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Featured Application: The present study described the physiological right ventricular response
to intensive training using a geometry processing method to analyze regional volumetric remod-
eling. We confirmed that right ventricular enlargement is part of the exercise-induced cardiac
adaptations to chronic exercise in American-style football-trained athletes. In future work, the
use of this method to characterize athletes and clinical populations involving dilatation of the
right ventricle might allow to better differentiate physiological remodeling from early patholog-
ical changes.

Abstract: Few data exist concerning the right ventricular (RV) physiological adaptation in American-
style football (ASF) athletes. We aimed to analyze the RV global and regional responses among
ASF-trained athletes. Fifty-nine (20 linemen and 39 non-linemen) ASF athletes were studied before
and after inter-seasonal training. During this period, which lasted 7 months, all athletes were exposed
to combined dynamic and static exercises. Cardiac longitudinal changes were examined using three-
dimensional transthoracic echocardiography. A computational method based on geodesic distances
was applied to volumetrically parcellate the RV into apical, outlet, and inlet regions. RV global and
regional end-diastolic volumes increased significantly and similarly in linemen and non-linemen
after training, with predominant changes in the apex and outlet regions. RV global and regional
ejection fractions were preserved. Morphological changes were uniformly distributed among the
four cardiac chambers, and it was independent of the field position. Assessment of RV end-diastolic
global, inlet and apical volumes showed low intra-observer (3.3%, 4.1%, and 5.3%, respectively) and
inter-observer (7%, 12.2%, and 9%, respectively) variability, whereas the outlet regional volumetric
assessment was less reproducible. To conclude, ASF inter-seasonal training was associated with
a proportionate biventricular enlargement, regardless of the field position. Regional RV analysis
allowed us to quantify the amount of exercise-induced remodeling that was larger in the apical and
outlet regions.
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1. Introduction

In the last decade, a growing number of longitudinal echocardiographic studies
focused on describing cardiovascular physiology in American-style football (ASF) ath-
letes [1–5]. These studies made significant contributions to the understanding of the impact
of ASF participation on the left ventricular (LV) remodeling phenotype, showing a higher
prevalence of maladaptive LV remodeling among competitive athletes playing linemen
field positions compared to their non-linemen counterparts [6]. Although a close interaction
between exercise-induced LV and right ventricular (RV) adaptations has been confirmed in
many sports disciplines [7–9], the RV response to ASF participation received less attention.
To our knowledge, a single two-dimensional (2D) echocardiographic study analyzed in
24 athletes the RV response to ninety days of exercise throughout an ASF competitive
season, showing no effect of team training on the RV morphology nor function [10]. The
training regimen during ASF inter-season differs from that undertaken during the competi-
tive period. Therefore, it remains unclear to what extend the inter-seasonal training, which
implies more balanced dynamic and static exercises for all team players over a longer
period compared to the competitive season could influence the RV structure. Moreover,
given the complexity of the RV geometry, assessment of RV physiological adaptations in
athletes is three-dimensional (3D) echocardiography preferable [11].

The present study aimed to describe the RV response to the ASF inter-seasonal team
mixed training. Since the assessment of RV regional changes is important for discerning
pathological and physiological remodeling [12,13], we used an in-house technique to obtain
and assess the global and regional RV volume distribution using 3D echocardiography [14].

2. Materials and Methods
2.1. Study Design

We conducted a prospective cohort study to analyze the cardiac remodeling among
competitive male ASF players. Eligibility criteria for this study included: (1) to be a member
of the University of Montreal (Québec, Canada) ASF team “Les Carabins”, (2) to be able
to participate in both visits and (3) willingness to participate in our study. An upcoming
first season of football at the University of Montreal was not an exclusion criterion in
our study since all the players were either transferred from another university team or
engaged in competitive football teams before starting their university studies. The field
position of each athlete (linemen or non-linemen) was noted as previously described [15].
Cardiac structure and function were assessed in players using echocardiography at two
different visits, immediately before and at the end of the inter-seasonal training program.
The supervised training program is detailed in the Supplementary Materials.

At the initial visit, the following data were collected: age, ethnicity, number of football
seasons played at the university level, and height. Weight, body fat percentage, heart
rate, blood pressure, and personal medical history (past and recent) were collected at both
visits. Resting heart rate and blood pressure were measured after 10 min of quiet rest in
a supine position. Blood pressure was averaged on duplicate successive measurements
assessed using an automated monitor (OMRON Healthcare, Hoofddorp, The Netherlands)
with an appropriate-sized arm cuff. Body mass index (BMI) was calculated as follows:
(weight (kg)/height (m)2). The body surface area (BSA) was calculated with the Mosteller
formula [16]. Body fat percentage was measured using a tetrapolar bioelectrical impedance
analysis (Tanita Body Composition Analyzer BF-350, Tanita Corporation, US). Participants
were required to abstain from exercise for at least 24 h before data collection time points.
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2.2. Echocardiographic Acquisitions and Image Processing

The echocardiographic functional and morphological assessment was carried out
according to the current guidelines [17] using a commercially available echocardiographic
system EPIQ 7 equipped with an X5-1 xMATRIX-array transducer (Philips Healthcare,
Eindhoven, The Netherlands). Participants were scanned at the pre-inter-seasonal medical
assessment and within one week of completing the inter-seasonal training program. Car-
diac 3D volume acquisitions were performed during end-expiratory apnea (4 to 6 cardiac
cycles) in two separate sequences for the LV and RV. All data were stored digitally on a com-
puter system. Offline data analysis was processed, semi-automatically by a single operator
blinded to study time points, using commercially available clinically validated software
(4D RV-Function and 4D LV-Function, TOMTEC-Arena TTA2, TOMTEC Imaging Systems
GMBH, Unterschleißheim, Germany), from which left and right ventricular volumes and
RV free wall global longitudinal strain were obtained. RV 3D volume segmentation se-
quences corresponded to a full cardiac cycle and resulted in a mesh for each time step
consisting of 938 nodes and 1872 triangles of the endocardium, and the coordinates of each
node were exported for our in-house regional analysis. Two-dimensional linear dimensions
for both ventricles and atria were measured manually following the recommendations [17].
To assess the intra-and inter-observer reproducibility, quantifications were blindly repeated
in 10 randomly selected players by the same operator who originally quantified the whole
dataset and a second independent operator.

2.3. Parcellation of the Right Ventricle

We used a custom-developed method that parcellates the exported RV volumes in
three parts: apical, inlet, and outlet. This parcellation is first computed for the endocardium
using the geodesic distances from each surface point to the apex, tricuspid valve, and
pulmonary valve. These anatomical landmarks define respectively the apical, inlet, and
outlet regions, and each point of the mesh is assigned to the region whose representative
landmark is the closest. Afterward, the partition is extended from the endocardium
towards the blood cavity using the Laplace interpolation, which mimics the physics of heat
diffusion. The process is summarized in Figure 1. This parcellation is initially computed
at end-diastole and then tracked during the cardiac cycle to obtain a partition at end-
systole. Regional ejection fractions are derived from end-diastolic and end-systolic regional
volumes. Our team has described the technical aspects of the RV volumetric partition in
previous work [14].

2.4. Statistical Analysis

Statistical analysis was performed in Python 3.6 (Anaconda Inc, Austin, TX, USA),
with packages statsmodels (v0.10.0) and scipy (v1.2.1). Categorical variables are presented
as proportions and continuous variables as mean ± standard deviation. The normality of
distribution was verified using the Shapiro-Wilk test. Paired data were compared using
Student’s paired t-test or McNemar’s exact test, while unpaired data were compared
using the Student’s independent sample t-test or Fisher’s exact test. Multiple hypothesis
testing was corrected using the Holm-Sidak procedure. A mixed-effect linear model with a
random effect controlling inter-individual variability was used to predict the relationship
between pre-/post-season, field position, and the interaction between the temporal variable
and field position (introduced as fixed effects in the model) and the imaging parameters
(the dependent variable in the model). A multivariate stepwise analysis model was used
to examine variables associated with RV dilatation. The mixed linear model analysis
and the multivariate stepwise analysis are detailed in the Supplementary Materials. The
intra-and inter-observer reproducibility of the RV volumetric segmentation of the 3D-
echocardiographic images processed using TOMTEC was assessed via the mean absolute
and percent error. Statistical significance was defined as p < 0.05.
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Figure 1. Illustration of different steps to generate the right ventricular volumetric partition. (A) For each point, the
geodesic distances to the apex, tricuspid, and pulmonary valves are computed. (B) The geodesic distances to each of the
landmarks define a scalar map over the surface mesh. (C) This distance map is extended from the surface to the cavity by
tetrahedralising the mesh, and the Laplace equation is used to interpolate values to the interior. (D) The right ventricle is
split into the regions by assigning each point of the cavity to the closest landmark. (E,F) Visualization of the RV parcellation
over slices of the original 3D images.

3. Results

Of the 72 athletes who consented to the study, 59 athletes (20 linemen and 39 non-
linemen) completed the full inter-seasonal program and thus were analyzed at both study
time points. A full 3D echo analysis was not feasible in five linemen athletes due to insuffi-
cient image quality (insufficient echogenicity for four athletes, and respiratory artifacts for
the other one), thus 3D echo data are representative of 54 athletes.

3.1. Clinical Data

At the pre-training assessment, linemen had significantly higher weight, BMI, and
body fat percentage than non-linemen (Table 1). At the end of the inter-seasonal training
program, linemen had a significant reduction in weight (∆ = −4.5 ± 4.6 kg) and BMI
(∆ = −1 ± 1.3 kg/m2), while non-linemen did not experience any significant changes in
those parameters (Table 1). Similarly, systolic and diastolic blood pressure (SBP, DBP)
at pre-training were significantly higher in linemen than in non-linemen. However, at
post-training, only linemen had a significant reduction in SBP while non-linemen increased
DBP without significantly changing SBP (Table 1). None of the athletes reported a personal
history of hypertension, chronic treatment, or illicit drug use.
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Table 1. Comparison of pre-training (pre-T) and post-training (post-T) clinical data.

All Athletes (n = 59) Non-Linemen (n = 39) Linemen (n = 20)

Pre-T Post-T Pre-T Post-T Pre-T Post-T

Age, y 21.9 ± 1.4 21.8 ± 1.4 22 ± 1.5
Caucasian 40 (68%) 26 (67%) 14 (70%)

Afro-Caribbean 19 (32%) 13 (33%) 6/ (30%)
Prior university ASF seasons 1.6 ± 1.1 1.6 ± 1.1 1.7 ± 1.1

Height, cm 183.6 ± 7.2 181.2 ± 6.1 188.3 ± 7.1 †

Weight, kg 102.3 ± 22.6 101 ± 20.4 88.7 ± 9.8 89.3 ± 9.7 128.4 ± 16.9 ††† 123.9 ± 16 ***, †††

BMI, kg/m2 30.1 ± 5.5 29 ± 4.8 27.1 ± 3 27.2 ± 2.9 36.1 ± 4.1 ††† 34.8 ± 3.8 ***, †††

BSA, m2 2.28 ± 0.28 2.26 ± 0.25 2.1 ± 0.1 2.1 ± 0.1 2.6 ± 0.2 ††† 2.5 ± 0.2 ***, †††

Body fat, % 19 ± 7.4 18.2 ± 6.6 15.3 ± 4.7 15.2 ± 4 26.2 ± 6.4 ††† 24.2 ± 6.7 †††

HR, beats/min 58.9 ± 7.9 60.2 ± 8.1 57.8 ± 7.8 60.4 ± 8.4 * 60.4 ± 8.2 59.7 ± 7.7
SBP, mmHg 121.6 ± 10.6 122.4 ± 9.4 118.2 ± 8.8 122.5 ±9.5 128.2 ± 11.1 ††† 121.8 ± 9.5 *
DBP, mmHg 67 ± 8.3 73.9 ± 8 *** 64.5 ± 7.3 74.1 ± 7 *** 72.2 ± 7.8 ††† 73.6 ± 9.8

Values are mean ± SD. Abbreviations: BSA: body surface area, BMI: body mass index, HR: heart rate, SBP: systolic blood pressure, DBP:
diastolic blood pressure. * p < 0.05, *** p < 0.001 of a paired t-test comparing the variable between pre- and post-training in each group.
† p < 0.05, ††† p < 0.001 of an independent t-test comparing variable between non-linemen and linemen at each time point.

3.2. Impact of Inter-Seasonal Training on Cardiac Morphology and Function

Table 2 shows the evolution of standard 2D and 3D RV morphological and functional
indices assessed over the inter-season and compared between non-linemen and linemen.
RV end-diastolic volume (EDV), RV end-systolic volume (ESV), and RV linear diameters
were larger in linemen at both time points. After indexation to BSA, RV volumes and
dimensions appeared similar between groups, except for longitudinal RV diameter that
was larger in non-linemen. RV EDV significantly increased after training in both groups,
whereas RV ESV remained unchanged. Similarly, the RV linear diameters tended to in-
crease after training in both groups, except for the outflow tract measured in parasternal
long-axis view that remained stable. There were no changes in RV wall thickness. The
mixed-effect linear model did not find evidence for different RV 2D and 3D morphological
remodeling patterns between linemen and non-linemen, except for the RV EDV index,
which increased more in linemen (Supplementary Table S1). RV functional parameters
were mostly comparable between groups (Table 2). The mixed-effect linear model (Sup-
plementary Table S1) showed that only the tricuspid annular plane systolic excursion
(TAPSE) had a weakly statistically significant different behavior between groups during
the pre-season: it tended to decrease for linemen and to increase for non-linemen. Right
atrial (RA) volume increased for both linemen and non-linemen (Table 2), but the volume
increment was greater in linemen (Supplementary Table S1).

Among factors that might influence RV dilatation during the inter-seasonal training
in the ASF cohort, intra-seasonal LV mass percentage increment was the only independent
predictor for RV dilatation (aOR = 1.13, 95% CI = 1.02−1.25, p = 0.02) (Supplementary
Table S2). Seasonal statistically significant remodeling was also observed for the LV end-
diastolic volume, LV mass, and left atrial volume with no effect of the field position
(Supplementary Tables S3 and S4). Ventricular and atrial volumes changes remained
balanced between the right-sided and left-sided heart (Supplementary Table S3).
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Table 2. Comparison of pre-training (pre-T) and post-training (post-T) right ventricular (RV) and atrial (RA) parameters.

Variable

All Athletes
(n = 59)

Non-Linemen
(n = 39)

Linemen
(n = 20, 15 for 3D Data)

Pre-T Post-T Pre-T Post-T Pre-T Post-T

RV Dimensions

3D-RV EDV, mL 163.4 ± 31.4 174.3 ± 33.7 *** 155 ± 28.2 164.7 ± 30 *** 185.6 ± 29 †† 197.7 ± 32 ***, ††

3D-RV EDVi, mL/m2 72.7 ±1 2.3 77.8 ± 12.7 *** 73.4 ± 13.2 77.8 ± 13.6 *** 71.4 ± 9.6 77.7 ± 10.6 ***
3D-RV ESV, mL 80.1 ± 16.9 81.8 ± 19.2 75.4 ± 14.2 76.8 ± 17.1 93 ± 18.2 †† 93.7 ± 19 ††

3D-RV ESVi, mL/m2 35.6 ± 6.3 36.4 ± 7.4 35.7 ± 6.5 36.2 ± 7.8 35.7 ± 6.1 36.9 ± 6.5
RV basal diameter, mm 47.2 ± 4.9 48.2 ± 4.7 45.4 ± 4.1 46.3 ± 4 50.9 ± 4.1 ††† 52 ± 3.7 †††

RV basal diameter i, mm/m2 20.9 ± 2.4 21.4 ± 2 21.5 ± 2 21.9 ± 2 19.8 ± 2.7 20.5 ± 1.6
RV mid diameter, mm 40 ± 4.6 41 ± 4.3 38.8 ± 4 39.6 ± 3.3 42.5 ± 4.8 † 43.7 ± 4.8 ††

RV mid diameter i, mm/m2 17.8 ± 2.4 18.3 ± 2.2 18.4 ± 2 18.8 ± 1.8 16.6 ± 2.8 17.3 ± 2.6
RVOT PLAX diameter, mm 31.3 ± 4.8 31.2 ± 5 29.7 ± 1.9 29.5 ± 4.6 33.7 ± 4.4 † 33.9 ± 4.4 †

RVOT PLAX diameter i, mm/m2 13.7 ± 1.8 13.6 ± 1.8 14 ± 2 13.9 ± 1.9 13 ± 1.2 13.3 ± 1.6
RV longitudinal diameter, mm 95.4 ± 7.3 97 ± 62 * 93.8 ± 6.7 95.6 ± 6.2 * 99.3 ± 7.1 †† 100.5 ± 4.8 ††

RV longitudinal diameter i, mm/m2 42.9 ± 4.5 43.8 ± 4.2 * 44.6 ± 3.7 45.3 ± 3.5 38.5 ± 3.5 †† 39.9 ± 3.3 *, ††

RV wall thickness, mm 2.7 ± 0.6 2.6 ± 0.6 2.5 ± 0.5 2.4 ± 0.6 3 ± 0.7 2.8 ± 0.6 †

RV Function

3D-RV global EF, % 51 ± 4 53.2 ± 3.7 ** 51.2 ± 4 53.6 ± 3.5 ** 50.1 ± 3.8 52.3 ± 4.2
3D-RV FW strain, % −27.3 ± 3.6 −27.7 ± 2.8 −27.4 ± 3.6 −28 ± 3 −27.5 ± 3.3 −27.1 ± 2.3

TDI RV lateral peak s’, cm/s 13.9 ± 2.6 13.8 ± 2 14 ± 2.6 14 ± 2 13.7 ± 2.6 13.6 ± 2.1
TDI RV lateral peak e’, cm/s 13.4 ± 2.1 12.7 ± 2.9 13.5 ± 2 12.7 ± 2.9 13.5 ± 2.3 12.5 ± 3

TAPSE, mm 25.3 ± 4.4 25.9 ± 3.5 24.2 ± 3.7 25.7 ± 3.5 27.5 ± 4.5 26.2 ± 3.4

RA Dimensions

RA ESV volume, mL 51.9 ± 13.2 58.1 ± 14 *** 50.3 ± 13.5 54.6 ± 13 *** 55.1 ± 12.5 65 ± 13.7 ***, †

RA ESV volume i, mL/m2 23 ± 6 25.7 ± 5.6 *** 23.9 ± 6.6 25.8 ± 6 *** 21.3 ± 4.5 25.5 ± 4.7 ***

Values are mean ± SD. Abbreviations: EDV: end-diastolic volume, EF: ejection fraction, ESV: end-systolic volume, FW: free wall, i: index,
RVOT PLAX: right ventricular outflow tract in parasternal long-axis view, TDI: tissue Doppler imaging. TAPSE: tricuspid annular plane
systolic excursion. * p < 0.05, ** p < 0.01, *** p < 0.001 of a paired t-test comparing the variable between pre-and post-training in each group.
† p < 0.05, †† p < 0.01, ††† p < 0.001 of an independent t-test comparing variable between non-linemen and linemen at each time point.

3.3. Assessment of the Regional RV Changes Using 3D Parcellation

At pre-training, the 3D partition method allocated a higher EDV to the RV inlet
compared to the other regions (38.6 ± 6.3 mL/m2 vs. 16.2 ± 3 mL/m2 for the apex
and 15.8 ± 2.7 mL/m2 for the outlet, p < 0.0001). The apical ejection fraction was higher
compared to the inlet and outlet ejections fractions (58.6 ± 8.4% vs. 50.7 ± 8.3% for the
inlet and 40.7 ± 10.4% for the outlet, p < 0.0001). Inter-seasonal RV dilatation was present
in all three segments (Figure 2). A larger percent dilatation was observed in the apical and
outlet regions (Figure 2). The mixed-effect linear model analysis did not show significant
differences in RV regional end-diastolic volumes nor ejection fractions evolution over time
between linemen and non-linemen (Supplementary Table S1).

Table 3 shows the reproducibility index for intra- and inter-observer variability of the
RV volumetric global and regional 3D measurements. The RV global EDV and regional
inlet and apical EDV measurements were reproducible (3% to 12%), whereas the outlet
EDV had higher variability. The RV ESV measurement reproducibility was lower than
EDV, which affected the regional ESV and ejection fraction assessment.
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Figure 2. Longitudinal 3D RV regional morphological and functional changes. Abbreviations: EDV: end-diastolic volume,
EF: ejection fraction. * p < 0.05, ** p < 0.01, *** p < 0.001 of a paired t-test comparing the variable before and after training.

Table 3. Intra- and inter-observer reproducibility test for right ventricular (RV) global and regional
3D volumetric assessment.

Variable Intra-Observer Inter-Observer

RV global
RV EDV, mL 5 (3.3%) 11 (7%)
RV ESV, mL 4.1 (5.4%) 10.6 (15.3%)

RV EF, % 2.4 (4.9%) 5.2 (10.2%)

RV Inlet
RV inlet EDV, mL 3.3 (4.1%) 9.3 (12.2%)
RV inlet ESV, mL 3.2 (7.8%) 6.1 (16.2%)

RV Inlet EF, % 3.3 (7%) 5.1 (10.6%)

RV Apex
RV apex EDV, mL 1.8 (5.3%) 3.5 (9%)
RV apex ESV, mL 1.8 (12.9%) 3.4 (23.7%)

RV apex EF, % 5.2 (9.3%) 8.7 (14.8%)

RV Outlet
RV outlet EDV, mL 3.4 (10%) 9 (22.2%)
RV outlet ESV, mL 2.1 (10.9%) 4.1 (20.4%)

RV outlet EF, % 3.2 (7.9%) 10.7 (23.3%)
Mean error values, in the format of absolute and the percentual error in parenthesis. Abbreviations: EDV:
end-diastolic volume, EF: ejection fraction, ESV: end-systolic volume.

4. Discussion

Using 3D echocardiography with an automated method to volumetrically parcellate
the RV, we were able to show for the first time that ASF inter-seasonal training was
associated with physiological RV enlargement with predominant changes occurring in the
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apical and outlet regions, independently of the field position. The RV remodeling was
associated with LV hypertrophy.

A proportionate biventricular dilatation with preserved function has been commonly
associated with chronic exercise in endurance and mixed-trained athletes [11,18–20]. Al-
though strength athletes have been less studied, longitudinal observations suggested that
high-intensity strength training could impact the right ventricular structure [21]. ASF,
unlike most of the other team sports, implies a heterogeneous combination of static and
dynamic exercises that vary according to the player field position (linemen/non-linemen)
and to the training timeframe (inter-season physical preparation/competitive season). The
dichotomy between linemen and non-linemen players is essentially marked during the
competitive season, during which ASF players at the linemen position engage almost
exclusively in intense static activity, whereas the non-linemen counterparts experience
much higher loads of dynamic exercise. Therefore, studies that have previously analyzed
the longitudinal cardiac adaptations to the ASF competitive season, have documented
field position-specific LV remodeling [1,2,4]. In those studies, linemen players exhibit a
higher prevalence of LV concentric hypertrophy close to what was reported in strength
athletes [22], whereas non-linemen players are more likely to develop an eccentric LV
hypertrophic pattern. To date, only one longitudinal study assessed the RV response to
the ASF season using 2D-echocardiography in a US football team. The authors concluded
the absence of RV exercise-induced remodeling among ASF players [10]. In the present
study, we described in a Canadian ASF team the longitudinal cardiac changes that oc-
curred during their inter-seasonal training, which involved all athletes combined static
and endurance exercises. Linemen athletes experienced an increased dynamic component
of exercise compared to their static activity during the competitive season, which may
have contributed to weight loss and lower systolic blood pressure observed at the end
of the inter-season. Conversely, non-linemen athletes who were asked to perform more
strength work tended to increase arterial blood pressure, which is regularly associated
with ASF participation [6]. However, based on our echocardiographic assessment, the RV
global and regional adaptations appeared physiological and similar between linemen and
non-linemen players. We used 3D technics to accurately assess the RV and to overcome the
limitations of conventional 2D echocardiographic views [17]. 3D measurements confirmed
a small but highly significant increment in RV EDV, while the RV linear dimensions could
underestimate the exercise-induced RV response. The RV changes were part of a balanced
biventricular and biatrial cardiac response to chronic exercise.

We observed minor group differences in cardiac morphological and functional param-
eters. The increase in RV EDV seemed to be greater in linemen but only when indexed to
BSA. This could be explained in large part because of significant weight loss in linemen
only. The only significant morphological field-specific difference in both indexed and non-
indexed values was the intra-seasonal change in the RA volume, which augmented more
in linemen players. A more pronounced dilatation of the RA cavity compared to the other
cardiac chambers has been previously reported in athletes as a compensatory mechanism
supporting the predominant involvement of the right side in the exercise-induced cardiac
adaptation [23]. In the absence of group differences in RV systolic and diastolic functions,
and with comparable left to right atrial and ventricular volume ratios, we do not have a
clear explanation to justify the greater increase in the inter-seasonal RA volume among
linemen. We hypothesize that linemen having much higher BSA and non-indexed cardiac
volumes implied a larger blood volume increase during exercise, which may result in a
larger RA increment. Regarding functional parameters, the TAPSE tended to decrease in
linemen and increase in non-linemen. We do not consider it of big clinical significance,
given the P-value and the fact that other RV regional and global systolic functional indices
such as peak S’, RV ejection fraction, and RV longitudinal free wall strain, which are also
dependent on the RV shape, did not differ between groups. In the paper of Baggish et al.
in 2008 [10], the authors described no seasonal variations in RV fractional area change and
basal free wall tissue Doppler indices, without reporting TAPSE measurements.



Appl. Sci. 2021, 11, 3357 9 of 11

Our 3D regional volumetric analysis showed that inter-seasonal training led to a more
pronounced dilatation of the apex and outlet compared to the inlet, with preserved or aug-
mented systolic ejection fractions. A more round-shape RV apex and improved apical strain
were commonly reported among endurance and mixed-trained athletes [8,23,24]. Consid-
ering the RV outlet, it was previously demonstrated that this region could be exposed to
high wall stress during exercise [25] and that the occurrence of ventricular tachycardia of
outflow tract origin could be part of the physiological remodeling process in athletes [26].
Nevertheless, the RV outlet enlargement was inconstantly associated with exercise train-
ing [8,24,27,28]. Even when using 3D echocardiography–derived cross-sectional planes,
the endocardial border tracings to outline the RV outflow tract and the pulmonary valve
position remain challenging, as shown by our reproducibility analysis. In this paper, we
applied a new geometrical approach to segment the RV volumes into its three distinct
anatomical parts that allowed us to describe the RV regional structural and functional
patterns in response to physiological volume-overload induced by chronic mixed exercise.
Although our 3D RV segmentation does not correspond to the exact anatomical definition
of the RV three sub-units, this method is based on a mathematical model to guarantee the
stability of the segmentation in the absence of anatomical landmarks in the mid-ventricle.
This fully automated tool for RV regional 3D quantification uses information that can be
easily exported using commercial software with no extra manual processing. Our team
has shown that this technique is sensitive to detect synthetic regional remodeling [14],
and it could be easily applied to clinical datasets to explore geometrical and functional
changes that might occur in physiological states and pathological situations. Distinguish
RV adaptive remodeling induced by physical exercise from pathological changes such
as those observed in arrhythmogenic right ventricular cardiomyopathy (ARVC) which is
responsible for juvenile sudden death, is essential in clinical practice when dealing with
athletes. A comprehensive evaluation of the athlete’s heart requires an examination of
RV segments that can be differently affected by physiological stress induced by chronic
exercise. In parallel, the occurrence of regional RV structural modifications could reveal
the early signs of ARCV that are challenging to diagnose by currently available echocardio-
graphic tools [12,13]. In future work it would be interesting to study in ARCV patients and
athletes the accuracy of the volumetric parcellation method to better differentiate using
echocardiography the RV adaptive from maladaptive remodeling phenotypes.

We acknowledge the study cohort was limited. However, we believed that the longitu-
dinal evaluation strengthened our analysis despite the limited number of ASF participants.
Another limitation is the absence of a comprehensive assessment of the arterial vascular
function to study if the arterial blood pressure response could be related to a divergent vas-
cular remodeling between linemen and non-linemen athletes. More, the 3D RV volumetric
parcellation analysis showed significant inter-observer variability, which limits its current
applicability to large clinical studies. Due to the instability of the tracing procedure, the
variability of the end-systolic measurements, and thus ejection fraction calculations, were
higher than end-diastolic quantifications. Given a lower image quality near the outflow,
inlet and apical volumes were more reproducible than the outlet. The method is fully
automatic, and therefore we expect that this variability will be reduced with technical
improvements on automatic RV segmentation and noise reduction.

5. Conclusions

RV dilatation with preserved function is part of the physiological response to pro-
longed mixed exercise in both linemen and non-linemen athletes when assessed during
their inter-seasonal training program. The RV adaptation was global with prominent
contributions of the apical and outlet segments. Although the 3D parcellation technique
might provide additional information on the physiological RV remodeling, further studies
are needed to assess the clinical feasibility of this method in larger cohorts.
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