The use of impulse-based models in Equations (7) and (8) led to spectral representation
with an extended frequency content. Instead, failure analysis was performed on the
fluctuating spectral magnitude (i.e., envelope spectrum). However, the impulsive signal
behavior had to be filtered to remove spurious components such as IAS harmonics to
extract the envelope spectrum. In practice, envelope-spectrum analysis for fault detection
is presented through visual examination in the absence of its standard scoring.

Lastly, Figure 3 displays envelope spectra computed for the evaluating scenarios.
As seen in Figure 3a, even though the first SK harmonic is the most powerful, some higher
fault harmonics vanished (marked with dashed red lines), especially the third. Instead,
Figure 3b–d show that the spectral content of SE, SSK, and SSE smoothly faded, providing
a better visual interpretation of failures.
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Figure 3. Examples of envelope spectra (obtained from power spectral density (PSD)) performed by simulated signal. Top
row, spectral-kurtosis (SK) and spectral-entropy (SE) estimators; bottom row, their sliding versions (sliding spectral kurtosis
(SSK); sliding spectral entropy (SSE)). Order represents shaft-speed harmonics.
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4. Results and Discussion
4.1. Experiment Results by SAFRAN

Data were acquired from a ground test using experimental hardware that included a
civil aircraft engine with damaged bearings and sensor locations. The general overview of
the tested engine and its accessory gearbox is given in [31], where shafts L1–L5 are labeled.
The engine had two main shafts and an accessory gearbox with equipment such as pumps,
filters, alternators, and a starter. The accessory gearbox was linked to the high-pressure
shaft HP by a radial drive shaft and a horizontal drive shaft. The database holds the
healthy-state record (labeled as ACC1) and bearing-failure record (ACC2); both signals
had a sampling frequency of 50 kHz. The tachometer signal is also provided. Due to ACC2
data being acquired closer to the L5 location, the outer race fault was expected to be more
influential on this shaft than that in L1 (placed more distantly). Table 3 presents the fault
frequencies of the bearing gearbox, referenced to L5, as detailed in [31].

Table 3. Fault bearing frequencies of supporting shafts L1, L4, L5, with speed of L5 as reference.

L1 (L5) L4 (L5) L5 (L5)

Speed 1.34 0.984 1

FTF 0.55 0.40 0.43
BSF 3.46 2.44 3.56
BPFI 7.95 5.87 10.24
BPFO 5.45 3.97 7.76

Figure 4 displays the spectrogram of the bearing-failure record estimated within the
entire frequency range [0, 25] kHz (see left plot), indicating that the IAS signal had the
highest energy arising at the 62nd harmonic. For illustration, the left plot shows the
spectrogram of the downsampled version of ACC2 (by 16 times) within [0, 1.56] kHz (right
plot), for which IAS had a low signal-to-noise (SNR) ratio, having the highest energy of the
third harmonic but hiding other harmonics.
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f1[n]
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Figure 4. Spectrograms of ACC2 record estimated within full frequency range of [0, 25] kHz (left),
and for downsampled version (by 16 times) within [0, 1.56] kHz (right).

Figure 5 depicts the resulting envelope spectra of the considered filtering scenarios,
showing that the SK approach had a sharp peak at failure frequency (see Figure 5a),
but harmonics became less visible. In the case of SE, failure frequency was missed (first
harmonic), and the third harmonic was then instead clearly observed (see Figure 5b).
Regarding SSK (Figure 5c) and SSE (Figure 5d), either short-term approach displayed the
envelope spectrum more accurately with a dominant presence of the fault frequency and
all its harmonics. Hence, the short-term filtering approach improved failure diagnosis in
the angular domain.



Appl. Sci. 2021, 11, 3369 8 of 18

0 20 40 60 80 100
Order [xn]

0.00

0.02

0.04

0.06

0.08

N
or

m
al

iz
ed

 P
SD

BPFO

(a) SK

0 20 40 60 80 100
Order [xn]

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

 P
SD

BPFO

(b) SE

0 20 40 60 80 100
Order [xn]

0.0

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 P
SD

BPFO

(c) SSK

0 20 40 60 80 100
Order [xn]

0.0

0.2

0.4

0.6

0.8

1.0
N

or
m

al
iz

ed
 P

SD
BPFO

(d) SSE

Figure 5. Examples of envelope spectra (obtained from PSD) from aircraft-engine data (SAFRAN). Top row, SK and SE
estimators; bottom row, their sliding versions (SSK; SSE).Order represents harmonics of shaft speed.

4.2. Experiment Results from CWRU

Figure 6 shows the test rig used for signal acquisition consisting of a 2 HP electric
motor, driving a shaft on which a torque-transducer encoder was mounted. Torque was
applied to the shaft via a dynamometer and an electronic control system. During testing,
faults ranging in diameter from 0.18 to 0.71 mm were seeded onto the motor’s drive- and
fan-end bearings using electrodischarge machining (EDM). Faults were seeded on rolling
elements, and inner and outer races. Each faulty bearing was separately reinstalled on
the test rig, which was then run at a constant speed for motor loads of 0− 3 horsepower
(approximate motor speeds of 1797–1720 rpm). Table 4 shows the relevant bearing details
and fault frequencies. During each test, acceleration was measured in the vertical direction
on the drive-end bearing housing (DE). In some cases, acceleration was also acquired
in the fan-end bearing housing (FE) vertical direction and the motor supporting base
plate (BA). Used sample rates were 12 kHz for some tests and 48 kHz for others. Further
details regarding the test setup can be found in the CWRU Bearing Data Center website
at https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-
university-bearing-data-center-website.

https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
https://csegroups.case.edu/bearingdatacenter/pages/welcome-case-western-reserve-university-bearing-data-center-website
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Table 4. Bearing fault frequencies for the test rig.

Rig Position Model Number Fault Frequencies (IAS Multiple)
BPFI BPFO FTF BSF

Drive end SKF 6205-2RS JEM 5.415 3.585 0.3983 2.357
Fan end SKF 6203-2RS JEM 4.947 3.053 0.3816 1.994

Drive end
bearing

Torque 
transducer
& encoder

Dynamometer

Fan end
bearing

Electric 
motor

Figure 6. Case Western Reserve University test rig.

The CWRU dataset holds a benchmark in bearing-failure identification comprising
the following steps [32]:

1. Discrete or random separation (DRS) to remove deterministic (discrete frequency)
components.

2. Spectral kurtosis to determine the most impulsive band, followed by bandpass filter-
ing.

3. Envelope analysis (squared envelope spectrum) of a bandpass-filtered signal.

Since this benchmark contains the SK procedure within the bearing fault detection
framework, it was well-suited for comparison with the proposed approach that we perform
using 59 data records labeled as “nondiagnosable” as described in Table 5.

Table 5. Categorization labels assigned to diagnosis states.

Diagnosis Diagnosis ExplanationCategory Success

Y1 Yes Data clearly diagnosable and show classical characteristics
for a given bearing fault in both t-f domains

Y2 Yes Data clearly diagnosable with nonclassical characteristics
in either or both t-f domains

P1 Partial Data probably diagnosable; e.g., envelope spectrum
shows discrete components at expected fault frequencies,
but not dominant in the spectrum

P2 Partial Data potentially diagnosable; e.g., envelope spectrum shows
smeared components that appear to coincide with expected fault
frequencies

N1 No Data not diagnosable for specified bearing fault, but with
other identifiable problems (e.g., looseness)

N2 No Data not diagnosable and virtually indistinguishable from noise,
excepting possibly shaft harmonics in the envelope spectrum

In terms of interpretation, the visual inspection of estimated envelope spectra allowed
for newly categorizing 7 records after SSK, 27 records after SE, and 25 records of SSE
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as shown in Table 6. Thus, SE presented the best results followed by SSE. However,
there was no substantial evidence of improvement after using SSK due to it being an
approach designed to deal with time-varying IAS. The CWRU dataset was at constant
speed. Entropy-based spectral filtering improves the SK method, meaning that entropy
allows for highlighting impulsive components from complex data such as ball failure,
yielding significant enhancement.

Table 6. Categorization of nondiagnosable records in [32] using SSK (normal font), SE (italic), SSE (bold). Each sampled
record has three simultaneous measurements DE/FE/BA. Diagnosable records per approach: 7 partially diagnosable (SSK),
1 diagnosable and 26 partially diagnosable (SE), 25 Partially diagnosable records (SSE).

Fault Type

IR Ball OR Centered OR Orthogonal OR Opposite

Drive end
bearing faults
12 kHz data

3001 = N2/-/-,
3002 = N2/-/-,
3003 = N2/-/-,
3004 = N2/-/-,
3001 = P2/-/-,
3002 = P2/-/-,
3003 = P2/-/-,
3004 = P2/-/-,
3001 = P2/-/-,
3002 = P2/-/-,
3003 = P2/-/-,
3004 = P2/-/-

118 = N2/N2/N2,
119 = N2/N2/N2,
120DE = P1, 120BA = N2,
121BA = P2, 187FE = N2,
224DE = N1, 224BA = P2,
225DE = P2, 225FE = N2,
118 = P2/N2/N1,
119 = P1/N2/N1,
120DE = P2, 120BA = P2,
121BA = N2, 187FE = N1,
224DE = P2, 224BA = P2,
225DE = P2, 225FE = N1,
118 = P2/N2/N1,
119 = P2/N2/N1,
120DE = P1, 120BA = P2,
121BA = N2, 187FE = N1,
224DE = P1, 224BA = N1,
225DE = P1, 225FE = N1

197FE = N2,
197BA = P2,
198FE = N2,
198BA = N1,
199FE = N2,
200 = N2/N2/P2,
197FE = N1,
197BA = Y2,
198FE = P2,
198BA = P2,
199FE = N1,
200 = P1/N1/P2,
197FE = N2,
197BA = P1,
198FE = N2,
198BA = P2,
199FE = N2,
200 = P2/N1/P2

— —

Drive end
bearing faults
48 kHz data

174 = N1/N1,
174 = N2/N2,
174 = N2/N2

122 = N2/N2,
123 = N2/N2,
124 = P2/N2, 125 = P2/N1,
192 = N1/N1, 228DE = N2,
229DE = N2, 122 = P1/N2,
123 = P2/N2, 124 = P2/N1,
125 = P1/N1, 192 = P2/N1,
228DE = N2, 229DE = N2,
122 = P2/N1, 123 = P2/N2,
124 = P2/N1, 125 = P2/N1,
192 = P2/N1, 228DE = N2,
229DE = N2

202FE = N2,
204FE = N2,
202FE = N2,
204FE = P2,
202FE = N2,
204FE = P2

— —

Fan end
bearing faults
12 kHz data

—

282FE = N2, 285FE = N2,
290DE = N2, 290FE = N2,
292FE = N2, 293DE = N2,
282FE = N2, 285FE = P2,
290DE = P2, 290FE = N2,
292FE = P2, 293DE = P2,
282FE = N2, 285FE = P2,
290DE = P2, 290FE = N2,
292FE = P2, 293DE = P2

—
298BA = N2,
298BA = N2,
298BA = N2

302 = N2/N2/N2,
305FE = N2,
306 = N2/N2/N2,
307 = N1/N1/N2,
302 = N2/N2/N2,
305FE = N1,
306 = N1/N1/N2,
307 = N1/P2/N2,
302 = N2/N2/N2,
305FE = N1,
306 = N1/N1/N2,
307 = N1/P2/N2

Figure 7 presents the envelope spectrum estimated from the best-categorized records.
Performing SSK, the inner-race (IR) fault remained N1, as shown in Figure 7d, and the ball
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and outer-race (OR) faults were categorized as P1, as failure harmonics were not dominant,
as shown in Figure 7e,f. SE was the only approach that presented a Y2 record in OR
(see Figure 7c), where failure frequency was dominant. Meanwhile, the IR in Figure 7a
and Ball in Figure 7b were P2/P1 due to the fault frequency not being dominant. SSE
presented smoother PSD (see Figure 7h) in comparison with that of SE (see Figure 7b),
but categorization remained the same. Record 197BA was the only downgraded one from
Y2 for SE (see Figure 7c) to P1 for SSE (see Figure 7i). This exception can be justified
because either approach (SK or SE) did not benefit from the short-time version at constant-
speed data.
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Figure 7. Assigned labels after visual inspection of envelope spectra (obtained from PSD) estimated by sliding spectral
kurtosis (SSK, top row), spectral entropy (SE, middle row), and sliding spectral entropy (SSE, bottom row). One example
record is displayed for each considered failure: Left column (inner race (IR)), middle column (ball), and right column (outer
race (OR)).

Along with the qualitative diagnosis above discussed in Table 6, we also quantified
the impact of short-term feature extraction through the corresponding classifier perfor-
mance, which was estimated using the CWRU dataset with five-class labeled records.
Table 7 presents the accuracy estimates and the advantage of short-time feature strategy
in either estimator (SK or SE). State-of-the-art approaches removed the engine influence
as an additional procedure. In our case, engine influence was not removed, resulting in
more heterogeneous classes. Furthermore, the proposed approach preserved the physical
interpretation, allowing for visual inspection and automatic failure detection analysis.
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Additionally, our approach is useful in variable-speed failure detection, as shown in
Section 4.1.

Because of the unbalanced trial set, Figure 8 also shows the confusion matrix per-
formed by each contrasted feature-extraction approach, making evident that the class of
DE ball reached the highest misclassification values since it held the most considerable
number of records.

Table 7. Training classifier accuracy of each filtering approach in Case Western Reserve University (CWRU) dataset
compared with several recently reported state-of-the-art works.

[33] [34] [35] SK SSK SE SSE

Without removing engine influence - - - X X X X

Visual inspection - - - X X X X

Accuracy 98.95 99.83 90.46 87.64± 2.26 90.24± 2.31 87.27± 2.95 94.53± 2.26
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Figure 8. Confusion matrix of classification stage in CWRU dataset using SK, SSK, SE, and SSE.

4.3. Experiment Results from UNC

The test rig (see Figure 9) consisted of a shaft driven by a 1.5 HP DC electric motor able
to reach 1720 rpm through the equipped rigid coupling. The test rig had two HTH-UC206
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bearings with two drilling wheels to simulate bearing and unbalanced faults. The dataset
held 42 vibration records lasting 4 s at a sampling rate of 25.6 kHz and variable speed
(coast-down). Vibration records were collected in the horizontal plane, employing several
accelerometers mounted on bearing supports. The following failures were considered
(14 records per failure): inner race (IR), outer race (OR), and ball elements. Damage is was
simulated on the bearing located at the shaft end, introducing a crack on the surface of
interest with a motor tool. The considered bearing failures had failure frequencies of 5.4783
for BPFI, 3.5217 for BPFO, 2.1913 for BSF, and 0.3913 for the fundamental train frequency
(FTF).

(a) (b)

Figure 9. Experimental test rig (left): (1) motor driven; (2) rigid coupling; (3) drilling wheels; (4) bearing housing. sensor
location: (a) accelerometers; and (b) microphones. Simulated OR, IR, and ball defects (right).

Figure 10a displays the spectrogram of a record with IR for which the time-varying
signal is presented on the top plot. Because the dataset had no tachometer record, the speed
profile was computed using the approach developed in [36], resulting in confident estimates
for all OR records. However, the 8 signals’ speed profile (6, ball records; 2, IR) was hardly
interpretable mainly because of their low signal-to-noise ratio.

For illustration purposes, the vibration record was downsampled (by 32 times) to
delineate the speed profile (see Figure 10b). This profile remained similar across the tested
record datasets. The spectrogram in Figure 10c shows that IAS influence was excluded by
transforming it into the angular domain.
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Figure 10. Examples of spectrograms estimated for a single IR fault record.
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Figure 11 shows the resulting envelope spectrum computed for each considered
filtering scenario. Although BPFI fault frequency appeared after applying each filtering
approach, fault frequencies were more visible and dominant in the spectrum performed by
SK and SSK (see Figure 11a,g. In BPFO, fault frequency was indistinguishable from noise
applying each feature-extraction strategy, except in SSK (see Figure 11h), for which the first
fault harmonic was dominant. In ball failure, fault frequency and harmonics were clear and
contained the most spectral energy regardless of feature extraction. SSE (see Figure 11l)
presented an improvement concerning SE (see Figure 11f).
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Figure 11. Envelope-spectrum examples of failures (IR (left column), OR (middle column), and Ball (right column))
computed by SK (top row), SE (second row), SSK (third row), and SSE (fourth row).
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Lastly, we estimated classification performance achieved by the feature extraction
approaches using the three-class-labeled information of the following failures (IR, OR,
and ball) provided by the UNC database that was imbalanced, as shown in the upper
part of Table 8. As a measure of classifier performance, accuracy was initially computed
and is depicted in the lower part. Besides, the confusion matrix is shown in Figure 12.
Although the four approaches delivered high classification values, SSE had the best out-
comes, followed by SE’s entropy-based method. Hence, the use of entropy for feature
extraction allows for dealing with datasets at variable speeds, resulting in a promising
failure indicator.

Table 8. Results of classifier performance. Upper part, Universidad Nacional de Colombia (UNC)
dataset used for classifier training, holding assigned class labels, failure types and number of faulty
records. Lower part, classification accuracy of each filtering approach.
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Figure 12. Confusion matrix of classification stage in UNC dataset, using SK, SSK, SE, and SSE.
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5. Conclusions

This paper introduced an approach to identifying impulsive bearing failures from
variable-speed vibrations by properly emphasizing corresponding envelope-spectrum
components. To this end, we measured short-term spectral components operating a small
window for extracting instantaneous amplitudes and a large interval for simultaneously
assessing the average background. The emphasizing high-order-based estimator based on
the principle of spectral entropy was introduced to characterize the impulsive behavior.
Both visual inspection and classifier performance were assessed, contrasting the introduced
estimator with the widely used spectral-kurtosis approach for dealing with impulsive
signals. The validation of the short-time/-angle spectral analysis, performed on three
datasets at variable speed, showed that the proposed spectral-entropy estimator is a
promising indicator for emphasizing bearing failures with impulse behavior.

From the obtained validation results, the following were concluded:
Simulation of rolling-element bearing faults. Evaluation is was initially carried out

on an artificial framework, allowing for testing all considered ERB and showing that they
could be prognosticated. Furthermore, the model could reproduce the results of more
elaborate filtering, such as a tested sliding approach like the vanishing spectrum (e.g., i-th
harmonic being stronger than i+1-th).

Evaluation of real-world data. The obtained results from visual inspection in the
aircraft-engine data (SAFRAN) showed that each emphasizing spectral filter had poor
performance leading to a noisy envelope spectrum regardless of used estimator (SK or
SE). As a result, they have limited diagnostic capacity. Instead, the sliding strategy more
accurately depicts the envelope spectrum with a dominant presence of the fault frequency
and all its harmonics. Hence, the sliding short-term approach, combined with the evaluated
emphasizing moment-based estimators, improved the angular domain’s failure diagnosis.
In the UNC database, visual examination results behaved similarly to previous data,
except for outer-race failures that could only be acceptably handled by the SSK approach.
Accounting for collecting data simplicity, this issue with OR may be explained by acquiring
data difficulties. In fact, the obtained classifier performance was very high despite the
failure class. Still, the SSE estimator outperformed other filtering approaches.

Spectral filter using moment-based estimators. Under constant instantaneous angular
speed, SE and SK performance was similar to that by their sliding versions, at least in
terms of visual inspection for the tested REB failures. However, evaluating vibration data
with variable instantaneous angular speed, sliding strategy remarkably enhanced visual
examination and classification accuracy. However, some small differences were noted
between the performance achieved by each moment-based estimator.

The authors plan to improve spectral-estimation extraction for future work using
more effective techniques, such as wavelet transform. However, since vibration data can
be converted into 2D representations, such as spectrograms, the authors plan to develop
image-based deep-learning models combined with feature-extraction layers, benefiting
from the entropy estimator explained above.
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