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Abstract: With the improvement of the performance of optical equipment carried by on-orbit space-
craft, the requirements of vibration isolation are increasing. Passive isolation platforms are widely
used, but the ability to suppress the low-frequency deterministic vibration disturbance is limited,
especially near the system’s natural frequency. Therefore, an active vibration control strategy is
proposed to improve passive isolation performance. In this paper, a Youla parameterized adaptive
active vibration control system is introduced to improve the isolation performance of a piezo-actuated
active–passive isolation structure. A linear quadratic Gaussian (LQG) central controller is first de-
signed to shape the band-limited local loop of the closed-loop system. Then, the central controller is
augmented into a Youla parameterized adaptive regulator with the recursive least square adaptive
algorithm, and the Youla parameters (Q parameters) can be adjusted online to the desired value to
suppress the unknown and time-varying multifrequency deterministic vibration disturbance. In
the experiment, the residual vibration with respect to the combination of multiple frequencies is
effectively suppressed by more than 20 dB on average, and a quick response time of less than 0.3 s is
achieved when the deterministic residual vibration changes suddenly over time. The experimental
results illustrate that the proposed adaptive active vibration control system can effectively suppress
the low-frequency deterministic residual vibration.

Keywords: adaptive vibration control; unknown and time-varying; deterministic vibration; Youla
parameterized; piezo-actuated structure

1. Introduction

With the improvement of the performance of optical equipment carried by on-orbit
spacecraft, the requirement of vibration isolation on the space instrument platform is
increasing in the space microgravity environment. For example, the vibration caused by
the mass imbalance of the momentum wheels should be suppressed to a micrometers level
to ensure the image quality of satellites [1]. The main vibration disturbance of on-orbit
spacecraft is often caused by reaction/momentum wheel assemblies [2]. Additionally, with
the introduction of the large flexible appendage systems of spacecraft with a cantilever
structure, such as solar panel, communication antenna, and space robotic arm, the resonant
mode may be excited during the operation of the flexible system, and the determinis-
tic vibration disturbance will be formed [3]. Particularly, the static imbalance, dynamic
imbalance, and bearing imperfection of assemblies will excite a large amplitude deter-
ministic vibration disturbance [4]. These deterministic vibration disturbances will have
multifrequency and time-varying characteristics, mainly distributed in the low-frequency
range below 150 Hz [5], and even ultralight and large size flexible structures may produce
vibration around 10 Hz [6].

To suppress the vibration disturbance from the base of the optical equipment place-
ment platform, the passive isolation platform is widely used to carry the precision optical

Appl. Sci. 2021, 11, 3338. https://doi.org/10.3390/app11083338 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-4119-1125
https://orcid.org/0000-0003-1756-1405
https://orcid.org/0000-0002-8019-6765
https://doi.org/10.3390/app11083338
https://doi.org/10.3390/app11083338
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11083338
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/8/3338?type=check_update&version=1


Appl. Sci. 2021, 11, 3338 2 of 17

equipment on spacecraft [2]. With the higher performance requirement of vibration iso-
lation, the limitations of the passive isolation platform have made the active vibration
control system more attractive [7]. One of the limitations that cannot be ignored is that
the low-frequency deterministic vibration disturbance is not sufficiently isolated, and
especially near the system natural frequency of the isolation system, the disturbance may
be amplified [8]. Moreover, there is an unavoidable design contradiction between the
structural bearing capability and low-frequency vibration isolation. Therefore, some ac-
tive vibration control strategies are proposed to improve the low-frequency vibration
isolation performance.

Among many vibration isolation platforms on spacecraft, the Stewart-like parallel
kinematic platform not only has advantages of stability, high precision, and high payload-
bearing capability, but also can provide support for different active control methods, and
the related vibration isolation systems have been discussed in reference [9]. The key to
the isolation performance of the Stewart-like platform is the design of the single support
axis vibration isolation system [10]. Therefore, this paper will focus on the design of an
adaptive active control system for the single-axis isolation structure, which can be used to
suppress the low-frequency unknown deterministic residual vibration with multifrequency
and time-varying characteristics. Generally, the main methods of active vibration control
(AVC) are feedforward and feedback control.

Feedforward control directly uses the reference signal of the vibration source to
eliminate the residual vibration. Elliott et al. discussed the characteristics of feedforward
and feedback systems for the active vibration control, and pointed out that the feedforward
system relies on the existence of some prior knowledge of the vibration disturbance to
be controlled, and the prior knowledge is contained in a reference signal that drives the
secondary source through the controller [11]. Liu et al. present a novel feedforward control
algorithm with the orthogonal pair-wise reference frequency regulator, and the multiple-
frequency vibration was dramatically suppressed with an improved convergence rate [12].
An adaptive feedforward vibration control system with variable step size is developed in
Reference [13], which was successfully implemented to suppress the vibration of a kind of
thin-walled structure. As long as the frequency of the reference signal obtained through the
sensor is accurate enough, the feedforward control can realize the effective compensation
of residual vibration. However, in some cases, the reference signal of the vibration source
is difficult to obtain accurately, which will degrade the feedforward control performance.
Feedback control only needs to detect the residual vibration of the controlled object, without
paying attention to the source of vibration. Reference [14] presented an investigation
on the performance of active vibration control of the rib-stiffened plate by using only
residual velocity feedback signal. An adaptive feedback control system is designed for the
unknown vibration disturbance suppression of a lathe system in Reference [15], in which
an adaptive algorithm is introduced to adjust the feedback controller in real time according
to the unknown residual acceleration feedback signal. Besides, compared with feedback
control, feedforward control will use more sensors that will not be conducive to the light
weight and reliability of the vibration isolation system. Therefore, feedback control should
be considered.

The control approaches of lead/lag, H∞, and linear quadratic Gaussian (LQG) are
common feedback controls for AVC systems. Thenozhi and Yu applied the proportion
integral differential(PID) control approach to active vibration control of building struc-
tures and analyzed the system stability [16]. Montazeri et al. designed an optimal robust
minimax LQG controller by the proper choice of the weight parameters and applied it
to the vibration control of flexible beams [17]. Song et al. developed an H∞ controller to
suppress frequency-varying vibration disturbances of the floating raft isolation system [18].
Wu studied a simultaneous mixed LQR/H∞ control approach based on the vibration sup-
pression of quarter-car active suspension systems [19]. The feedback controller mentioned
above reduces the sensitivity function of the desired frequency range by obtaining a high
open-loop gain, and then realizes the vibration suppression in the corresponding frequency
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range. However, Bode’s sensitivity integral theorem indicates that the sensitivity function
S(jw) should satisfy

∫ ∞
0 ln|S(jw)| dw = 0 for the stable plant, and the area of sensitivity

reduction (ln|S| negative) should equal the area of sensitivity increase (ln|S| positive) [20].
For the active vibration control system, the concrete manifestation is that the vibration will
be inevitably amplified outside the frequency range where the vibration is expected to be
suppressed, which is also known as the “waterbed effect”. In addition to this important lim-
itation, if the open-loop gain is too high, it will also reduce the phase margin and decrease
the robustness. Therefore, these controllers cannot completely suppress the deterministic
vibration disturbance, especially with multifrequency and time-varying characteristics.

The feedback control based on the disturbance observer (DOB) [21] and the internal
model principle (IMP) [22] is an effective solution for the suppression of deterministic
vibration disturbances. The related feedback control methods based on the DOB were com-
pared and summarized in Reference [23], and the design of the DOB was comprehensively
analyzed. The reference indicated that the key to the design of the feedback control system
based on the DOB is the selection of its low-pass filter with a proper cutoff frequency,
which is related to the external disturbance’s property. When the disturbance changes in
a wide range due to time-varying, the disturbance suppression effect is limited. Cai et al.
designed a zero-phase odd repetitive controller that was used for the suppression of deter-
ministic vibration in a magnetically suspended centrifugal compressor based on IMP [24].
The repetitive control system is to implant the dynamic model of external interference
signal into the closed-loop system to realize the suppression of known deterministic vibra-
tion disturbance. It can be seen that when the disturbance is time-varying, the dynamic
model of disturbance will also change, and it will be difficult for the original repetitive
control system to suppress the new disturbance. Recently, a novel compensator capable
of minimum-time performance of an in-plane maneuver with zero residual vibration and
zero residual vibration-derivative at the end of the maneuver is proposed in Reference [6].
The novel compensator has a whiplash nature of first commanding maneuver states in
the opposite direction of the desired end state to achieve the minimum-time performance
of the robot manipulation. However, the control performance subjected to the external
unknown vibration disturbances needs to be further evaluated.

Reference [25] summarized the latest development and application of the Youla pa-
rameterization method, in which the parameterization process of the control system is
analyzed in detail. The direct or indirect adaptive disturbance suppression algorithm
based on Youla parameterization was compared and analyzed in Reference [26], which
indicated that the parameterization of the controller is beneficial to the combination of
adaptive algorithm. It can be seen that the model of vibration disturbances can be inserted
in the controller by the Youla parameterization method; by augmenting the free param-
eter Q ∈ RH∞, the parameterized controller is designed as a global stable controller that
can fit almost any dimension internal model of the multifrequency vibration disturbance.
The adaptive algorithm can be introduced to adjust the free parameter Q of the resulting
parameterized controller online according to the vibration disturbance, so the unknown
or time-varying deterministic vibration disturbance will be gradually eliminated. Ben
Amara et al. designed a Youla parameterized adaptive controller to realize the elimina-
tion of the sinusoidal noise disturbance in an acoustic duct [27]. Wu et al. modified the
Youla parameterized controller with an adaptive notch filter to compensate for the airflow
disturbance and vibration of the disk in the data storage system [28]. However, in this
paper, the suppression of the low-frequency deterministic vibration and the band-limited
local loop shaping of the closed-loop system near the system’s natural frequency will be
considered simultaneously. Therefore, an observer-based state feedback central controller
with an augmented Q parameter will be introduced. The central controller will be de-
signed to shape the band-limited local loop of the closed-loop system, and the augmented
Youla (Q) parameterized controller will be adjusted online to eliminate the low-frequency
deterministic vibration.
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The Youla (Q) parameterized adaptive active vibration controller is designed in two
steps. The inner-loop central controller is a linear quadratic Gaussian (LQG) controller that
is used to shape the band-limited local loop of the closed-loop system near the system’s
natural frequency. Then, by augmenting the LQG controller, the Youla parameterized
adaptive controller with the recursive least square (RLS) adaptive algorithm is formulated
to completely suppress the deterministic residual vibration. The proposed adaptive active
vibration control method is applied to the piezo-actuated active–passive isolation structure.
The experimental results illustrate that the proposed adaptive active vibration control
method can effectively optimize the vibration transmissibility curve near the system’s nat-
ural frequency and suppress the unknown and time-varying low-frequency deterministic
residual vibration.

This paper is organized as follows. The piezo-actuated active–passive isolation struc-
ture is analyzed in Section 2. Section 3 is devoted to the design of the active vibration
controller which is an adaptive regulator with the central controller and adjustable free Q
parameter. The proposed active vibration controller is applied to eliminate the vibration
of the piezo-actuated active–passive isolation structure and the experiment results are
evaluated in Section 4. Section 5 concludes the paper with a summary.

2. Analysis of a Piezo-Actuated Active–Passive Isolation Structure
2.1. Piezo-Actuated Active–Passive Isolation Structure Layout

As shown in Figure 1, the piezo-actuated active–passive isolation structure is an
improvement based on the stiff active damping structure [29], which can be applied as the
support axes of the multi-DOF Stewart platform with a cubic hexapod configuration [30].
The payload plate and base plate of the Stewart platform are connected with the isolation
structures via flexible joints which are used to avoid the influence of backlash and friction
caused by the conventional joints. The piezoelectric actuator is used to execute the control
output and the force sensor is adopted for the detection of residual vibration signal e, which
consists of a local force feedback system for active vibration control. The actuator and
sensor are connected through a passive unit which is designed by a metal spring with a
special structure to isolate the vibration source disturbance. The disturbance generated
by the vibration source is transmitted to the force sensor through the passive unit, which
leads to the residual vibration, and the primary path is formed from the vibration source
to the force sensor. Then, the piezoelectric actuator actively compensates for the residual
vibration feedback from the force sensor to form the secondary path.
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Figure 1. Structural diagram of a piezo-actuated active–passive isolation structure.

The piezo-actuated active–passive isolation structure can be equivalent to a single
degree of freedom (DOF) dynamic model, then the dynamic model of the multi-DOF
Stewart platform with the cubic hexapod configuration can be derived via the topological
transformation of the Jacobi matrix. The cubic hexapod configuration is that six single
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supporting axes form a cube, and the two adjacent axes are orthogonal in space. Since
the displacement of each active strut caused by microvibration is very small and the
coupling between two adjacent axes is also small, the Jacobi matrix can be assumed to be
invariant [10]. Meanwhile, the cubic hexapod configuration can realize the decoupling
of geometric configuration and minimize the cross-coupling force effect of each axis. It
can be seen that when the vibration isolation system is subjected to microvibration, the
dynamics of the multi-DOF Stewart platform can be decoupled into six approximately
identical independent single-DOF systems. Therefore, in order to control the vibration of
the multi-DOF Stewart platform, in this paper, an adaptive active vibration controller is
proposed for the single-DOF piezo-actuated active–passive isolation structure.

The piezo-actuated active–passive isolation structure occupies little space, which is
beneficial to the vibration isolation of the aerospace field. However, the structure consists
of the flexible rod, the special-shaping spring, and the piezoelectric actuator in series; the
dynamic behavior of each part is superimposed, which will make the isolation structure
form a complex high-order dynamic system with multiple zeros and poles. Moreover, the
deterministic vibration disturbance of on-orbit spacecraft has a time-varying characteristic.
Therefore, an adaptive active vibration control system will be introduced based on the
Youla parameterization approach.

2.2. Adaptive Active Vibration Control System Formulation

As shown in Figure 2, an adaptive active vibration control system is designed and
applied to the piezo-actuated active–passive isolation structure. The deterministic residual
vibration signal wd of the primary path causes the error signal e which characterizes the
vibration of the payload, and the control signal u of the adaptive regulator drives the
actuator to act on the second path to compensate the wd actively.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 19 
 

Stewart platform with the cubic hexapod configuration can be derived via the topological 
transformation of the Jacobi matrix. The cubic hexapod configuration is that six single 
supporting axes form a cube, and the two adjacent axes are orthogonal in space. Since the 
displacement of each active strut caused by microvibration is very small and the coupling 
between two adjacent axes is also small, the Jacobi matrix can be assumed to be invariant 
[10]. Meanwhile, the cubic hexapod configuration can realize the decoupling of geometric 
configuration and minimize the cross-coupling force effect of each axis. It can be seen that 
when the vibration isolation system is subjected to microvibration, the dynamics of the 
multi-DOF Stewart platform can be decoupled into six approximately identical independ-
ent single-DOF systems. Therefore, in order to control the vibration of the multi-DOF 
Stewart platform, in this paper, an adaptive active vibration controller is proposed for the 
single-DOF piezo-actuated active–passive isolation structure. 

The piezo-actuated active–passive isolation structure occupies little space, which is 
beneficial to the vibration isolation of the aerospace field. However, the structure consists 
of the flexible rod, the special-shaping spring, and the piezoelectric actuator in series; the 
dynamic behavior of each part is superimposed, which will make the isolation structure 
form a complex high-order dynamic system with multiple zeros and poles. Moreover, the 
deterministic vibration disturbance of on-orbit spacecraft has a time-varying characteris-
tic. Therefore, an adaptive active vibration control system will be introduced based on the 
Youla parameterization approach. 

2.2. Adaptive Active Vibration Control System Formulation 
As shown in Figure 2, an adaptive active vibration control system is designed and 

applied to the piezo-actuated active–passive isolation structure. The deterministic resid-
ual vibration signal wd of the primary path causes the error signal e which characterizes 
the vibration of the payload, and the control signal u of the adaptive regulator drives the 
actuator to act on the second path to compensate the wd actively. 

 
Figure 2. The adaptive active vibration control system. 

The proposed adaptive active vibration control method does not require the model 
of the vibration source signal and the primary path so that the above system is simplified 
as shown in Figure 3. The K(Q) represents the controller corresponding to the shadow 
region in Figure 2 and the P represents the second path. The error signal e is used as the 
feedback signal, and the control signal u acts directly on the P, then the system can be 
further simplified. 

 

Secondary path Actuator    Controller 

Adaptation algorithm 

-  

+ u 

Vibration source Primary path 

e 

wd 

 

wd 

K(Q) 
- 

+ u P   

wd  

u 

e 

K(Q)  

G   
e 

Figure 2. The adaptive active vibration control system.

The proposed adaptive active vibration control method does not require the model
of the vibration source signal and the primary path so that the above system is simplified
as shown in Figure 3. The K(Q) represents the controller corresponding to the shadow
region in Figure 2 and the P represents the second path. The error signal e is used as the
feedback signal, and the control signal u acts directly on the P, then the system can be
further simplified.
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The discrete-time system model G represented in state space can be written as:

G :
{

x(k + 1) = Ax(k) + Bu(k), x(0) = x0
e(k) = Cex(k) + wd(k) + v(k)

(1)

where v(k) is the measurement noise, and the unknown multifrequency or time-varying
deterministic residual vibration signal wd can be described as:

wd(k) =
n

∑
`=1

A`(k) cos(ω`(k)k + φ`(k)) (2)

with unknown or time-varying amplitude A`, frequency ω` and phase φ`, and ` =
1 · · · · · · n.

3. Design of Adaptive Active Vibration Controller
3.1. Design of the Inner-Loop Central Controller

As shown in Figure 3, the feedback controller K without the Q parameter is the inner-
loop central controller. The controller K is designed as an LQG controller to shape the
band-limited local loop of the closed-loop system. Let wb(k) represent the band-limited
signal near the system natural frequency, thus the reference model can be expressed under
the white noise signal wn(k) as:

Σb :
{

xb(k + 1) = Abxb(k) + Bbwn(k), xb(0) = xb,0
wb(k) = Cbxb(k)

(3)

Correspondingly, system (1) can be extended to

Σ :

{
x̃(k + 1) = Ãx̃(k) + B̃u(k) + Ẽxw(k), x̃(0) = x̃0
e(k) = C̃e x̃(k) + Ẽew(k) + v(k)

(4)

where x̃(k) =

[
x(k)
xb(k)

]
, Ã =

[
A 0
0 Ab

]
, B̃ =

[
B
0

]
, Ẽx =

[
0 0
0 Bb

]
, C̃e =[

Ce Cb
]
, Ẽe =

[
1 0

]
, w =

[
wd(k) wn(k)

]T .
The observer-based state feedback controller for the system (4) can be given as:

K :
{

x̂(k + 1) = Ãx̂(k) + B̃u(k) + L(ŷ(k)− y(k)), x̂(0) = x̂0
u(k) = Fx̂(k),

(5)

where x̂(k) is an estimate of the state vector x̃(k), F represents the state feedback gain, and
L represents the observer gain.

The optimal state feedback gain F is obtained according to the quadratic optimal
control method, and the observer gain L is determined by the Kalman filter method. Then
the band-limited local loop of the closed-loop system will be shaped by selecting the
appropriate weight parameters of the LQG controller.

3.2. Youla Parameterization of the Inner-Loop Central Controller

The central controller cannot completely suppress the low-frequency deterministic
residual vibration, especially with multifrequency and time-varying characteristics. Then,
the Youla parameterized controller is formulated by augmenting the central controller with
the Q parameter based on the internal model principle (IMP), and the adaptive algorithm is
developed to online tune the free Q parameter according to the variable residual vibration.

The Youla parameterization of the controller consists of the interconnection of two
blocks: a fixed block J and a stable system Q that can be chosen as desired [31].
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The J block can be written as:

J :


x̂(k + 1) = (Ã + B̃F + LC̃y)x̂(k)− Ly(k) + B̃yQ(k) x̂(0) = x̂0
u(k) = Fx̂(k) + yQ(k)
y(k)− ŷ(k) = y(k)− C̃y x̂(k),

(6)

The Q block can be written as:

Q :
{

xQ(k + 1) = AQxQ(k) + BQ(y(k)− ŷ(k)), xQ(0) = xQ,0
yQ(k) = CQxQ(k)

(7)

Then, the Youla parameterized controller K(Q) consists of two interconnected blocks J
and Q as shown in Figure 4.
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To realize the design of the adaptive regulator, the augmented plant G and the con-
troller J are integrated into T as shown in Figure 5.
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Therefore, T can be represented as follows:[
e(k)

y(k)− ŷ(k)

]
= T

[
w(k)
yQ(k)

]
(8)

where

T =

[
T11 T12
T21 T22

]
(9)

T11 :

Ã + B̃1F B̃F Ẽx

0 Ã + LC̃e −Ẽx − LẼe

C̃e 0 Ẽe

 (10)

T12 :

[
Ã + B̃F B̃

C̃e 0

]
(11)

T21 :

[
Ã + LC̃e −Ẽx − LẼe

−C̃e Ẽe

]
(12)

T22 :

[
Ã + LC̃e 0
−C̃e 0

]
(13)
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Let W(z) and E(z) denote the Z transform of the disturbance input w and the system
error e. The closed-loop transfer function from w to e can be obtained by linear fractional
transformation as follows:

E(z) = [T11(z) + T12(z)Q(z)T21(z)]W(z) (14)

To adjust the adaptive regulator for multifrequency deterministic residual vibration
and take into account the stability requirement of the closed-loop system, the Q parameter
is considered as:

Q(z) =
nq

∑
q=1

θqz1−qF(z) (15)

where F(z) = b1zm−1+···bm
zm+a1zm−1+···am

is a stable weighting function used to adjust the dynamic
properties of Q(z). By properly choosing F(z), the robustness of the closed-loop system
can be improved.

According to the internal model principle, let θ =
[

θ1 θ2 · · · θnq−1 θnq

]T
be

the free parameter, then the attenuation conditions of the deterministic residual vibration
can be written as follows [32]:

Aθθ + Bθ = 0 (16)

where

Aθ =


V1,re(p1) · · · Vnq ,re(p1)

V1,im(p1) · · · Vnq ,im(p1)
... · · ·

...
V1,re(pk0) · · · Vnq ,re(pk0)

V1,im(pk0) · · · Vnq ,im(pk0)

 (17)

Bθ =


V0,re(p1)
V0,im(p1)

...
V0,re(pk0)
V0,im(pk0)

 (18)

where Aθ ∈ Rnp×nq , Bθ ∈ Rnp×1, np = 2k0, k0 is the number of pairs of complex conjugate
poles of the multifrequency deterministic disturbances.V1,re(pj) and V1,im(pj) denote the
real and imaginary parts of the functions V1(pj), respectively. V0,re(pj) and V0,im(pj)
denote the real and imaginary parts of the functions V0(pj), respectively, j = 1, · · · , k0.
pj denote the poles of disturbance W(z), and nq ≥ k0. V1(z) and V0(z) are given by
V1(z) = T12(z)z1−qF(z)T21(z) and V0(z) = T11(z).

According to the condition (16), the corresponding θ can be found to eliminate mul-
tifrequency deterministic residual vibration. However, it cannot ignore the fact that the
deterministic residual vibration also has unknown or time-varying characteristics, so that
the adaptive algorithm is developed to tune θ online and converges to the target parameter,
then the system achieves the elimination of the unknown multifrequency or time-varying
deterministic residual vibration.

3.3. Adaptation Algorithm

Let z−l denote the l time step delay operator, based on (14), then the system error e(k)
is given by

e(k) =
[

T11(z−1) + T12(z−1)QkT21(z−1)
]
w(k) (19)

where Qk = QkF(z−1) and Qk =
nq

∑
q=1

θq(k−1)z1−q.
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According to (8), let
r(k) = T21(z−1)w(k) (20)

Then, (19) can be represented as follows:

e(k) = T11(z−1)w(k) + T12(z−1)QkF(z−1)r(k) (21)

Let θ∗ be a constant parameter satisfying the interpolation condition (16) and Q∗ be
the Q parameter that results from θ∗. The corresponding system error can be then written
as:

e∗(k) = T11(z−1)w(k) + Q∗T12(z−1)F(z−1)r(k) (22)

at the same time lim
k→∞

e∗(k) = 0.

Define a nominal system error:

ẽ(k) = T11(z−1)w(k) + QkT12(z−1)F(z−1)r(k) (23)

Then, combined with (22), we have that:

ẽ(k) = φT(k)θ̃(k− 1) + e∗(k) (24)

where
φ(k) =

[
−υ(k) · · · − υ(k− nq + 1)

]T (25)

θ̃(k) =
[
(θ∗,1 − θ1(k)) · · ·

(
θ∗,nq − θnq(k)

)]T
(26)

υ(k) = T12(z−1)F(z−1)r(k) (27)

Based on (24) and lim
k→∞

e∗(k) = 0, it is not difficult to find that the ẽ(k) can be obtained

by r(k), which can be calculated at each step through the J block based on the measurement
value of system output y(k), therefore, the ẽ(k) is no longer restricted by the unknown w(k).

According to (24), the estimated θ̂ of θ can be performed using the recursive least
squares algorithm (RLS) with a forgetting factor λ(k) as the following expressions:

θ̂(k) = θ̂(k− 1) +
P(k− 1)φ(k)

1 + φT(k)P(k− 1)φ(k)
ẽ(k) (28)

P(k) =
1

λ(k)

[
P(k−1)− P(k−1)φ(k)φT(k)P(k−1)

1 + φT(k)P(k−1)φ(k)

]
(29)

with the initial values of θ̂(0) = 0, P(0) > 0, and λ(k) which can be valued in 0.95~1 for
the linear time-invariant system.

Based on lim
k→∞

e∗(k) = 0, it should be noted that the e∗(k) does not influence the

convergence result of (28) and (29). At the same time, consider F(z−1) and T12(z−1) are all
stable, we can have that the φ(k) is bounded under the persistent excitation of the bounded
vibration signal w(k) based on (20), (25), and (27). Therefore, the sufficient condition of
the stability of the algorithm (28) and (29) is satisfied according to the strictly positive real
condition [33], and we can have lim

k→∞
θ̂(k) = θ∗. The θ∗ corresponding to the w(k) satisfies

the interpolation condition (16), then the closed-loop system achieves the elimination of
the unknown multifrequency or time-varying deterministic residual vibration.

4. Experiment
4.1. Description of the Experimental System

As shown in Figure 6, a suspension installation is adopted such that the base platform
and payload platform are connected to a hanging rope to simulate the space microgravity
environment, and the vibration generator is connected to the base platform. The vibration
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disturbance signal is generated by PC-based MATLAB/Simulink Real-Time Windows
Target and drives the vibration generator through the port AO-2 of the NI PXI6363 AD/DA
card, and the system primary path is formed from the vibration generator to the force sensor.
According to the force sensor feedback signal of the port AI-1, the active control signal of
the adaptive regulator is implemented through the port AO-1 to drive the piezoelectric
actuator, and the second path is formed from the piezoelectric actuator to the force sensor.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 19 
 

Target and drives the vibration generator through the port AO-2 of the NI PXI6363 
AD/DA card, and the system primary path is formed from the vibration generator to the 
force sensor. According to the force sensor feedback signal of the port AI-1, the active 
control signal of the adaptive regulator is implemented through the port AO-1 to drive 
the piezoelectric actuator, and the second path is formed from the piezoelectric actuator 
to the force sensor. 

 
Figure 6. Schematic block diagram of the experimental setup configuration. 

A real-time active vibration control experimental system is established as shown in 
Figure 7. A charge amplifier (model BZ2105) is responsible for charge amplification of the 
force sensor (model KF24), and a drive power (model E00.A6) is used to drive the piezo-
electric actuator (model P06.X60AK). A vibration generator (model JZ-2) is driven by a 
power amplifier (model GF-50) and performs the excitation signal which is generated 
from the port AO-2. 

Figure 6. Schematic block diagram of the experimental setup configuration.

A real-time active vibration control experimental system is established as shown in
Figure 7. A charge amplifier (model BZ2105) is responsible for charge amplification of
the force sensor (model KF24), and a drive power (model E00.A6) is used to drive the
piezoelectric actuator (model P06.X60AK). A vibration generator (model JZ-2) is driven by
a power amplifier (model GF-50) and performs the excitation signal which is generated
from the port AO-2.

The vibration characteristics and stability of the flexible structure can be analyzed
by establishing the dynamic differential equation and the corresponding boundary condi-
tions [34]. For example, a new way to develop the stability model for the straight turning
of a cylindrical flexible workpiece using the Chebyshev collocation method is presented
recently, in which the model is described by delay differential equations [35]. Considering
that the piezo-actuated active–passive vibration isolation system in this paper is a dynamic
problem of multibody flexible system, the system identification method is used to obtain
the high-order dynamic model with multiple zeros and poles.

The transfer function of the system’s secondary path will be obtained by the system
identification method; it is used to design the adaptive active vibration controller. The
sampling frequency is selected as 2000 Hz and the excitation signal of the piezoelectric
actuator is the chirp signal with a frequency from 1 to 1000 Hz. Then, according to the input
and output signal of the secondary path, the transfer function is identified as a fifty-order
model. The Bode diagram of the system’s secondary path is shown in Figure 8.
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4.2. Test Results of H∞ Control

In the following, the well-known H∞ optimal feedback control approach is first de-
signed and evaluated. The H∞ control algorithm for the suppression of external disturbance
can be realized by selecting the appropriate weighting functions [18]. In this paper, the
H∞ controller is designed using the augw and hinfsyn functions in MATLAB based on the
identified model. Considering the deterministic vibration disturbance with frequencies
[35-70-105] Hz, the weighting functions We on the output e and Wu on the control input u
are selected as:

We =
0.001567z6 − 0.004701z4 + 0.004701z2 − 0.001567

z6 − 5.409z5 + 12.28z4 − 15z3 + 10.38z2 − 3.863z + 0.6041
(30)

Wu =
0.007772z6 − 0.04587z5 + 0.1136z4 − 0.1509z3 + 0.1136z2 − 0.04587z + 0.007772

z6 − 5.409z5 + 12.28z4 − 15z3 + 10.38z2 − 3.863z + 0.6041
(31)
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The corresponding Bode plots of the two weight functions are shown in Figure 9.
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Figure 10 illustrates the system time-domain response of the deterministic vibration
disturbance with frequencies [35-70-105] Hz, and Figure 11 illustrates the corresponding
power spectral density(PSD) estimate. It can be seen that the H∞ active vibration control
system cannot effectively suppress the deterministic vibration disturbance at the frequen-
cies [35-70-105] Hz and only a vibration suppression around 10 dB on average is achieved.
Although the smaller H∞ norm can be obtained by decreasing the gain of the weight
function Wu, the space for the control performance enhancement is limited. This is mainly
due to the fact that the smaller gain of the weight function Wu will decrease the robustness
of the closed-loop system and amplify the out-band noise, which has shown the instability
of the closed-loop system in the actual physical conditions.
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closed loop (red) of the H∞ active vibration control system.
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4.3. Analysis of Experimental Results

1. Vibration transmissibility of the piezo-actuated active–passive isolation structure
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The experimental analysis of the frequency response of the system’s primary path
is shown in Figure 12. The solid line represents the vibration transmissibility curve of
the open-loop (passive) state. Although under the action of the passive unit, the isolation
structure has an obvious suppression effect on the high-frequency vibration disturbance; it
can be seen that the isolation structure has a limited isolation effect on the low-frequency
vibration disturbance, and even the vibration will be suddenly amplified near the system
natural frequency.
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Figure 12. The frequency response of the primary path with (dashed line) and without (solid line)
inner-loop LQG controller.

The dashed line represents the vibration transmissibility curve of the closed-loop
system with only the inner-loop LQG controller when the adaptive algorithm is turned
off. The state feedback gain F and the observer gain L are obtained using the dlqr and
Kalman function in MATLAB, respectively. Compared with the open-loop state, under the
action of the inner-loop LQG controller, the band-limited local loop shaping of the closed
system has successfully attenuated the vibration transmissibility curve around the system’s
natural frequency.

As mentioned in the introduction, the reaction and momentum wheel assemblies of the
on-orbit spacecraft will generate variable low-frequency deterministic disturbances. Then,
the Youla parameterized controller which is formulated by augmenting the LQG controller
will be further used to perfectly suppress the unknown deterministic residual vibration.

In the following cases of the experiment, the Q parameter in the controller is chosen

as Q(z) =

(
6
∑

q=1
θqz1−q

)
F(z), where the F(z) is a low-pass filter with the corner frequency

at 150 Hz. In the adaption algorithm, the U-D factorization algorithm is used to im-
prove the numerical properties of the algorithm in (28)–(29), and the initial conditions are
P(0)= 1000I6×6 and λ(k)= 0.99.

2. Deterministic residual vibration suppression

Two experiment cases are carried out to verify the effectiveness of the adaptive active
vibration controller. For case one, a deterministic disturbance at three different frequencies
is suppressed to verify the effectiveness of the regulator to multifrequency deterministic
residual vibration. The attenuation performance for the deterministic disturbance with
step changes in frequencies is evaluated in case two.

Case one: deterministic disturbance at three different frequencies

According to the adaptive regulator already designed, nq = 6 indicates that three
different frequencies of deterministic vibration disturbances can be suppressed. Then a
deterministic residual vibration is excited by 35 Hz, 70 Hz, and 105 Hz sinusoidal signals
with frequency doubling property which is widely found in spacecraft. Figure 13 illustrates
the system time-domain response for the case of a residual vibration with frequency [35-70-
105] Hz, and Figure 14 illustrates the corresponding PSD estimate. The residual vibration
with three frequencies is suppressed by more than 20 dB on average, and the relevant
quantitative results can be found in Table 1. The parameter θ̂ of the experimental results
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of the adaptive closed-loop control system is shown in Figure 15. The results in these
three figures clearly illustrate the capability of the regulator in dealing with multifrequency
deterministic residual vibration.
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Figure 13. Time-domain residual vibration with frequencies [35-70-105] Hz in open loop (black) and
closed loop (red) of the adaptive active vibration control system.
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Figure 14. Frequency-domain residual vibration with frequencies [35-70-105] Hz in open loop (black)
and closed loop (red) of the adaptive active vibration control system.

Table 1. Steady-state standard deviations (σ) of residual vibration for different experimental cases.

Case One Case Two
Controller State [35-70-105] Hz [60–65] Hz [40–55] Hz [55–60] Hz

On (σ) 0.0077 V 0.0061 V 0.0081 V 0.0089 V
Off (σ) 0.1000 V 0.0860 V 0.0690 V 0.1014 V

20lg(On/ Off) –22.27 dB –22.98 dB –18.61 dB –21.13 dB

Case two: deterministic disturbance of step changes in frequencies

The time-domain result of the adaptive active vibration control system for the de-
terministic residual vibration of step changes in frequencies is shown in Figure 16. The
sequence of frequencies is as follows: [60–65] Hz→ [40–55] Hz→ [55–60] Hz, and each pair
of disturbances is applied for a period of 5 s. The parameter θ̂ of the experimental results
of the adaptive closed-loop control system is shown in Figure 17. When the deterministic
vibration disturbance changes at 5 s and 10 s, the parameter θ̂ is tuned online and con-
verges to the new target parameter according to the new deterministic residual vibration
model. The results in Figures 16 and 17 indicate that the adaptive algorithm can suppress
unknown or time-varying deterministic residual vibration, even if the properties of the
residual vibration change suddenly over time. The corresponding quantitative results of
Figure 16 can be found in Table 1.
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the adaptive active vibration control system.
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Figure 16. Time-domain residual vibration with step changes at frequencies [60–65] Hz→ [40–55] Hz
→ [55–60] Hz in open loop (black) and closed loop (red) of the adaptive active vibration control system.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 19 
 

 

Figure 17. Time-domain θ̂  of the residual vibration with step changes at frequencies [60–65] Hz
→ [40–55] Hz → [55–60] Hz in open loop of the adaptive active vibration control system. 

5. Conclusions 
An adaptive active deterministic vibration control approach is applied to a piezo-

actuated active–passive isolation structure as part of the Stewart platform. Experimental 
results illustrate that the piezo-actuated active–passive isolation system with the pro-
posed adaptive controller can effectively suppress the deterministic vibration disturbance. 
The main contributions of this paper are: 

A piezo-actuated active–passive vibration isolation system with active adaptive vi-
bration control and passive vibration isolation is proposed, which integrally combines the 
advantages of active and passive vibration suppression. 

A Youla (Q) parameterized adaptive vibration control approach is developed. Firstly, 
an optimal LQG central controller is designed to shape the band-limited local loop of the 
closed-loop system. Then the central controller is further augmented to formulate a Youla 
parameterized outer-loop controller that can be designed to satisfy the internal model 
principle for the external deterministic disturbances. 

An online adjustable adaptive algorithm is developed to tune the Q parameter to the 
desired values so that the interpolation condition for the internal model principle can be 
satisfied when the external disturbances are unknown and time varying.  

The proposed vibration control method is experimentally evaluated in a piezo-actu-
ated active–passive isolation structure. The experimental results illustrate that the pro-
posed adaptive vibration controller can effectively attenuate the unknown and time-var-
ying deterministic vibrations with a more than 20 dB suppression on average. 

In the future, the proposed control approach will be further tested on the Stewart 
platform with the multi-DOF piezo-actuated active–passive isolation structure and ap-
plied in the satellite vibration isolation platform. 

Author Contributions: Conceptualization, Z.W., H.P., F.L., and Y.S.; methodology, F.L., Y.S., F.Q., 
M.W, J.D., and Y.S.; software, F.L., Y.S., and F.Q.; validation, F.L. and Y.S.; formal analysis, F.L. and 
Y.S.; investigation, Z.W., H.P., F.L., and Y.S.; resources, Z.W. and H.P.; data curation, F.L. and Y.S.; 
writing—original draft preparation, F.L.; writing—review and editing, Z.W., H.P., and Y.S.; visual-
ization, F.L., S.Y., and F.Q.; supervision, Z.W. and H.P.; project administration, Z.W. and H.P.; fund-
ing acquisition, Z.W. and H.P. All authors have read and agreed to the published version of the 
manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (grant 
numbers 52075315, 51675321, 91748116, 61922053). 

Institutional Review Board Statement: Not applicable.  

Informed Consent Statement: Not applicable.  

Data Availability Statement: The data presented in this study are available on request from the 
corresponding author.  

60-65Hz     40-55Hz     55-60Hz     

Figure 17. Time-domain θ̂ of the residual vibration with step changes at frequencies [60–65] Hz→
[40–55] Hz→ [55–60] Hz in open loop of the adaptive active vibration control system.

5. Conclusions

An adaptive active deterministic vibration control approach is applied to a piezo-
actuated active–passive isolation structure as part of the Stewart platform. Experimental
results illustrate that the piezo-actuated active–passive isolation system with the proposed
adaptive controller can effectively suppress the deterministic vibration disturbance. The
main contributions of this paper are:



Appl. Sci. 2021, 11, 3338 16 of 17

A piezo-actuated active–passive vibration isolation system with active adaptive vi-
bration control and passive vibration isolation is proposed, which integrally combines the
advantages of active and passive vibration suppression.

A Youla (Q) parameterized adaptive vibration control approach is developed. Firstly,
an optimal LQG central controller is designed to shape the band-limited local loop of the
closed-loop system. Then the central controller is further augmented to formulate a Youla
parameterized outer-loop controller that can be designed to satisfy the internal model
principle for the external deterministic disturbances.

An online adjustable adaptive algorithm is developed to tune the Q parameter to the
desired values so that the interpolation condition for the internal model principle can be
satisfied when the external disturbances are unknown and time varying.

The proposed vibration control method is experimentally evaluated in a piezo-actuated
active–passive isolation structure. The experimental results illustrate that the proposed
adaptive vibration controller can effectively attenuate the unknown and time-varying
deterministic vibrations with a more than 20 dB suppression on average.

In the future, the proposed control approach will be further tested on the Stewart
platform with the multi-DOF piezo-actuated active–passive isolation structure and applied
in the satellite vibration isolation platform.
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