
applied  
sciences

Article

Revisiting NIZK-Based Technique for Chosen-Ciphertext
Security: Security Analysis and Corrected Proofs

Youngkyung Lee 1, Dong Hoon Lee 1 and Jong Hwan Park 2,*

����������
�������

Citation: Lee, Y.; Lee, D.H.; Park, J.H.

Revisiting NIZK-Based Technique for

Chosen-Ciphertext Security: Security

Analysis and Corrected Proofs. Appl.

Sci. 2021, 11, 3367. https://doi.org/

10.3390/app11083367

Academic Editor: Arcangelo

Castiglione

Received: 11 March 2021

Accepted: 5 April 2021

Published: 8 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Graduate School of Information Security, Korea University, Seoul 02841, Korea; dudrudve@korea.ac.kr (Y.L.);
donghlee@korea.ac.kr (D.H.L.)

2 Department of Computer Science, Sangmyung University, Seoul 03016, Korea
* Correspondence: jhpark@smu.ac.kr

Abstract: Non-interactive zero-knowledge (NIZK) proofs for chosen-ciphertext security are generally
considered to give an impractical construction. An interesting recent work by Seo, Abdalla, Lee,
and Park (Information Sciences, July 2019) proposed an efficient semi-generic conversion method
for achieving chosen-ciphertext security based on NIZK proofs in the random oracle model. The
recent work by Seo et al. demonstrated that the semi-generic conversion method transforms a one-
way (OW)-secure key encapsulation mechanism (KEM) into a chosen-ciphertext secure KEM while
preserving tight security reduction. This paper shows that the security analysis of the semi-generic
conversion method has a flaw, which comes from the OW security condition of the underlying
KEM. Without changing the conversion method, this paper presents a revised security proof under
the changed conditions that (1) the underlying KEM must be chosen-plaintext secure in terms of
indistinguishability and (2) an NIZK proof derived from the underlying KEM via the Fiat–Shamir
transform must have the properties of zero-knowledge and simulation soundness. This work
extended the security proof strategy to the case of identity-based KEM (IBKEM) and also revise
the security proof for IBKEM of previous method by Seo et al. Finally, this work gives a corrected
security proof by applying the new proofs to several existing (IB)KEMs.

Keywords: NIZK; chosen-ciphertext security; tight security reduction; random oracle model

1. Introduction

Non-interactive zero-knowledge (NIZK) proofs [1–3] are considered as some of the
most fundamental and versatile cryptographic primitives [4,5]. One usage of NIZK is
to construct public-key encryption schemes secure against chosen-ciphertext attacks (de-
noted as “CCA-security”) based on the Naor–Yung double encryption paradigm [6–8].
As building blocks, this approach uses any public-key encryption scheme secure against
chosen-plaintext attacks (denoted as “CPA security”) and any NIZK proof system for
all of NP [9,10]. However, the Naor–Yung paradigm has been perceived as a feasibility
result for the existence of CCA-secure encryption schemes based on general cryptographic
assumptions, leading to impractical constructions [11].

Interestingly, a recent work by Seo et al. [12] proposed a new semi-generic approach
for constructing a CCA-secure (and practical) key encapsulation mechanism (KEM) based
on NIZK proof systems derived from the Fiat–Shamir (FS) transform [13]. As building
blocks, their technique uses a one-way (OW)-secure KEM and an FS-derived NIZK proof
system to prove the relationship (such as equality or linearity) among discrete logarithms.
In particular, the term “semi-generic” comes from the fact that the underlying OW-secure
KEM should satisfy an additional property called “NIZK-compatibility”, meaning that
the pair {ciphertext, key} can be an NIZK statement when randomness for KEM is used
as a witness for NIZK. Seo et al. [12] demonstrated that their approach can transform an
OW-secure (and NIZK-compatible) KEM into a CCA-secure KEM in the random oracle
model without security loss.
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1.1. Organization

In Section 1.2, we briefly review the semi-generic conversion method from Seo et al.
and explain the flaw in the security proof of the method. In Section 1.3, we present the
concept of corrected proofs. In Section 2, we present the details of the interactive proof
systems for proving the equality and linearity of discrete logarithms, and we describe
how FS-derived NIZK proof systems can achieve the properties of zero-knowledge and
simulation soundness. In Section 3, we introduced the conversion method for CCA-secure
KEM and present our corrected proofs using the hybrid argument of indistinguishability-
based framework. As in [12], we can extend our strategy to the case of identity-based
KEM (IBKEM); thus, a newly corrected security proof for the conversion of IBKEM is given
in Section 4. In Section 5, we apply our security result to several (IB)KEMs used in [12]
and provide new corrected theorems for each scheme. Finally, we conclude this paper in
Section 6.

1.2. Flaw in Security Proof in Previous Research Literature

The new conversion in [12] works correctly, but we have identified a flaw in its
security analysis. For easier explanation, consider the ElGamal KEM as an underlying
scheme. Let G be a group of prime order p, and let (gw, hw) be a pair {ciphertext, key}
for group elements g, h ∈ G, and a random w ∈ Zp. It is easy to see that the pair
can be an NIZK statement stmt = (gw, hw) for equality of discrete logarithms when the
randomness w is the witness (i.e., NIZK-compatible). Let com be a commitment (gr, hr) for
a random r ∈ Zp. The Fiat–Shamir transform [13] gives the NIZK proof π = (c, s), where
s = r + cw ∈ Zp and c = H1(stmt, com). Assuming that the hash function H1 is modeled
as a random oracle, the NIZK proof system is proven to be honest verifier zero-knowledge
and sound. The concept behind the transformation proposed in [12] is to see the original
ElGamal KEM as a designated verifier proof system by setting h = gx for a secret x (only
known to the verifier) so that the element A1 = gw is sufficient for the designated verifier
NIZK statement. In the transformed variant of the ElGamal KEM, the resulting ciphertext
consists of (A1, π = (c, s)), and the decapsulation algorithm (as a designated verifier)
first recovers A2 = hw by computing (gw)x and then computes com = (gs A−c

1 , hs A−c
2 )

along with stmt = (gw, hw) and π. It also verifies that π is a valid proof for the recovered
statement stmt. If π is valid, the decapsulation algorithm computes the final KEM key as
key = H2(stmt, com, π) for another hash function H2.

Seo et al. [12] demonstrated that the above variant of the ElGamal KEM is tightly
CCA-secure based on the computational Diffie–Hellman (CDH) assumption. From a
theoretical viewpoint, the first challenge in their security analysis is how to handle
decapsulation queries issued by an adversary without knowing the secret key x. Let
CT = (A1, π = (c, s)) be a queried ciphertext, and let H1, H2 be modeled as random
oracles. A reduction algorithm (simulator) finds a tuple in the H1 query table such that
c = H1(A1, ?, ?, ?), say c = H1(A1, A2, B1, B2), and checks that π is the valid NIZK proof
for the statement (A1, A2) and the commitment (B1, B2). If so, the simulator outputs
the key key = H2(A1, A2, B1, B2, π) from the H2 query table. The decapsulation works
correctly because of the soundness of the underlying NIZK proof system, meaning that
the adversary is forced to generate the proof π for the well-formed ciphertext such that
logg A1 = logh A2. The second challenge in their security analysis is to find the correct
solution ha to a given CDH instance (g, ga, h) without security loss. The strategy in [12]
is as follows: by using the zero-knowledge property, the simulator first generates a simu-
lated proof π∗ = (c∗, s∗) with respect to the element A∗1 = ga for some unknown a ∈ Zp
and implicitly sets c∗ = H1(A∗1 , ◦, B∗1 , �) and key∗ = H2(A∗1 , ◦, B∗1 , �, π∗), where “◦” and
“�” indicate that the simulator does not know the entries. After the challenge ciphertext
CT∗ = (A∗1 , π∗ = (c∗, s∗)) and the challenge key key∗ are given to the adversary, the simu-
lator waits for the adversary to query the hash inputs (A∗1 , ?, B∗1 , ?, π∗) for H2. Seo et al.’s
assertion [12] is that because of the soundness of the NIZK proof system, there exists one query
(A∗1 , A2, B∗1 , B2, π∗) (with overwhelming probability) such that π∗ is valid among the queried
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inputs {(A∗1 , ?, B∗1 , ?, π∗)}, in which case the entry A2 is the solution to the given CDH instance.
Thus, if their assertion was true, the adversary who succeeds in breaking the CCA-security
of the variant must make the query, including the CDH solution, to H2; otherwise, the
adversary has no information on the challenge key.

However, we show that their assertion is not true for the following reasons. Let
CT∗ = (A∗1 , π∗ = (c∗, s∗)) and key∗ be the challenge ciphertext and key, respectively.
First, the adversary generates the value B∗1 by computing gs∗(A∗1)

−c∗ , which is the same
as the value that the simulator calculated. Next, the adversary can generate the values
A2 and B2 as follows: pick a random R ∈ Zp, and set A2 = hR and B2 = hs∗(A2)

−c∗ .
Finally, the adversary issues (A∗1 , A2, B∗1 , B2, π∗) to the H2 query. We can see that π∗ =
(c∗, s∗) is valid with respect to the false statement (A∗1 , A2) and the relevant commitment
(B∗1 , B2); furthermore, polynomially-many such simulated queries can be made after CT∗

and key∗ are given to the adversary. If the adversary issues the correct query such that
A2 = ha among the polynomially-many simulated queries, the simulator cannot specify
which query relates to the correct statement (A∗1 = ga, A2 = ha) associated with the
CDH solution, unless it is given an oracle to solve the decisional Diffie–Hellman (DDH)
problem. Moreover, the implicitly predetermined challenge key key∗ will be mapped to a
certain wrong H2 query input (A∗1 , A′2, B∗1 , B′2, π∗) with “high” probability. Clearly, such
inconsistent mapping will allow the adversary to distinguish between a real attack and
a simulation.

1.3. Concept of Corrected Proofs

Our strategy to revise Seo et al.’s proofs [12] is to change the security condition of
the underlying KEM from OW to CPA while keeping their conversion method intact. In
our corrected proofs, the underlying KEM must be CPA-secure in terms of indistinguisha-
bility, meaning (roughly) the following: given (CT∗, K∗) as a challenge, it is infeasible to
determine whether the challenge key K∗ was correct or false with respect to the challenge
ciphertext CT∗. Now, the simulator attacking the CPA security of the underlying KEM is
given (CT∗, K∗) and wants to determine whether K∗ is correct or false using the adversary
against CCA-security. Let us assume that the underlying KEM is still NIZK-compatible, as
defined in [12]. Given (CT∗, K∗), the simulator proceeds as follows: it sets the pair as the
NIZK statement, stmt∗ = (CT∗, K∗), and generates a simulated proof π∗ for stmt∗ using the
zero-knowledge property. Then, it computes the challenge key key∗ = H2(stmt∗, com∗, π∗),
where com∗ is the relevant commitment for stmt∗. Then, it gives the challenge ciphertext
(CT∗, π∗) and the challenge key key∗ to the adversary. If K∗ is the correct key corresponding
to CT∗, then π∗ is the NIZK proof for the correct statement (CT∗, K∗). Otherwise, π∗ is the
NIZK proof for the false statement (CT∗, K∗). Now that the simulator knows the candidate
value K∗ of the KEM key, it does distinguish whether K∗ is correct or false by checking
whether (stmt∗, com∗, π∗) is issued to H2 queries. Note that K∗ is not given to the adversary.
If K∗ (including stmt∗) appears in H2 queries, it is possible to ensure (with overwhelming
probability) that K∗ is the correct key corresponding to CT∗; otherwise, K∗ is a false key.
Furthermore, as long as the input (stmt∗, com∗, π∗) is not queried to H2 (modeled as a
random oracle), the adversary obtains no information on the challenge key key∗. It follows
that success in breaking the CCA-security of the transformed KEM straightforwardly leads
to success in breaking the CPA security of the underlying KEM without causing security
loss. When applying our proof strategy to the above variant of the ElGamal KEM, it can be
proved to be tightly CCA-secure under the DDH assumption.

In our corrected proofs, decapsulation queries are handled by the simulator in the
same way as in [12]. However, the NIZK property required for answering decapsulation
queries is (one-time) simulation soundness (SS) rather than soundness. This is because π∗ can
be the simulated proof for the correct or false statement (CT∗, K∗) (given to the simulator)
depending on K∗. Furthermore, once (CT∗, π∗) is given to the adversary as a challenge,
it should be difficult for the adversary to generate a pair of a new false statement and its
relevant proof that are correctly verified. In particular, a new false statement includes
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any modification of stmt∗ = (CT∗, K∗). Unlike in Seo et al.’s proofs [12], the simulator in
ours knows all hash input values regarding stmt∗ and com∗ explicitly; thus, the security
flaw mentioned above does not occur. Rather, making hash queries about stmt∗ by the
adversary could increase the probability that the simulator will succeed in breaking the
CPA security of the given KEM.

To show that the underlying NIZK proof system satisfies the simulation soundness
property, we use the result of Faust et al. [14], which showed that (roughly) an FS-derived
NIZK proof system ΠFS is simulation-sound in the random oracle model if a canonical
three-round interactive proof system Π (The transcript of Π consists of {commitment,
challenge, and response}.) has the properties of completeness, soundness, and unique
response. In fact, along with the soundness, the unique response property gives the effect
of making the resulting NIZK proof π strongly unforgeable [15] when viewing π as a
(one-time) signature. As a building block, the conversion by Seo et al. [12] uses an FS-
derived NIZK proof system to prove the equality or linearity of discrete logarithms, and
it is easy to show that a three-round interactive proof system for equality or linearity
satisfies the property of unique response as well as soundness. Thus, by adapting the result
in [14], all the underlying (FS-derived) NIZK proof systems in our corrected proofs have
the simulation soundness property in the random oracle model.

2. Background
2.1. Notation

λ ∈ N is the security parameter. We say that a function ν : N→ R is negligible if for
every positive polynomial poly(·), there exists an integer N > 0 such that for all x > N, it
holds that |ν(x)| < poly(x)−1. Given an algorithm A, we write y← A to denote that y is

the output of A. If A is a probabilistic algorithm, then y $←− A denotes that y is computed

by A using fresh random coins. When A is a set, a $←− A denotes that a is chosen uniformly
over A. For n ∈ N, we write [n] to denote the set {1, . . . , n}. The above notation follows the
notation from the work in [16].

2.2. Interactive Proof System

Let L = {stmt : ∃ wit s.t. (stmt, wit) ∈ RL} be an NP-language. We first review a
three-move public coin proof system, where a prover wants to convince a verifier that
a statement stmt belongs to L using a witness wit such that (stmt, wit) ∈ RL. Let a
prover P = (P0,P1) and a verifier V = (V0,V1) be PPT algorithms that participate in
the protocol. First, as inputs, com← P0(stmt, wit; ρ) takes a statement stmt, a witness wit,
and a random string ρ and then computes a commitment com and sends it to a verifier

V . Then, chal $←− V0(stmt, com) inputs a statement stmt and commitment com, randomly
chooses a challenge chal in the challenge space, and sends it to P . Finally, as inputs,
resp← P1(com, chal, stmt, wit; ρ) takes com, chal, stmt, wit, and ρ; generates a response resp;
and sends it to V . Then, as inputs, {0, 1} ← V1(stmt, com, chal, resp) takes stmt, com, chal,
and resp, and then outputs 0 or 1. When V1 outputs 1, the verifier V is convinced that the
statement stmt belongs to L.

We now review the following properties.

2.2.1. Completeness

If stmt ∈ L, any proper execution of the protocol between P and V ends with the
verifier accepting P ’s proof. That is, the following holds:

Pr[1← V1(stmt, com, chal, resp) : stmt ∈ L ∧ com← P0(stmt, wit; ρ)

∧ chal $←− V0(stmt, com) ∧ resp← P1(stmt, com, chal, wit; ρ)] = 1.
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2.2.2. Honest Verifier Zero-Knowledge (HVZK)

There exists an efficient algorithm S called a zero-knowledge simulator such that for
any PPT distinguisher, D = (D0,D1), and for any (stmt, wit) ∈ RL, it holds that

Pr[1← D1(π, δ) : (stmt, wit, δ)← D0 ∧ π ← 〈P(stmt, wit; λ),V(stmt; λ)〉]
≈ Pr[1← D1(π, δ) : (stmt, wit, δ)← D0 ∧ π ← S(stmt, λ)],

where π ← 〈P(stmt, wit; λ),V(stmt; λ)〉 denotes the resulting transcript returned at the
end of the interaction between P and V on common input stmt and private input wit.

2.2.3. Soundness

If stmt /∈ L, any PPT adversary P∗ = (P∗0 ,P∗1 ) is accepted only with negligible
probability. That is, the following holds:

Pr[resp← P∗1 (stmt, com, chal; ρ) : stmt /∈ L ∧ com← P∗0 (stmt; ρ)

∧ chal $←− V0(stmt, com) ∧ 1← V1(stmt, com, chal, resp)] ≈ 0.

2.2.4. Unique Response

An interactive proof system has the unique response if for any PPT adversary A and
for any security parameter λ, it holds that

Pr[(stmt, com, chal, resp, resp′)← A(λ) :

V(stmt, com, chal, resp) = V(stmt, com, chal, resp′) = 1∧ resp 6= resp′] = 0.

2.3. Protocol for Proving the Equality of Discrete Logarithms

We review the generalized interactive protocol for proving the equality of discrete
logarithms [17–19]. Let G1, . . . ,Gn be groups of prime order p, and let gi ∈ Gi be a
generator for i ∈ [n]. Now, we consider the NP-language

L = {(g1, . . . , gn, A1, . . . , An) : ∃ x ∈ Zp s.t. Ai = gx
i for i ∈ [n]}.

The discrete logarithm wit = x is a witness for a statement: stmt = (g1, . . . , gn, A1,
. . . , An). Then, the interactive protocol (P ,V) for proving the above language is as follows.

1. For a statement stmt = (g1, . . . , gn, A1, . . . , An), the prover P selects a random expo-
nent r ∈ Zp and computes a commitment com as follows.

com = (B1, . . . , Bn) = (gr
1, . . . , gr

n).

2. The verifier V randomly selects a random challenge chal = c ∈ Zp.

3. P computes a response resp = s = r + cd ∈ Zp.

4. Given a proof π = (com, chal, resp), V checks that

B1 = gs
1 A1

−c, . . . , Bn = gs
n An

−c.

It is well known that this protocol is a non-trivial three-round public coin interactive
proof system satisfying completeness, HVZK, (statistical) soundness, and unique response
properties.
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2.4. Protocol for Proving the Linearity of Discrete Logarithms

We review the generalized interactive protocol for proving the linearity of discrete
logarithms. Let G1, . . . ,Gn+1 be groups of prime order p, and let gi ∈ Gi be a generator for
i ∈ [n + 1]. Now, we consider the NP-language

L = {(g1, . . . , gn, gn+1, A1, . . . , An, An+1) :

∃ (x1, . . . , xn) ∈ Zn
ps.t. Ai = gxi

i for i ∈ [n], An+1 = gx1+···+xn
n+1 }.

The discrete logarithm wit = (x1, . . . , xn) is a witness for a statement stmt = (g1, . . . ,
gn, gn+1, A1, . . . , An, An+1). Then, the interactive protocol (P ,V) for proving the above
language is as follows.

1. For a statement stmt = (g1, . . . , gn, gn+1, A1,. . . ,An, An+1), the prover P selects ran-
dom exponents (r1, . . . , rn) ∈ Zn

p and computes a commitment com as follows.

com = (B1, . . . , Bn, Bn+1) = (gr1
1 , . . . , grn

n , gr1+···+rn
n+1 ).

2. The verifier V randomly selects a random challenge chal = c ∈ Zp.

3. P computes a response resp = (s1, . . . , sn), where si = ri + cxi ∈ Zp for i ∈ [n].

4. Given a proof π = (com, chal, resp), V checks that

B1 = gs1
1 A1

−c, . . . , Bn = gsn
n An

−c, and Bn+1 = gs1+···+sn
n+1 An+1

−c.

Similarly to the equality of discrete logarithms, this protocol is also a non-trivial three-
round public coin interactive proof system satisfying completeness, HVZK, (statistical)
soundness, and unique response properties.

2.5. NIZK in the Random Oracle Model

We can remove the interaction between P and V by replacing the challenge chal with
a hash value H(stmt, com) computed by the prover, where H is a hash function modeled
as a random oracle. By applying the Fiat–Shamir paradigm [13], we can transform an
interactive protocol (P ,V) into a non-interactive proof system (PH ,VH).

Syntax

Let L := {stmt : ∃ wit such that R(stmt, wit) = 1} is an NP-language defined by a
binary relation R, and H is a hash function (modeled as a random oracle). A non-interactive

proof system (PH ,VH) for L consists of two algorithms. The proving algorithm π
$←−

PH(stmt, wit) takes as input a statement stmt and a witness wit such that R(stmt, wit) = 1
and outputs a proof π. The verification algorithm VH(stmt, π) ∈ {0, 1} takes as input a
statement stmt and a proof π and outputs 1 (true) or 0 (false).

We refer here to the zero-knowledge simulator S of a non-interactive zero-knowledge
proof system [14] defined in the explicitly programmable random oracle model [20]. As a
stateful algorithm, the simulator S can operate in two modes: (hi, st)← S(1, st, qi) deals
with answering random oracle queries such that hi = H(qi), while (π, st)← S(2, st, stmt)
simulates the proof. Note that calls to S(1, · · · ) and S(2, · · · ) share the common state st,
which is updated after each operation.

Definition 1 (Unbounded Non-Interactive Zero-Knowledge [14]). Let L be an NP-language.
Let (S1,S2) denote the oracles such that S1(qi) returns the first output of (hi, st)← S(1, st, qi)
and S2(stmt, wit) returns the first output of (π, st)← S(2, st, stmt) if (stmt, wit) ∈ RL. We say
a protocol (PH ,VH) is an NIZK proof for language L in the random oracle model if there exists a
PPT simulator S such that for all PPT distinguishers D, the advantage εZK such that

εZK(λ) =
∣∣Pr[1← DH(·),PH(·)(λ)]− Pr[1← DS1(·),S2(·)(λ)]

∣∣
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is negligible, where both P and S2 oracles output ⊥ if (stmt, wit) 6= RL.

Definition 2 (Unbounded Simulation Soundness [14]). Let L be an NP-language. Consider
a proof system (PH ,VH) for L with zero-knowledge simulator S . Let (S1,S ′2) denote the oracle
such that S1(qi) returns the first output of (hi, st)← S(1, st, qi) and S ′2 returns the first output
of (π, st) ← S(2, st, stmt). We say that (PH ,VH) is simulation-sound with respect to S in the
random oracle model if for all PPT adversaries A the advantage εSS such that

εSS(λ) = Pr[(stmt∗, π∗)← AS1(·),S ′2(·)(λ) :

(stmt∗, π∗) 6= T ∧ stmt∗ 6= L ∧ VS1(stmt∗, π∗) = 1]

is negligible, where T is the list of pairs (stmti, πi), i.e., (true or false) statements queried to and
proofs returned by the simulator.

Theorem 1 (Fiat–Shamir NIZKs [14]). Consider a three-round HVZK interactive proof system
(P ,V) for a language L ∈ NP with completeness. Let H be a function with range equal to the
space of the verifier’s coins. In the random oracle model, the proof system (PH ,VH) derived from
(P ,V) by applying the Fiat–Shamir transform is unbounded non-interactive zero-knowledge.

Theorem 2 (Simulation Soundness of Fiat–Shamir NIZKs [14]). Consider a three-round
HVZK interactive proof system (P ,V) for a language L ∈ NP with completeness, soundness, and
unique response. In the random oracle model, the proof system (PH ,VH) derived from (P ,V) via
the Fiat–Shamir transform is simulation-sound NIZK with respect to its canonical simulator S .

By applying the above theorems to the previous interactive protocols for proving
the equality and linearity of discrete logarithms, we can obtain NIZK proof systems for
the equality and linearity of discrete logarithms, which both have the properties of zero-
knowledge and simulation soundness. Note that the two previous interactive protocols
satisfy the completeness, HVZK, (statistical) soundness, and unique response properties.

To measure the concrete bounds of the advantages εZK and εSS with respect to the
two interactive protocols, we follow the proofs in [14] (Theorems 1 and 2 therein). First,
εZK of the NIZK systems is bounded by the probability that the “good” NIZK simulator
S fails and aborts during the simulation. Note that the NIZK simulator S fails when a
collision of the random oracle H happens in the process of updating the hash table TH .
Because the probability that a collision happens is at most q2

H/p, where qH is the maximum
number of H queries and p is the group order including the size of the challenge space,
we see that εZK ≤ q2

H/p. Second, εSS of the NIZK scheme is bounded by qH · εsnd + q2
H/p,

where εsnd denotes the bound of advantage that the adversary violates the soundness of
the proof system (P ,V). The soundness bound εsnd in the two interactive protocols is
statistically the same as the inverse of the size of the challenge space, 1/p, so we see that
εSS ≤ (qH + q2

H)/p.

3. Conversion Method for CCA-Secure KEM
3.1. KEM
3.1.1. Syntax

We follow the syntax of KEM from the work in [16]. A key encapsulation mech-
anism KEM = (KEM.Setup, KEM.Encap, KEM.Decap) consists of three algorithms: The

setup algorithm (PK, SK) $←− KEM.Setup(λ) takes as input the security parameter λ and

outputs a key pair (PK, SK). The encapsulation algorithm (K, CT) $←− KEM.Encap(PK)
generates a key K and a ciphertext CT from input PK. The decapsulation algorithm K←
KEM.Decap(PK, SK, CT) takes as input a public key PK, a private key SK, and a ciphertext
CT and outputs a key K.
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3.1.2. Security Model of KEM

Here, we define the IND-{CPA,CCA} security of KEM by referring to [12]. First, a
security experiment of IND-CPA played between a challenger C and an adversary A is
described as follows.

Experiment ExpKEM,A
IND-CPA,b(λ)

(PK, SK) $←− KEM.Setup(λ);

K∗0
$←− K; (K∗1 , CT∗) $←− KEM.Encap(PK);

b′ ←A (PK, CT∗, K∗b );
Output b′.

The advantage of A for breaking the IND-CPA security of KEM is defined as AdvKEM,A
IND-CPA

=
∣∣∣Pr

[
1← ExpKEM,A

IND-CPA,1(λ)
]
− Pr

[
1← ExpKEM,A

IND-CPA,0(λ)
]∣∣∣.

Definition 3. The KEM scheme is (t, ε)-IND-CPA-secure if for any polynomial time adversary A
that runs in at most time t, we have AdvKEM,A

IND-CPA < ε.

Now, the security experiment of IND-CCA, where the additional decapsulation oracle
is given to an adversary A, is described as follows.

Experiment ExpKEM,A
IND-CCA,b(λ)

(PK, SK) $←− KEM.Setup(λ);

K∗0
$←− K; (K∗1 , CT∗) $←− KEM.Encap(PK);

b′ ←ADecO(·) (PK, CT∗, K∗b );
Output b′.

The oracle DecO(·) takes as input CT and returns a key K ← KEM.Decap(PK, SK, CT)
with the condition that A cannot query the challenge ciphertext CT∗. The advantage

of A for breaking the IND-CCA-security of KEM is defined as AdvKEM,A
IND-CCA =

∣∣∣Pr
[
1 ←

ExpKEM,A
IND-CCA,1(λ)

]
− Pr

[
1← ExpKEM,A

IND-CCA,0(λ)
]∣∣∣.

Definition 4. The KEM scheme is (t, ε, qd)-IND-CCA-secure if for any polynomial time adversaryA
that runs in time at most t and issues at most qd decapsulation queries, then we have AdvKEM,A

IND-CCA < ε.

3.2. Conversion Method

The conversion method is for a special case of KEM which is compatible with the NIZK
schemes. We suppose that the KEM.Encap algorithm takes the public key pk and random-
ness x as inputs and returns a key k and a ciphertext ct

(
e.g., (k, ct)← KEM.Encap(pk; x)

)
.

Then, we say that a KEM is NIZK-compatible if a tuple (pk, ct, k) can be parsed as the state-
ment for proving a relation for discrete logarithms using the witness x. For example, the
ElGamal KEM and the linear KEM [21] are NIZK-compatible [12].

Let KEM= (KEM.Setup, KEM.Encap, KEM.Decap) be an IND-CPA-secure KEM and
NIZK-compatible. Using the KEM and NIZK scheme, the generic construction of IND-
CCA-secure KEM′ = (KEM.Setup′, KEM.Encap′, KEM.Decap′) by Seo et al. [12] is described
as follows.

KEM.Gen′(λ): Given security parameter λ, the setup algorithm proceeds as follows.

1. Generate sk and pk by running KEM.Setup(λ).
2. Choose H1 : {0, 1}∗ → {0, 1}k and H2 : {0, 1}∗ → {0, 1}` for k, l ∈ Z+.
3. Output SK = sk and PK = (H1, H2, pk).

KEM.Encap′(PK): Given a public key PK = (H1, H2, pk), the Encap algorithm proceeds as
follows.

1. Choose the random coins x and compute (ct, k)← KEM.Encap (pk; x).
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2. Set stmt = (pk, ct, k) and wit = x.
3. Compute π ← PH1 (stmt, wit).

(a) Choose the random value r and compute com.
(b) Compute c = H1(stmt, com) and the relevant s.
(c) Output the proof π = (s, c).

4. Set K← H2(stmt, com, π).
5. Output K and CT = (ct, π).

KEM.Decap′(PK, SK, CT): Given a public key PK = (H1, H2, pk), a ciphertext CT =
(ct, π = (s, c)), and a private SK = sk, the Decap algorithm proceeds as follows.

1. Compute k← KEM.Decap(sk, ct).
2. Set stmt = (pk, ct, k).
3. If 1← VH1 (stmt, π), go on. Otherwise, abort.

(a) Deterministically compute com.
(b) If c = H1(stmt, com), output 1. Otherwise, output 0.

4. Set K← H2(stmt, com, π) and output K.

3.3. Security Proof

Theorem 3. Let H1 and H2 be modeled as random oracles with εCR-collision resistance. Suppose
that KEM is (t′, ε′)-IND-CPA-secure and NIZK-compatible with εZK-zero-knowledge and εSS-
simulation soundness. Then, the resulting KEM′ is (t, ε, qd)-IND-CCA-secure, where

ε ≤ 2 · (εCR + εZK + qd · εSS + ε′) + 1/|K|, t′ ≈ t +O(qdtv).

Here, tv is the required time for verification in NIZK, and K is the key space of KEM.

Proof. We consider a sequence of hybrid games Game 0, . . . , Game 9. Game 0 is the
actual IND-CCA security game, where an adversary is given a key from the encapsulation
algorithm, and Game 9 is the actual game, where an adversary is given a key randomly
chosen from a key space for the encapsulation query. Let Wini denote the event thatAwins
in the Game i. Table 1 summarizes the games described below and the properties used to
prove indistinguishability between consecutive games.

Game 0. This is the actual IND-CCA security game, which is executed with b = 1. Thus,
the challenger always returns (CT∗, K∗) = KEM.Encap(PK) for the challenge.

Game 1. Let Coll be the event that a collision of the hash functions H1 or H2 occurs. This
game is identical to Game 0 except that it aborts when the event Coll occurs during the
simulation. Due to the collision resistance of the hash functions, we have

|Pr[Win1]− Pr[Win0]| ≤ εCR.

Game 2. This game is identical to Game 1 except that the challenge ciphertext CT∗ =
(ct∗, π∗) is computed differently. Instead of using the real proving algorithm of NIZK,
the challenger generates the challenge ciphertext using the simulator of NIZK (i.e., CT∗ =
(ct∗, π∗sim)). Due to the non-interactive zero-knowledge property of NIZK, we have

|Pr[Win2]− Pr[Win1]| ≤ εZK.

Game 3. This game is identical to Game 2 except that the decapsulation query is operated
differently. In the previous game, for a given ciphertext CT = (ct, π = (s, c)), the challenger
computes k ← KEM.Decap(sk, ct) using sk and returns K = H2

(
stmt = (pk, ct, k), com =

(comct, comk)
)

only if 1 ← VH1(stmt, π) holds. In this game, the challenger retrieves
a tuple (stmt, com, c) in the H1 hash table such that c = H1

(
stmt = (pk, ct, ?), com =
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(comct, ?)
)
. If the statement stmt, commitment com, challenge c, and response s are verified

(i.e., 1← V(stmt, com, c, s)), then it returns K = H2(stmt, com, π).
Note that an adversary cannot distinguish Game 3 from Game 2 unless it queries

a ciphertext C̃T = (c̃t, π̃ = (s̃, c̃)) such that proof π̃ is verified with a retrieved tuple
( ˜stmt, ˜com, c̃) in H1 (i.e., 1 ← V( ˜stmt, ˜com, c̃, s̃)) and ˜stmt is a false statement. In other
words, the adversary must forge a proof π̃ for a false statement ˜stmt to distinguish the
games. Then, by the simulation soundness of NIZK with respect to qd decapsulation queries,
we have

|Pr[Win3]− Pr[Win2]| ≤ qd · εSS.

Game 4. This game is identical to Game 3 except that the challenge ciphertext is computed
differently. In the challenge phase, the challenger randomly selects k′ instead of getting
k∗ from (ct∗, k∗) ← KEM.Encap(pk; x). The other procedures are the same as in Game 3.
Finally, it outputs (CT∗, K∗). We can show that a distinguisher between Game 4 and Game
3 implies an adversary that breaks the IND-CPA security of the underlying KEM scheme.
For the sake of simplicity, we prove this later. Then, we have

|Pr[Win4]− Pr[Win3]| ≤ εKEM
IND-CPA.

Game 5. This game is identical to Game 4 except that it is executed with b = 0. In other

words, the challenger always returns K∗ $←− {0, 1}` instead of computing K∗ = H2(stmt =
(ct∗, k′), com = (comct∗

sim, comk′
sim), π∗sim = (s, c)). The adversary cannot distinguish Game 5

from Game 4 unless it queries the tuple
(
stmt = (ct∗, k′), com = (comct∗

sim, comk′
sim), π∗sim =

(s, c)
)

to the H2 oracle. Note that k′ is a random key from A’s view because ct∗ is indepen-
dent of k′. Therefore, the probability that the adversary queries the tuple to the H2 oracle is
at most 1/|K|. Then, we have

|Pr[Win5]− Pr[Win4]| ≤ 1/|K|.

Game 6. This game is identical to Game 5 except that the challenge ciphertext is com-
puted differently. In the challenge phase, the challenger uses back k∗ from (ct∗, k∗) ←
KEM.Encap(pk; x). The other procedures are the same as in Game 5. Finally, it outputs
(CT∗, K∗). Like the case between Game 4 and Game 3, we can show that a distinguisher
between Game 6 and Game 5 implies an adversary that breaks the IND-CPA security of
the underlying KEM scheme. For the sake of simplicity, we prove this later. Then, we have

|Pr[Win6]− Pr[Win5]| ≤ εKEM
IND-CPA.

Game 7. This game is identical to Game 6 except that the decapsulation query is operated
differently. In this game, the challenger changes back the operation of the decapsulation
query to normal. For a given ciphertext CT = (ct, π = (s, c)), the challenger computes k←
KEM.Decap(sk, ct) using sk and returns K = H2

(
stmt = (pk, ct, k), com = (comct, comk)

)
only if 1← VH1(stmt, π) holds. Like the case between Game 3 and Game 2, an adversary
cannot distinguish Game 7 from Game 6 unless it submits a ciphertext with a forged
proof for a false statement. Then, by the simulation soundness of NIZK with respect to qd
decapsulation queries, we have

|Pr[Win7]− Pr[Win6]| ≤ qd · εSS.
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Game 8. This game is identical to Game 7 except that the challenge ciphertext is computed
differently. The challenger uses the real proving algorithm for NIZK instead of using
simulated proofs. Due to the zero-knowledge property of NIZK, we have

|Pr[Win8]− Pr[Win7]| ≤ εZK.

Game 9. This game is identical to Game 8 but it does not abort when the event Coll occurs
during the simulation. Due to the collision resistance of the hash functions, we have

|Pr[Win9]− Pr[Win8]| ≤ εCR.

Note that Game 9 is identical to the IND-CCA security game executed with b = 0.
Then, we have

|Pr[Win0]− Pr[Win9]| ≤ 2 · (εCR + εZK + qd · εSS + εKEM
IND-CPA) + 1/|K|.

Lemma 1. If there exists a polynomial time distinguisher D between Game 3 and Game 4, then
there exists a polynomial time adversary A that breaks the IND-CPA security of KEM.

Proof. Let D be a distinguisher between Game 3 and Game 4. Then, we show how to
construct an A that wins the IND-CPA security game of KEM using D with the same
advantage.

A receives a public key pk as input. Then, A runs D by simulating Game 3 with
changes as follows.

• In the setup phase, A sends PK = (H1, H2, pk) to D.

• In the challenge phase, the challenge ciphertext and key (ct∗, k∗b) are given to A. Then,
A sets stmt = (pk, ct∗, k∗b) and generates a simulated proof π∗sim on the statement stmt.
A sets K∗ = H2(stmt, comsim, π∗sim), where comsim is the deterministically computed
commitment from (stmt, π∗sim). A sends (CT∗ = (ct∗, π∗sim), K∗) to D.

In the guess phase, D outputs its guess. If the guess is “Game 3”, then A outputs 1;
otherwise, it output 0.

Note that if b = 1, i.e., stmt = (pk, ct∗, k∗b) is a true statement or stmt = (pk, ct∗, k∗b) ∈
RL, the above simulation is identical to Game 3 from D’s viewpoint. Otherwise, the above
simulation is identical to Game 4. Therefore, we have

|Pr[Win4]− Pr[Win3]| ≤ εD = εKEM
IND-CPA.

Lemma 2. If there exists a polynomial time distinguisher D between Games 5 and 6, then there
exists a polynomial time adversary A that breaks the IND-CPA security of KEM.

Proof. Let D be a distinguisher between Games 5 and 6. Then, we show how to construct
an A that wins the IND-CPA security game of KEM using D with the same advantage.

A receives a public key pk as input. Then, A runs D by simulating Game 5 with
changes as follows.

• In the setup phase, A sends PK = (H1, H2, pk) to D.

• In the challenge phase, the challenge ciphertext and key (ct∗, k∗b) are given to A. Then,
A sets stmt = (pk, ct∗, k∗b) and generates a simulated proof π∗sim on the statement stmt.

Moreover, A randomly chooses K∗ $←− {0, 1}` and sends (CT∗ = (ct∗, π∗sim), K∗) to D.

In the guess phase, D outputs its guess. If the guess is “Game 6”, then A outputs 1;
otherwise, it output 0.
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Note that if b = 1, i.e., stmt = (pk, ct∗, k∗b) is a true statement or stmt = (pk, ct∗, k∗b) ∈
RL, the above simulation is identical to Game 6 from D’s viewpoint. Otherwise, the above
simulation is identical to Game 5. Therefore, we have

|Pr[Win6]− Pr[Win5]| ≤ εD = εKEM
IND-CPA.

This completes the proof of the theorem.

Table 1. Values or operations of K∗, CT∗, SK, and DecO(·) in each game and properties ensuring the indistinguishability of
consecutive games. RO + SS denotes that the simulator retrieves k from a random oracle table and checks the validity of the
ciphertext based on the SS property.

Game K∗ stmt∗ CT∗ SK DecO(·) Property

0 H2(stmt∗, com, π∗real) (pk, ct∗, k∗) ct∗, π∗real sk KEM.Decap(·) -
1 H2(stmt∗, com, π∗real) (pk, ct∗, k∗) ct∗, π∗real sk KEM.Decap(·) CR
2 H2(stmt∗, com, π∗sim) (pk, ct∗, k∗) ct∗, π∗sim sk KEM.Decap(·) ZK
3 H2(stmt∗, com, π∗sim) (pk, ct∗, k∗) ct∗, π∗sim - RO + SS SS
4 H2(stmt∗, com, π∗sim) (pk, ct∗, k′) ct∗, π∗sim - RO + SS IND-CPA

5 K $←− {0, 1}` (pk, ct∗, k′) ct∗, π∗sim - RO + SS 1/|K|
6 K $←− {0, 1}` (pk, ct∗, k∗) ct∗, π∗sim - RO + SS IND-CPA

7 K $←− {0, 1}` (pk, ct∗, k∗) ct∗, π∗sim sk KEM.Decap(·) SS

8 K $←− {0, 1}` (pk, ct∗, k∗) ct∗, π∗real sk KEM.Decap(·) ZK

9 K $←− {0, 1}` (pk, ct∗, k∗) ct∗, π∗real sk KEM.Decap(·) CR

4. Conversion Method for CCA-Secure IBKEM
4.1. IBKEM
4.1.1. Syntax

An ID-based key encapsulation mechanism IBKEM consists of four algorithms
(IBKEM.Setup, IBKEM.KeyGen, IBKEM.Encap, and IBKEM.Decap). The setup algorithm

(PP, MSK) $←− IBKEM.Setup(λ) takes as input the security parameter λ and outputs pub-

lic parameters PP and a master secret key MSK. The key generation algorithm SKID
$←−

IBKEM.KeyGen(PP, MSK, ID) takes as input public parameters PP, the master secret key
MSK, and an identity ID, and outputs an identity secret key SKID. The encapsulation

algorithm (K, CT) $←− IBKEM.Encap (PP, ID) takes as input PP and ID, and generates a
key K and a ciphertext CT. The decapsulation algorithm K← IBKEM.Decap(PP, CT, SKID)
takes as input public parameters PP, a ciphertext CT, and an identity secret key SKID, and
then outputs a key K.

4.1.2. Security Model of IBKEM

Here, we define the IND-ID-{CPA,CCA} security of IBKEM by referring to [12]. First,
the security experiment of IND-ID-CPA played between a challenger C and an adversary A
is described as follows.

Experiment ExpIBKEM,A
IND-ID-CPA,b(λ)

(PP, MSK) $←− IBKEM.Setup(λ);
ID∗ ←AKeyGenO(·) (PP);

K∗0
$←− K; (K∗1 , CT∗) $←− IBKEM.Encap(PP, ID∗);

b′ ←AKeyGenO(·) (PP, CT∗, K∗b );
Output b′.
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The oracle KeyGen(·) takes as input an identity ID and returns an identity secret key SKID
$←−

IBKEM.KeyGen (MSK, ID) with the condition that A is not able to query the target identity
ID∗. Then, the advantage of A for breaking the IND-ID-CPA security of IBKEM is defined

as AdvIBKEM,A
IND-ID-CPA =

∣∣∣Pr
[
1← ExpIBKEM,A

IND-ID-CPA,1(λ)
]
− Pr

[
1← ExpIBKEM,A

IND-ID-CPA,0(λ)
]∣∣∣.

Definition 5. The IBKEM scheme is (t, ε, qid)-IND-ID-CPA-secure if for any polynomial time
adversary A that runs in time at most t and issues at most qid key generation queries, then we have
AdvIBKEM,A

IND-ID-CPA < ε.

Now, the security experiment of IND-ID-CCA, where the additional decapsulation
oracle is given to an adversary A, is described as follows.

Experiment ExpIBKEM,A
IND-ID-CCA,b(λ)

(PP, MSK) $←− IBKEM.Setup(λ);
ID∗ ←AKeyGenO(·),DecO(·) (PP);

K∗0
$←− K; (K∗1 , CT∗) $←− IBKEM.Encap(PP, ID∗);

b′ ←AKeyGenO(·),DecO(·) (PP, CT∗, K∗b );
Output b′.

The oracle KeyGen(·) is the same as that in the IND-ID-CPA security game. The additional
oracle DecO(·) takes as input ID and CT and returns a key K ← IBKEM.Decap (PP, CT,

SKID), where SKID
$←− IBKEM.KeyGen(PP, MSK, ID). The restriction on the oracle DecO(·)

is that A is not able to query the pair (ID∗, CT∗). The advantage of A for breaking the IND-

ID-CCA-security of IBKEM is defined as AdvIBKEM,A
IND-ID-CCA =

∣∣∣Pr
[
1 ← ExpIBKEM,A

IND-ID-CCA,1(λ)
]

−Pr
[
1← ExpIBKEM,A

IND-ID-CCA,0(λ)
]∣∣∣.

Definition 6. The IBKEM scheme is (t, ε, qid, qd)-IND-ID-CCA-secure if for any polynomial time
adversary A that runs in time at most t and issues at most qid key generation queries and qd
decapsulation queries, then we have AdvIBKEM,A

IND-ID-CCA < ε.

4.2. Conversion Method

Similar to the previous KEM, this conversion method is for a special case of IBKEM
which is compatible with the NIZK schemes. We suppose that the IBKEM.Encap algorithm
takes public parameters pp, an identity ID, and random coins x as inputs and returns a key
k and a ciphertext ct

(
e.g., (k, ct)← IBKEM.Encap(pp, ID; x)

)
. Then, we say that an IBKEM

scheme is NIZK-compatible if a tuple (pp, ID, ct, k) can be parsed as the statement for proving
a relation for discrete logarithms using the witness x. For instance, the Boneh–Franklin
IBKEM and Boneh–Boyen IBKEM are NIZK-compatible [12].

Let IBKEM = (IBKEM.Setup, IBKEM.KeyGen, IBKEM.Encap, IBKEM.Decap) be IND-
ID-CPA-secure and NIZK-compatible. Using the IBKEM and NIZK scheme, the generic
construction of the CCA-secure IBKEM′ = (IBKEM.Setup′, IBKEM.KeyGen′, IBKEM.Encap′,
IBKEM.Decap′) by Seo et al. is described as follows.

IBKEM.Setup′(λ): Given security parameter λ, the setup algorithm proceeds as follows.

1. Generate msk and pp by running IBKEM.Setup(λ).
2. Choose H1 : {0, 1}∗ → {0, 1}k and H2 : {0, 1}∗ → {0, 1}` for k, l ∈ Z+.
3. Output MSK = msk and PP = (pp, H1, H2).

IBKEM.KeyGen′(PP, MSK, ID): Given public parameters PP = (pp, H1, H2), a master
secret key MSK, and an identity ID, the KeyGen algorithm proceeds as follows.

1. Compute skID
$←− IBKEM.KeyGen(pp, msk, ID).

2. Set SKID = skID and output SKID.
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IBKEM.Encap′(PP, ID): Given public parameters PP = (pp, H1, H2) and an identity
ID, the Encap algorithm proceeds as follows.

1. Choose the randomness x and compute (ct, k)← IBKEM.Encap (pp, ID; x).
2. Set stmt = (pp, ID, ct, k) and wit = x.
3. Run π ← PH1 (stmt, wit).

(a) Choose the randomness r and compute com.
(b) Compute c = H1(stmt, com) and the relevant s.
(c) Output the proof π = (s, c).

4. Set K← H2(stmt, com, π).
5. Output K and CT = (ct, π).

IBKEM.Decap′(PP, CT, SKID): Given a public key PP = (pp, H1, H2), a ciphertext
CT = (ct, π = (s, c)), and a private SKID = skID, the Decap algorithm proceeds as follows.

1. Compute k← IBKEM.Decap(pp, ct, skID).
2. Set stmt = (pp, ID, ct, k).
3. If 1← VH1 (stmt, π), go on. Otherwise, abort.

(a) Deterministically compute com.
(b) If c = H1(stmt, com), output 1. Otherwise, output 0.

4. Set K← H2(stmt, com, π) and output K.

4.3. Security Proof

Theorem 4. Let H1 and H2 be modeled as random oracles with εCR-collision resistance. Suppose
that IBKEM is (t′, ε′, q′id)-IND-ID-CPA-secure and NIZK-compatible with εZK-zero-knowledge and
εSS-simulation soundness. Then, the resulting IBKEM′ is (t, ε, qid, qd)-IND-ID-CCA-secure, where

ε ≤ 2 · (εCR + εZK + qd · εSS + ε′) + 1/|K|, t′ ≈ t +O(qdtv).

Here, tv is the required time for verification in the NIZK and K is the key space of IBKEM.

Proof. We consider a sequence of hybrid games Game 0,. . . , Game 9. Game 0 is the actual
IND-ID-CCA security game, where an adversary is given a key from the encapsulation
algorithm for the encapsulation query, and Game 9 is the actual IND-ID-CCA game, where
an adversary is given a key randomly chosen from a key space for the encapsulation query.
Let Wini denote the event that A wins in Game i. Table 2 summarizes the games described
below and the properties used to prove indistinguishability between consecutive games.

Game 0. This is the IND-ID-CCA security game executed with b = 1. Thus, the challenger
always returns (CT∗, K∗) = IBKEM.Encap′(PP, ID∗) for the challenge.
Game 1. Let Coll be the event that a collision of the hash functions H1 or H2 occurs. This
game is identical to Game 0 except that it aborts when the event Coll occurs during the
simulation. Due to the collision resistance of the hash functions, we have

|Pr[Win1]− Pr[Win0]| ≤ εCR.

Game 2. This game is identical to Game 1 except that the challenge ciphertext is computed
differently. Instead of using the real proving algorithm of NIZK, the challenger generates
challenge ciphertext using the simulator of NIZK (i.e., CT∗ = (ct∗, π∗sim)). Due to the
non-interactive zero-knowledge property of NIZK, we have

|Pr[Win2]− Pr[Win1]| ≤ εZK.

Game 3. This game is identical to Game 2 except that the decapsulation query is operated
differently. In the previous game, for a given pair

(
CT = (ct, π = (s, c)), ID

)
, the challenger

runs SKID
$←− IBKEM.KeyGen′ (PP, MSK, ID), computes K $←− IBKEM.Decap′(PP, CT, SKID),
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and returns K. In this game, if ID = ID∗, the challenger retrieves a tuple (stmt, com, c) in the
H1 hash table such that c = H1

(
stmt = (pp, ID∗, ct, ?), com = (comct, ?)

)
; then, it returns

K = H2(stmt, com, π) only when these statement stmt, commitment com, challenge c, and
response s are verified (i.e., 1 ← V(stmt, com, c, s)). Otherwise, if ID 6= ID∗, it generates
SKID using MSK and decapsulates the ciphertext CT using SKID, as in the previous game.

Note that an adversary cannot distinguish Game 3 from Game 2 unless it queries
a ciphertext C̃T = (c̃t, π̃ = (s̃, c̃)) such that proof π̃ is verified with a retrieved tuple
( ˜stmt, ˜com, c̃) in H1 (i.e., 1 ← V( ˜stmt, ˜com, c̃, s̃)) and ˜stmt is a false statement. In other
words, the adversary must forge a proof π̃ for a false statement ˜stmt to distinguish the
games. Then, by the simulation soundness of NIZK with respect to qd decapsulation queries,
we have

|Pr[Win3]− Pr[Win2]| ≤ qd · εSS.

Game 4. This game is identical to Game 3 except that the challenge ciphertexts are com-
puted differently. In the challenge phase, the challenger randomly selects k′ instead of
computing k∗ ← IBKEM.Encap(pp, ID∗; x). The other procedures are the same as in Game 3.
Finally, it outputs (CT∗, K∗). We can show that a distinguisher between Game 4 and Game 3
implies an adversary that breaks the IND-ID-CPA security of the IBKEM scheme. For the
sake of simplicity, we prove this later. Then, we have

|Pr[Win4]− Pr[Win3]| ≤ εIBKEM
IND-ID-CPA.

Game 5. This game is identical to Game 4 except that it is executed with b = 0. In other

words, the challenger always returns K∗ $←− {0, 1}` instead of computing K∗ = H2(stmt =
(pp, ID∗, ct∗, k′), com = (comct∗

sim, comk′
sim), π∗sim = (s, c)). A cannot distinguish Game 5

from Game 4 unless A queries the tuple
(
stmt = (pp, ID∗, ct∗, k′), com = (comct∗

sim, comk′
sim),

π∗sim = (s, c)
)

to the H2 oracle. Note that k′ is random from A’s viewpoint because ct∗ is
independent of k′. Therefore, the probability that A queries the tuple to the H2 oracle is
1/|K|. Then, we have

|Pr[Win5]− Pr[Win4]| ≤ 1/|K|.

Game 6. This game is identical to Game 5 except that the challenge ciphertexts are com-
puted differently. In the challenge phase, the challenger uses back k∗ ← IBKEM.Encap(pp,
ID∗; x). The other procedures are the same as in Game 5. Finally, it outputs (CT∗, K∗). Like
the case between Game 4 and Game 3, we can show that a distinguisher between Game
6 and Game 5 implies an adversary that breaks the IND-ID-CPA security of the IBKEM
scheme. For the sake of simplicity, we prove this later. Then, we have

|Pr[Win6]− Pr[Win5]| ≤ εIBKEM
IND-ID-CPA.

Game 7. This game is identical to Game 6 except that the decapsulation query is operated
differently. In this game, the challenger changes the operation of decapsulation query
back to normal. For a given pair (CT, ID), the challenger generates SKID using MSK and
decapsulates the ciphertext CT using SKID. Like the case between Game 3 and Game 2,
A cannot distinguish Game 7 from Game 6 unless it submits a ciphertext with a forged
proof for a false statement. Then, by the simulation soundness of NIZK with respect to qd
decapsulation queries, we have

|Pr[Win7]− Pr[Win6]| ≤ qd · εSS.
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Game 8. This game is identical to Game 7 except that the challenge ciphertext is computed
differently. The challenger uses the real proving algorithm for NIZK instead of using
simulated proofs. Due to the zero-knowledge property of NIZK, we have

|Pr[Win8]− Pr[Win7]| ≤ εZK.

Game 9. This game is identical to Game 8 but it does not abort when the event Coll occurs
during the simulation. Due to the collision resistance of the hash functions, we have

|Pr[Win9]− Pr[Win8]| ≤ εCR.

Note that Game 9 is identical to the IND-ID-CCA security game executed with b = 0.
Then, we have

|Pr[Win0]− Pr[Win9]| ≤ 2 · (εCR + εZK + qd · εSS + εIBKEM
IND-ID-CPA) + 1/|KKEM|.

Lemma 3. If there exists a polynomial time distinguisher D between Game 3 and Game 4, then
there exists a polynomial time adversary A that breaks the IND-ID-CPA security of IBKEM.

Proof. Let D be a distinguisher between Game 3 and Game 4. Then, we show how to
construct A so that it wins the IND-ID-CPA security game of IBKEM using D with the
same advantage.

A receives as input a public parameter pp. Then, A runs D by simulating Game 3
with changes as follows.

• In the setup phase, A sends PP = (pp, H1, H2) to D.

• When asked a decapsulation query (CT,ID), if ID 6= ID∗, A queries ID for key gen-
eration oracle of its challenger, decapsulates CT, and returns it to D. Otherwise, if
ID 6= ID∗, the procedure is the same as in Game 3.

• In the challenge phase, the distinguisher D sends ID∗ to A. Then, A sends ID∗ to
its challenger and receives the challenge ciphertext and key pair. Given the pair
(ct∗, k∗b), A sets stmt = (pp, ID∗, ct∗, k∗b) and generates simulated proof π∗sim on the
statement stmt. Furthermore, A sets K∗ = H2(stmt, comsim, π∗sim), where comsim
is deterministically computed commitment from (stmt, π∗sim), and sends (CT∗ =
(ct∗, π∗sim), K∗) to D.

In the guess phase, D outputs its guess. If the guess is “Game 3”, A outputs 1; otherwise, it
output 0.

Note that if b = 1, i.e., stmt = (pp, ID∗, ct∗, k∗b) is a true statement or stmt = (pp, ID∗, ct∗,
k∗b) ∈ RL, the above simulation is identical to Game 3 from D’s viewpoint. Otherwise, the
above simulation is identical to Game 4. Therefore, we have

|Pr[Win4]− Pr[Win3]| ≤ εD = εIBKEM
IND-ID-CPA.

Lemma 4. If there exists a polynomial time distinguisher D between Game 5 and Game 6, then
there exists a polynomial time adversary A that breaks the IND-ID-CPA security of IBKEM.

Proof. Let D be a distinguisher between Game 5 and Game 6. Then, we show how
to construct A that wins the IND-ID-CPA security game of IBKEM using D with the
same advantage.

A receives as input a public parameter pp. Then, A runs D by simulating Game 5
with changes as follows.
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• In the setup phase, A sends PP = (pp, H1, H2) to D.

• When asked a decapsulation query (CT,ID), if ID 6= ID∗, A queries ID for key gen-
eration oracle of its challenger, decapsulates CT, and returns it to D. Otherwise, if
ID 6= ID∗, the procedure is the same as in Game 3.

• In the challenge phase, the distinguisher D sends ID∗ to A. Then, A sends ID∗ to its
challenger and receives the challenge ciphertext and key pair. Given the pair (ct∗, k∗b),
A sets stmt = (pp, ID∗, ct∗, k∗b) and generates simulated proof π∗sim on the statement

stmt. Then, A randomly chooses K∗ $←− {0, 1}` and sends (CT∗ = (ct∗, π∗sim), K∗) to
D.

In the guess phase, D outputs its guess. If the guess is “Game 6”, A outputs 1; otherwise, it
output 0.

Note that if b = 1, i.e., stmt = (pp, ID∗, ct∗, k∗b) is a true statement or stmt =
(pp, ID∗, ct∗, k∗b) ∈ RL, the above simulation is identical to Game 6 from D’s viewpoint.
Otherwise, the above simulation is identical to Game 5. Therefore, we have

|Pr[Win6]− Pr[Win5]| ≤ εD = εIBKEM
IND-ID-CPA.

This completes the proof of the theorem.

Table 2. Values or operations of K∗, CT∗, SK, and DecO(·) in each game and properties ensuring the indistinguishability of
consecutive games. RO + SS denotes that the simulator retrieves k from a random oracle table and checks the validity of the
ciphertext based on the SS property.

Game K∗ stmt∗ CT∗ SK DecO(·) Property

0 H2(stmt∗, com, π∗real) (pp, ID∗, ct∗, k∗) ct∗, π∗real sk IBKEM.Decap(·) -
1 H2(stmt∗, com, π∗real) (pp, ID∗, ct∗, k∗) ct∗, π∗real sk IBKEM.Decap(·) CR
2 H2(stmt∗, com, π∗sim) (pp, ID∗, ct∗, k∗) ct∗, π∗sim sk IBKEM.Decap(·) ZK
3 H2(stmt∗, com, π∗sim) (pp, ID∗, ct∗, k∗) ct∗, π∗sim - RO + SS SS
4 H2(stmt∗, com, π∗sim) (pp, ID∗, ct∗, k′) ct∗, π∗sim - RO + SS IND-ID-CPA

5 K $←− {0, 1}` (pp, ID∗, ct∗, k′) ct∗, π∗sim - RO + SS 1/|K|
6 K $←− {0, 1}` (pp, ID∗, ct∗, k∗) ct∗, π∗sim - RO + SS IND-ID-CPA

7 K $←− {0, 1}` (pp, ID∗, ct∗, k∗) ct∗, π∗sim sk IBKEM.Decap(·) SS

8 K $←− {0, 1}` (pp, ID∗, ct∗, k∗) ct∗, π∗real sk IBKEM.Decap(·) ZK

9 K $←− {0, 1}` (pp, ID∗, ct∗, k∗) ct∗, π∗real sk IBKEM.Decap(·) CR

5. Application

In this section, we review the applications described by Seo et al. [12].

5.1. CCA-Secure ElGamal KEM

Let GGenDDH(λ) be a group generator generating a group G = (G, p, g), where the
DDH assumption holds. In the ElGamal KEM, a public key consists of two group elements
(g, h = gx) ∈ G2 with corresponding private key x ∈ Zp. The encapsulation is done
by computing ct = gw ∈ G and k = hw ∈ G, and decapsulation is done by computing
k = (ct)x ∈ G. Based on this scheme, the transformed IND-CCA-secure scheme is
described as follows.

KEM.Gen(λ): For a security parameter λ, the setup algorithm proceeds as follows.

1. Generate G = (G, p, g) by running GGen(λ).
2. Choose a random exponent x ∈ Zp and set h = gx ∈ G.
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3. Choose hash functions H1 : {0, 1}∗ → {0, 1}k ⊆ Zp and H2 : {0, 1}∗ → {0, 1}`.
4. Output SK = x and PK = (G, p, g, h, H1, H2).

KEM.Encap(PK): For a public key PK = (G, p, g, h, H1, H2), the Encap algorithm
proceeds as follows.

1. Choose the random exponent w ∈ Zp.
2. Set stmt = (g, h, gw, hw) and wit = w.
3. Compute π ← PH1 (stmt, wit).

(a) Choose the random exponent r ∈ Zp and set com = (gr, hr) ∈ G2.
(b) Set c = H1(stmt, com) and s = r + wc ∈ Zp.
(c) Output the proof π = (s, c).

4. Set K← H2(stmt, com, π).
5. Output K and CT = (gw, π).

KEM.Decap(PK, CT, SK): For a public key PK = (G, p, g, h, H1, H2), a ciphertext
CT = (ct, π = (s, c)), and a private SK = x, the Decap algorithm proceeds as follows.

1. Set k = (ct)x and stmt = (g, h, ct, k) ∈ G4.
2. If 1← VH1 (stmt, π), go on. Otherwise, abort.

(a) Set com = (gs · ct−c, hs · k−c) ∈ G2.
(b) If c = H1(stmt, com), output 1. Otherwise, output 0.

3. Set K← H2(stmt, com, π) and output K.

Theorem 5. Suppose that the (tddh, εddh) DDH assumption holds in G, and H1 and H2 are
random oracles. Then, the ElGamal KEM is (t, ε, qd)-IND-CCA-secure, where

ε ≤ εddh
2

+
q2

H1

2k−1 +
q2

H2

2`−1 +
2q2

H1
+ 2qd · (qH1 + q2

H1
) + 1

p
, tddh ≈ t +O(qdte).

Here, {qH1 , qH2} are the numbers of {H1, H2} queries, te is the required time for exponentiation in
G, and p is the group order.

Proof. We can obtain the proof by applying Theorem 3 to the facts that ε′ ≤ εddh, tddh ≈ t′,
εZK ≤ q2

H1
/p, and εSS ≤ (qH1 + q2

H1
)/p. Moreover, we use the fact that tv becomes similar

to te in Theorem 3.

5.2. CCA-Secure Linear KEM

Let GGenDLIN(λ) be a group generator generating a group G = (G, p), where the
decision linear assumption [21] holds. In the linear KEM, a public key consists of three
group elements (g1, g2, h) ∈ G3 such that h = gx1

1 = gx2
2 with corresponding private

key (x1, x2) ∈ Z2
p. The encapsulation is done by computing ct = (gw1

1 , gw2
2 ) ∈ G and

k = hw1+w2 ∈ G, and decapsulation is done by computing k = (gw1
1 )x1(gw2

2 )x2 ∈ G. Based
on this scheme, the transformed IND-CCA-secure scheme is described as follows.

KEM.Gen(λ): For security parameter λ, the setup algorithm proceeds as follows.

1. Generate G = (G, p) by running GGenDLIN(λ).
2. Choose a random generator g1 ∈ G and a random exponent x1 ∈ Zp.
3. Choose a random exponent t and set g2 = gt

1 ∈ G and x2 = x1t−1 ∈ Zp such that
gx1

1 = gx2
2 = h for some h ∈ G.

4. Choose hash functions H1 : {0, 1}∗ → {0, 1}k ⊆ Zp and H2 : {0, 1}∗ → {0, 1}`.
5. Output SK = (x1, x2) and PK = (G, p, g1, g2, h, H1, H2).

KEM.Encap(PK): For a public key PK = (G, p, g1, g2, h, H1, H2), the Encap algorithm
proceeds as follows.

1. Choose random exponents w1, w2 ∈ Zp.
2. Set stmt = (g1, g2, h, gw1

1 , gw2
2 , hw1+w2) and wit = (w1, w2).
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3. Compute π ← PH1 (stmt, wit).

(a) Choose random exponents r1, r2 ∈ Zp.
(b) Set com = (gr1

1 , gr2
2 , hr1+r2) ∈ G3.

(c) Compute c = H1(stmt, com) and s1 = r1 + w1c, s2 = r2 + w2c ∈ Zp.
(d) Output the proof π = (s1, s2, c).

4. Set K← H2(stmt, com, π).
5. Output K and CT = (gw1

1 , gw2
2 , π).

KEM.Decap(PK, CT, SK): For a public key PK = (G, p, g1, g2, h, H1, H2), a ciphertext
CT = (ct1, ct2, π = (s1, s2, c)), and a private SK = (x1, x2), the Decap algorithm proceeds
as follows.

1. Compute k = ctx1
1 ctx2

2 ∈ G and set stmt = (g1, g2, h, ct1, ct2, k).
2. If 1← VH1 (stmt, π), go on. Otherwise, abort.

(a) Set com = (gs1
1 · ct

−c
1 , gs2

2 · ct
−c
2 , h(s1+s2) · k−c) ∈ G3.

(b) If c = H1(stmt, com), output 1. Otherwise, output 0.

3. Set K← H2(stmt, com, π) and output K.

Theorem 6. Suppose that the (tdlin, εdlin) decision linear assumption holds in G, and H1 and H2
are random oracles. Then, the linear KEM is (t, ε, qd)-IND-CCA-secure, where

ε ≤ εdlin
2

+
q2

H1

2k−1 +
q2

H2

2`−1 +
2q2

H1
+ 2qd · (qH1 + q2

H1
) + 1

p
, tdlin ≈ t +O(qdte).

Here, {qH1 , qH2} are the numbers of {H1, H2} queries, te is the required time for exponentiation in
G, and p is the group order.

Proof. We can obtain the proof by applying Theorem 3 to the facts that ε′ ≤ εdlin, tdlin ≈ t′,
εZK ≤ q2

H1
/p, and εSS ≤ (qH1 + q2

H1
)/p. Moreover, we use the fact that tv becomes similar

to te in Theorem 3.

5.3. CCA-Secure Boneh–Franklin IBKEM

Let GGenDBDH(λ) be a bilinear group generator generating a group G = (G1,G2,
GT , p, e), where the DBDH assumption [22,23] holds. In the Boneh–Franklin IBKEM [22],
public parameters consist of two group elements (g, h) ∈ G2

2 such that h = gx with
corresponding master secret key x ∈ Zp. For an identity ID, the secret key is generated
by computing skID = H(ID)x ∈ G1. The encapsulation is done by computing ct =
gw ∈ G2 and k = e(H(ID), h)w ∈ GT , and decapsulation is done by computing k =
e(H(ID)x, ct) ∈ GT . Based on this scheme, the transformed IND-CCA-secure scheme is
described as follows.

IBKEM.Setup(λ): For security parameter λ, the setup algorithm proceeds as follows.

1. Generate G = (G1,G2,GT , p, e) $←− GGenDBDH(λ).
2. Select a random generator g ∈ G2.
3. Select a random exponent x ∈ Zp and compute h = gx ∈ G2.
4. Select hash functions H : {0, 1}∗ → G1, H1 : {0, 1}∗ → {0, 1}k ⊆ Zp and H2 :

{0, 1}∗ → {0, 1}`.
5. Output MSK = x and PP = (G, g, h, H, H1, H2).

IBKEM.KeyGen(PP, MSK, ID): For public parameters PP = (G, g, h, H, H1, H2), a
master secret key MSK = x, and an identity ID, the KeyGen algorithm proceeds as follows.

1. Compute SKID = H(ID)x ∈ G1.
2. Output SKID.
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IBKEM.Encap(PP, ID): For public parameters PP = (G, g, h, H, H1, H2) and an
identity ID, the Encap algorithm proceeds as follows.

1. Select a random exponent w ∈ Zp.
2. Compute QID = e(H(ID), h) ∈ GT .
3. Set stmt = (g, h, ID, gw, Qw

ID) and wit = w.
4. Compute π ← PH1 (stmt, wit).

(a) Choose the random exponent r ∈ Zp.
(b) Set com = (gr, Qr

ID) ∈ G2 ×GT .
(c) Compute c = H1(stmt, com) and s = r + wc.
(d) Output the proof π = (s, c).

5. Set K← H2(stmt, com, π).
6. Output K and CT = (gw, π).

IBKEM.Decap(PP, CT, SKID): For public parameters PP = (G, g, h, H, H1, H2), a ci-
phertext CT = (ct, π = (s, c)), and a private SKID, the Decap algorithm proceeds as
follows.

1. Compute k = e(SKID, ct) ∈ GT .
2. Set stmt = (g, h, ID, ct, k).
3. If 1← VH1 (stmt, π), go on. Otherwise, abort.

(a) Compute QID = e(H(ID), h) ∈ GT .
(b) Set com = (gs · ct−c, Qs

ID · k
−c) ∈ G2 ×GT .

(c) If c = H1(stmt, com), output 1. Otherwise, output 0.

4. Compute K← H2(stmt, com, π) and output K.

Theorem 7. Suppose that the (tdbdh, εdbdh) DBDH assumption holds in G, and H1 and H2 are
random oracles. Then, the Boneh–Franklin IBKEM is (t, ε, qid, qd)-IND-ID-CCA-secure, where

ε ≤ e(1 + qid)εdbdh
2

+
q2

H1

2k−1 +
q2

H2

2`−1 +
2q2

H + 2q2
H1

+ 2qd · (qH1 + q2
H1
) + 1

p
, tdbdh ≈ t +O((qid + qH + qd)te).

Here, {qH , qH1 , qH2} are the numbers of {H, H1, H2} queries, te is the required time for exponenti-
ation in G, and p is the group order.

Proof. We can obtain the proof by applying Theorem 4 to the facts that ε′ ≤ e(1+ qid)εdbdh,
tdbdh ≈ t′ +O((qid + qH)te), εZK ≤ q2

H1
/p, and εSS ≤ (qH1 + q2

H1
)/p. Moreover, we use

the fact that tv becomes similar to te in Theorem 4.

5.4. CCA-Secure Boneh–Boyen IBKEM

Let GGenDBDH(λ) be a bilinear group generator generating a group G = (G1,G2,
GT , p, e), where the DBDH assumption holds. In the Boneh–Boyen IBKEM [24], public
parameters consist of four group elements (g1, y1, y2, Λ = e(g1, g2)

α) ∈ G3
1 ×GT such that

y1 = gx
1 , y2 = gy

1 with corresponding master secret key (g2, x, y, α) ∈ G2 ×Z3
p. For an iden-

tity ID, the secret key is generated by computing skID = (d1, d2) = (gα+(x+H(ID)y)t
2 , gt

2) ∈
G2

2. The encapsulation is done by computing ct = (ct1, ct2) =
(

gw
1 , (y1yH(ID)

2 )w) ∈ G2
1 and

k = Λw ∈ GT , and decapsulation is done by computing k = e(ct1, d1)/e(ct2, d2) ∈ GT .
Based on this scheme, the transformed IND-CCA-secure scheme is described as follows.

IBKEM.Setup(λ): For security parameter λ, the setup algorithm proceeds as follows.

1. Generate G = (G1,G2,GT , p, e) $←− GGenDBDH(λ).
2. Select two random generators g1 ∈ G1 and g2 ∈ G2.
3. Select random exponents x, y, α ∈ Zp.
4. Compute y1 = gx

1 , y2 = gy
1 , and Λ = e(g1, g2)

α.
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5. Select hash functions H : {0, 1}∗ → Zp, H1 : {0, 1}∗ → {0, 1}k ⊆ Zp and H2 :
{0, 1}∗ → {0, 1}`.

6. Output MSK = (g2, x, y, α) and PP = (G, g1, y1, y2, Λ, H, H1, H2).

IBKEM.KeyGen(PP, MSK, ID): For public parameters PP = (G, g1, y1, y2, Λ, H, H1,
H2), a master secret key MSK = (g2, x, y, α), and an identity ID, the KeyGen algorithm
proceeds as follows.

1. Select a random exponent t ∈ Zp.

2. Compute SKID = (gα+(x+H(ID)y)t
2 , gt

2) ∈ G2
2.

3. Output SKID.

IBKEM.Encap(PP, ID): For public parameters PP = (G, g1, y1, y2, Λ, H, H1, H2) and
an identity ID, the Encap algorithm proceeds as follows.

1. Select a random exponent w ∈ Zp.

2. Compute QID = y1yH(ID)
2 ∈ G1.

3. Set stmt = (g1, y1, y2, Λ, ID, gw
1 , Qw

ID, Λw) and wit = w.
4. Compute π ← PH1 (stmt, wit).

(a) Select the random exponent r ∈ Zp.
(b) Set com = (gr

1, Qr
ID, Λr) ∈ G2

1 ×GT .
(c) Compute c = H1(stmt, com) and s = r + wc.
(d) Output the proof π = (s, c).

5. Set K← H2(stmt, com, π).
6. Output K and CT = (gw

1 , Qw
ID, π).

IBKEM.Decap(PP, CT, SKID): For public parameters PP= (G, g1, y1, y2, Λ, H, H1, H2),
a ciphertext CT = (ct1, ct2, π = (s, c)), and a private SKID = (d1, d2), the Decap algorithm
proceeds as follows.

1. Compute k = e(ct1, d1)/e(ct2, d2) ∈ GT .
2. Set stmt = (g1, y1, y2, Λ, ID, ct1, ct2, k).
3. If 1← VH1 (stmt, π), go on. Otherwise, abort.

(a) Compute QID = y1yH(ID)
2 ∈ G1.

(b) Set com = (gs
1 · ct

−c
1 , Qs

ID · ct
−c
2 , Λs · k−c) ∈ G2

1 ×GT .
(c) If c = H1(stmt, com), output 1. Otherwise, output 0.

4. Set K← H2(stmt, com, π) and output K.

Theorem 8. Suppose that the (tdbdh, εdbdh) DBDH assumption holds in G, and H1 and H2 are
random oracles. Then, the Boneh–Boyen IBKEM is (t, ε, qid, qd)-IND-ID-CCA-secure, where

ε ≤ qH · εdbdh
2

+
q2

H1

2k−1 +
q2

H2

2`−1 +
2q2

H + 2q2
H1

+ 2qd · (qH1 + q2
H1
) + 1

p
, tdbdh ≈ t +O((qid + qH + qd)te).

Here, {qH , qH1 , qH2} are the numbers of {H, H1, H2} queries, te is the required time for exponenti-
ation in G, and p is the group order.

Proof. We can obtain the proof by applying Theorem 4 to the facts that ε′ ≤ qH · εdbdh,
tdbdh ≈ t′ +O(qidte), εZK ≤ q2

H1
/p, and εSS ≤ (qH1 + q2

H1
)/p. Moreover, we use the fact

that tv becomes similar to te in Theorem 4.

6. Conclusions

This paper shows the security proof of the recent work for the CCA conversion method
in [12] has a flaw and proposes the corrected proof for the method. The CCA conversion
method [12] from OW-CPA-KEM to IND-CCA-KEM is a tightly secure conversion and is
based on the Random Oracle model. Without changing the basic conversion method, this
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paper proposes the new corrected security proof of the conversion method. If the security
proof for the newly designed cryptography scheme is not correct, there may exist some
vulnerability in the system using the scheme. Therefore, this report on the flaw of security
proof of the conversion method [12] and the fixed security proof should be considered by
developers that use this conversion method. With the revised CCA conversion method,
one can obtain an IND-CCA-KEM scheme from an IND-CPA-KEM scheme, and an IND-
ID-CCA-IBKEM scheme from an IND-ID-CPA-IBKEM scheme, respectively. This paper
provides the revised applications of the CCA conversion method which are the practical
encryption schemes and the ID-based encryption schemes. As a result, information systems
such as software tools, image processing, and sound transmission [25–27] that require
information security can use those applications of the CCA conversion method to enhance
data privacy.

However, this work has the limitations that the new security proof assumes the
stronger condition that an underlying CPA-KEM is secure in terms of IND instead of
OW. As future work, we note that proving the security of the conversion method with a
weaker assumption that an underlying CPA-KEM is secure in terms of OW is an interesting
open question.
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