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Abstract

:

An imbalanced dataset is a significant challenge when training a deep neural network (DNN) model for deep learning problems, such as weeds classification. An imbalanced dataset may result in a model that behaves robustly on major classes and is overly sensitive to minor classes. This article proposes a yielding multi-fold training (YMufT) strategy to train a DNN model on an imbalanced dataset. This strategy reduces the bias in training through a min-class-max-bound procedure (MCMB), which divides samples in the training set into multiple folds. The model is consecutively trained on each one of these folds. In practice, we experiment with our proposed strategy on two small (PlantSeedlings, small PlantVillage) and two large (Chonnam National University (CNU), large PlantVillage) weeds datasets. With the same training configurations and approximate training steps used in conventional training methods, YMufT helps the DNN model to converge faster, thus requiring less training time. Despite a slight decrease in accuracy on the large dataset, YMufT increases the F1 score in the NASNet model to 0.9708 on the CNU dataset and 0.9928 when using the Mobilenet model training on the large PlantVillage dataset. YMufT shows outstanding performance in both accuracy and F1 score on small datasets, with values of (0.9981, 0.9970) using the Mobilenet model for training on small PlantVillage dataset and (0.9718, 0.9689) using Resnet to train on the PlantSeedlings dataset. Grad-CAM visualization shows that conventional training methods mainly concentrate on high-level features and may capture insignificant features. In contrast, YMufT guides the model to capture essential features on the leaf surface and properly localize the weeds targets.






Keywords:


imbalanced dataset; deep neural network; weeds classification; Grad-CAM












1. Introduction


With the application of deep neural network (DNN) models, many computer vision problems have achieved tremendous performance in tasks such as object classification [1], object segmentation [2], object detection [3], and object localization [4]. However, the success of DNN models may depend on the quality and distribution of the labels in the dataset. As shown in [5,6,7,8,9], a DNN model (and machine learning techniques) trained on an imbalanced dataset may show poor performance on minority labels. Cao et al. [10] mentioned that large-scale datasets might have long-tailed label distributions, meaning that dataset imbalances could become problematic when samples are collected in a large-scale domain. Common approaches to addressing this problem, such as those reviewed by Chawla in [11], include randomly oversampling minority or undersampling majority labels in data space or feature space. However, as the authors of [12,13] point out, these techniques may neglect potentially valuable data, sample unnecessary data, and risk losing relevant information. The authors of [13,14,15] solve the imbalance problem by assigning weights to classes. Others chose to combine multiple sampling strategies, such as [13,14,16]. In recent years, many methods have been proposed to deal with imbalanced datasets, such as those using machine learning techniques [17,18], DNNs [19,20], generative adversarial networks (GANs) [21], or reinforcement learning (RL) [22].



Many approaches using conventional training of DNN models to solve the weeds classification problem using imbalanced weeds datasets, such as those of Trong et al. [23], who aggregated multiple DNN models and used the CNU Weeds dataset. The authors of [24,25,26,27,28,29,30,31,32] developed and proposed novel models and techniques and applied them to the PlantSeedlings and PlantVillage datasets. In reality, weeds image datasets may have non-uniform distributions due to the relative prevalence of various species, some of which are common and diverse, while others are rare and identical. Hence, training a DNN model by selecting a batch of random samples from an entire training set makes the model robust to majority species, but sensitive to minority species, as Johnson and Khoshgoftaar pointed out in their survey [33].



To reduce this bias, we proposed the yielding multi-fold training (YMufT) strategy, which trains the DNN model by arbitrarily dividing the training data into multiple folds and then trains the model on each of these folds consecutively. Furthermore, samples of minority species are trained more often than those of majority species so that the model pays more attention to minority species. The MCMB procedure assures this specification to determine the number of samples of each species selected and passed on each consecutive fold. In addition, we propose a formula to determine the number of training loops and training periods in YMufT. This formula aims to ensure that the number of loading training images in the YMufT strategy is approximately the same as, or less than, that in conventional training methods.



We explore our strategy on four weeds datasets, containing two large datasets (CNU and large PlantVillage) and two small datasets (PlantSeedlings and small PlantVillage). Both types of datasets have plain and in-the-wild weeds datasets. Experiments are done using three DNN models (Mobilenet, Resnet, and NASNet mobile) and the results are compared to those of the conventional training methods. We find that YMufT runs faster during the training period and is quicker to converge when training on the validation set, even though both approaches have the same training configurations and approximate training steps. The evaluation shows that training the DNN model using the YMufT strategy results in comparable performance to conventional training strategies on large datasets and higher performance on small datasets. Specifically, YMufT increases the F1 score in the NASNet model to 0.9708 on the CNU dataset and 0.9928 by using Mobilenet model training on large PlantVillage dataset. On the small PlantVillage dataset, Mobilenet achieves the highest performance of 0.9981 in accuracy and 0.9970 in F1 score. On the PlantSeedlings dataset, Resnet shows the highest accuracy (0.9718) and F1 score (0.9689). Grad-CAM visualization shows that YMufT guides the model to capture essential features of the leaf surface and correctly localize weeds targets. Conventional training methods mainly concentrate on high-level features and may capture insignificant features.



In summary, our main contributions are:



We propose a YMufT strategy to train the DNN model on imbalanced datasets. Using this strategy, the model is more generalized, performs better, and is less time-consuming during the training steps than conventional training methods.



We propose the MCMB procedure to select samples of each species to form a fold used to train the model. This fold has a uniform distribution, or at least much less imbalance than the distribution of species across the training set. This procedure also shows that the model pays more attention to minority species, reducing bias towards majority species.



Experiments show that YMufT improves performance on minority species while maintaining performance on majority species. In particular, YMufT outperforms conventional training methods on small datasets in terms of overall performance.



Grad-CAM visualization reveals that a model trained by the YMufT strategy tends to focus on microscopic features on the leaf surfaces, while the conventional trained model tends to concentrate on high-level features of the leaf.




2. Related Works


Kang et al. [17] and Lin et al. [22] noted that dealing with the imbalance problem by undersampling may increase computational complexity and decrease performance. Several approaches aimed to combine multiple sampling techniques, such as that of Gonzalez et al. [13], who proposed a set of new sampling techniques and applied inside monotonic chains to preserve the monotonicity of the datasets and to improve performance on minority classes. Liu et al. [14] simultaneously combined ensemble learning, evolutionary undersampling, and multiobjective feature selection. This combination resulted in an imbalanced classification method called Genetic Under-sampling and Multiobjectie Ant Colony Optimization based Feature selection, which efficiently solved the imbalanced classification problem. Nejatian et al. [16] proposed modified-bagging by combining multiple poor classifiers similar to the decision tree method. This algorithm is suitable for an imbalanced dataset in which the samples of the minority classes are much less frequent than those of the majority class.



Another approach aimed at weight classes depends on the classes’ contribution to the total population. Zhang et al. [12] assigned different misclassification costs for different classes based on the training data. Without prior domain knowledge, these costs were optimized using the adaptive differential evolution algorithm, which was then applied to the deep belief network. Khan et al. [34] proposed a cost-sensitive DNN to learn robust feature representation for all classes. They incorporated class-dependent costs during model training. They automatically set these costs using statistics. Shu et al. [15] proposed a one-hidden layer multi-layer perceptron (MLP) to learn weights directly from the data. During the training, they used a small, unbiased validation set to choose the optimal training parameters.



Besides applying sampling techniques, the use of the area under the receiver operating characteristic (ROC) is also a prominent approach to classification in the presence of imbalanced class distribution. The effectiveness of a ROC strategy depends on the classification threshold. Zou et al. [35] proposed a sampling-based threshold auto-tuning method to identify the optimal classification threshold. Their approach improved classification performance over other commonly employed methods.



Using support vector machine (SVM) is a common method for classification problems in conventional machine learning, but an SVM loses its effectiveness on large-scale imbalanced datasets. Kang et al. [17] proposed a weighted undersampling scheme to improve SVM performance. This scheme assigns weights to majority classes based on their Euclidean distance to the hyperplane. By grouping samples based on their weights, this scheme reduces the number of majority classes. Lemnaru and Potolea [18] studied possible solutions to the class imbalance problem. They analyzed many standard classification algorithms, such as decision trees, Bayesian methods, and SVM. They found that none of these algorithms help all datasets, but MLP was the most robust to the imbalance problem, and SVM performed well on artificial data.



With the development of deep learning, many methods applied this technique to solve imbalance problems. Jia et al. [19] applied a deep normalized convolutional neural network (CNN) to imbalanced fault classification of machinery. Using a neuron activation maximization algorithm to analyze kernels in the convolutional layers, they found that these kernels behave like filters—the deeper the layer, the more complex these kernels. Dong et al. [20] formulated a class imbalanced deep learning model to train a model on an imbalanced dataset. They designed the model to minimize the dominance of majority classes using batch-wise mining of complex samples. They also proposed a class rectification loss regularization algorithm for minority class incremental rectification. Mullick et al. [21] argued that oversampling techniques such as synthetic minority over sampling technique or deep oversampling framework could not be applied to an end-to-end deep learning system. Thus, they re-approached oversampling techniques by proposing an end-to-end feature-extraction-classification framework consisting of a convex generator, a multi-class classifier network, and a real/fake discriminator to generate new samples from minority classes.



An RL approach was proposed by Lin et al. [22]. They argued that conventional classification algorithms fail when the data distribution is imbalanced. Using deep Q-learning, they formulated this problem as a sequential decision-making process. The agent performs a classification action. The environment evaluates this action and returns a reward to the agent such that the more minor the class, the larger the reward. This results in a model that pays more attention to the minority classes.




3. Datasets


We analyze the YMufT strategy and compare it with conventional training methods on small and large weeds datasets. In addition, we select in-the-wild and plain datasets to further analyze the efficiency of the YMufT strategy over a variety of weeds datasets. The Chonnam National University (CNU) weeds dataset helps us evaluate YMufT in comparison to conventional methods on a large and in-the-wild dataset. In contrast, the small PlantVillage dataset is used to examine the robustness of the two training approaches on a small and plain dataset. Another small dataset, the PlantSeedlings dataset, is used to investigate behavior of the DNN models on an in-the-wild dataset. Finally, the large PlantVillage dataset is used to helps us consider the benefit of YMufT on a large and plain dataset.



3.1. PlantSeedlings Dataset


The PlantSeedlings dataset [36] contains images of plant seedlings placed on Styrofoam boxes. This dataset contains 5539 images of 12 species. Examining the distribution of species in this dataset (shown in Figure 1) shows that the dataset is imbalanced. Common Chickweed is the species with the largest number of images (713 images), while common wheat has the fewest images (253 images). Figure 2 shows examples of samples of all 12 species.




3.2. Small PlantVillage Dataset


The PlantVillage dataset [37] consists of 39 classes separated by species and disease. This dataset has two versions: with and without augmentation. The non-augmentation version is referred to as the small dataset. This dataset has 55,447 images in total. Figure 3 shows the distribution of classes, which is clearly imbalanced. Orange___Haunglongbing_(Citrus_greening) has the highest number of images (5507 images), while Potato___healthy has the fewest images (152 images). Figure 4 shows examples of each of the 39 classes.




3.3. CNU Weeds Dataset


This dataset contains 208,477 images of 21 species produced by CNU, Gwangju, Republic of Korea. Images of weeds were captured and collected by Korean plant taxonomists working on farms and fields in the Republic of Korea with high-definition resolution cameras. Figure 5 shows example images from the CNU Weeds dataset, and Figure 6 shows the distribution of species in this dataset. This dataset is imbalanced. The species with the largest number of images is Galinsoga quadriradiata Ruiz & Pav. (24,396 images), while the species with the smallest number of images is Bidens bipinnata L. (804 images).




3.4. Large PlantVillage Dataset


The large PlantVillage dataset is built off of the small PlantVillage dataset, with the following six data augmentation techniques applied to increase the size of the dataset: flipping, gamma correction, noise injection, PCA color augmentation, rotation, and scaling. The large PlantVillage dataset has 61,485 images. Figure 7 shows the distribution of the 39 classes in the large PlantVillage dataset. Like the small PlantVillage dataset, this dataset is imbalanced, and Orange___Haunglongbing_(Citrus_greening) is the class with the largest number of images (5507 images). Seventeen classes have the smallest number of images (1000 images each).





4. Methodology


Given a training set and a DNN model, the conventional training methods first train the whole training model with several epochs. In each epoch, the samples are randomly divided into an equal number of batches and each batch is fed to the model. No sample appears in two different batches. After the model is trained on every epoch, it is validated on the validation set. With this strategy, the model tends to encounter majority species more often than minority species, making the model robust to majority species since it can capture the whole variety of features in the majority samples. Otherwise, the lack of samples of minority species would make the model less focused and cause difficulties learning about the general characteristics of these species.



Our proposed strategy (YMufT) solves this problem by dividing the samples in the training set into multiple folds. Minority species are presented to the model more often than majority species. The smaller the number of samples, the more times the related species will be learned. This division strategy reduces the bias of the DNN model towards the majority species. We define the balance error (BE) to measure the imbalance of the dataset (Definition 1).



Definition 1 (Balance Error).

A dataset  D  has  c  species, and each species    y i    has    n i    samples.    n  max       and    n  min      are the largest and smallest number of samples in a species, respectively. We calculate the Balance Error   B E   of  D  using Formula (1) below. The lower the value of   B  E D   , the greater the balance of  D .






   B  E D  =    n  max     −  n  min         ∑  i   n i      



(1)





Consider the number of samples in a species as a discrete random variable. By this definition,   B  E  C N U     of the CNU Weeds dataset is 0.11316. Only five species have more than the median number of samples (18,974), and the standard deviation around this median is 12,557.854. In the large PlantVillage dataset,   B  E  l P V   = 0.0733  , and 11 classes have more samples than the median (1546.5). The standard deviation is 1135.824. In the small PlantVillage dataset, while   B  E  s P V   = 0.0966 > B  E  l P V    , only 10 classes have more than the median number of samples (1618). The standard deviation around this median is 1254.96. In the PlantSeedlings dataset,   B  E  P S   = 0.0920  , and five species have more than the median number of samples (500.5). The standard deviation is 97.62. Considering the uniform distribution as the standard distribution for a balanced dataset, we can measure the relative entropy from the distribution of a dataset to the uniform distribution. Equation (2) is the formula used to calculate the relative entropy from  P  to  Q , where  P  and  Q  are two discrete probability distributions and  χ  is a set of species in a dataset.


   D  K L    (  P ∥ Q  )  =   ∑   x ∈ χ   P  ( x )    log  2   (    P  ( x )    Q  ( x )     )   



(2)







Assume that  P  is the probability distribution of a dataset with  c  species, and  Q  is a uniform distribution. We can rewrite (2) to (3).


  D  ( P )  =   log  2   ( c )  +   ∑   x ∈ χ   P  ( x )    log  2   (  P  ( x )   )   



(3)







Using (3) to calculate the relative entropy of the distribution of a dataset to the uniform distribution, we obtain   D  (   P  C N U    )  = 0.5649 , D  (   P  l P V    )  = 0.2597 , D  (   P  s P V    )  = 0.415  , and   D  (   P  P S    )  = 0.0998   corresponding to the CNU Weeds, large PlantVillage, small PlantVillage, and PlantSeedlings datasets, respectively. This shows that the distribution of the PlantSeedlings dataset is close to uniform, while the CNU Weeds dataset is quite imbalanced.



We define a set  Y  consisting of the number of samples of each species. This set has  c  elements, in which the    i  t h     element is    n i   . The notation of the    n  t h     maximum and minimum value in  Y  is   max  (  Y , n  )  , min  (  Y , n  )   .



Instead of training the DNN model  M  directly on  D , we create a fold  f  and train the model on this fold. Folds are established by randomly collecting   min  ( Y )    samples of each species and placing them in  f . However, if the difference  ϵ  between the minimum and nth minimum value in  Y  is small, then we collect   min  (  Y , n  )    samples of each species and place them into  f , except we take all samples from a species containing a number of samples between   min  (  Y , 1  )    and   min  (  Y , n − 1  )   .



These perceptions lead us to come up with the MCMB procedure to divide samples into folds. First, we determine Min-Class in  Y , which is   M C ≔ arg min  (  Y , 1  )   . Then, we form a set   S =  {   n i  ∈ Y :  n i  ≤ ϵ + Y  [  M C  ]   }    containing elements in  Y  that are close to MC and determine Max-Bound of  S , which is   M B ≔ max  ( S )   . For all species, we take   min  (  M B ,  n i   )    samples of species  i  in  Y  and place them in  f . In practice,  ϵ  is determined by an excess ratio   k ∈  [  0 , 1  ]     to   Y  [  M C  ]   , which is   k ⋅ Y  [  M C  ]   . This ratio aims to guarantee that the number of samples in the “Max-Bound” species cannot be more than 2 times greater than   M C   to avoid high imbalance distribution on  f .



Algorithm 1 shows the algorithm of the YMufT strategy. The folds division process proceeds until all samples are being divided. In this process,    A  temp     is a list containing non-divided samples, and  Y  consists of the number of samples in    A  temp    . The MCMB procedure is only applied on    A  temp    . After establishing the 1st fold, dividable samples are removed from    A  temp    . Additionally, all samples in species   M  C 1    are being divided, so   Y  [  M  C 2   ]  = 0  . In the subsequent division, we select   min  (  Y  [ i ]  , M  B 2   )    samples for each species  i , except species   M  C 2   , for which we select   min  (  B  [ i ]  , M  B 2   )    samples from  A , where  A  is a list containing all samples in  D  and  B  is a set containing the number of samples in species    y i    in the original training dataset.



Generally, given the    d  t h     fold division process, assume the MCMB procedure returns   M .    We randomly select   min  (   Y d   [ i ]  , M  B d   )    if species  i  has non-divided samples or   min  (  B  [ i ]  , M  B d   )    if all samples in species  i  have already been divided. Figure 8 illustrates the YMufT strategy with five species. With   k = 0.5  , YMufT divides this data into four folds.



By applying the MCMB procedure, all samples of minority species are divided into the first few folds. We randomly re-select these samples at the next folds while choosing non-divided samples of the majority species and appending them to those folds. This action means that samples of minority species are selected more frequently, and the model may focus on learning the feature characteristics of those species, hence reducing the degree of bias toward majority species.





	
Algorithm 1. Algorithm of the yielding multi-fold training (YMufT) strategy.




	
YMufT   (  D , c , k  )   




	
input

	
  D :   A dataset has samples    x i    with corresponding species    y i   .  c : Number of species in  D .  k : An excess ratio,   k ∈  [  0 , 1  ]   .




	
output

	
List of folds  F 




	
Step 1

	
Initialize  A  has  c  rows,   A  [ i ]  =  {   (   x j i  ,  y j i   )  |  x i  ∈  y i   }   

Initialize  B ,   B  [ i ]  ←  |   y i   |   .

Initialize    A  temp   ← A ,   Y ← B ,    an empty list  F .




	
Step 2

	
While  ∃ m ∈ ℕ , Y  [ m ]  > 0  do:

 Initialize an empty fold    f i   

  M C ← arg   min  +   ( Y )         //Select the species has the smallest positive value in  Y .

   ϵ ← k ⋅ Y  [  M C  ]                         //Determine the maximum possible boundary.

   i n b o u ←  {  Y  [ ⋅ ]  : Y  [ ⋅ ]  ≤ ϵ + Y  [  M C  ]   }             //List of species that lay in the boundary.

   M B ← max  (  i n b o u  )                      //Select the maximum value.

  For   i ≔ 1   to  c  do:

  If   Y  [ i ]  > 0 :  

              n t = min  (  Y  [ i ]  , M B  )   

     S i  ⊆  A  temp    [ i ]  ,  |   S i   |  = n t                 //Randomly select   n t   samples from    A  temp    [ i ]   .

     f i  . append  (   S i   )   

     A  temp    [ i ]  ←  A  temp    [ i ]  \  S i                  //Delete these   n t   samples in    A  temp    [ i ]   .

    Y  [ i ]  ← Y  [ i ]  − n t  

 Else:

              n t = min  (  B  [ i ]  , M B  )   

     S i  ⊆ A  [ i ]  ,  |   S i   |  = n t                   //Randomly select   n t   samples from   A  [ i ]   .

     f i  . append  (   S i   )   

  ℱ . append  (   f i   )   




	
Step 3

	
Return  ℱ .







Assume a list  ℱ  contains  q  folds. We have the following two definitions:



Definition 2.

A training period is when the model trains all  q  folds consecutively from the first fold    f 1    to the last fold    f q   .





Definition 3.

A training loop is a process in which the model trains a fold on a finite loop.





In the YMufT training strategy, we argue that training a model with  α  loops on  P  periods is not beneficial because the number of samples in each fold is much smaller than    N  t r a i n    , leading to overfitting if  α  is set too high. After capturing the characteristics of the samples, the model may converge quickly in later periods, leading to poor generalizability. To deal with this problem, we reduce  α  in later periods. We assign a finite sequence      (   α k   )    k = 1  P   , indicating the number of training loops    α k    in the    k  t h     training period, and ensure that    α 1  ≥  α 2  ≥ … ≥  α P   . After the completion of  P  training periods, the total number of times the loading samples are calculated is given by Formula (4)


   N  Y M u f T   =   ∑   k = 1  P   (   α k  ⋅   ∑   i = 1  q   (  ⌊    |   f i   |    n b   ⌋ ⋅ n b  )   )   



(4)






  ≈   ∑   k = 1  P   (   α k  ⋅   ∑   i = 1  q   (   |   f i   |   )   )   



(5)






  =   ∑   k = 1  P   α k  ⋅   ∑   i = 1  q   (   |   f i   |   )   



(6)




where   n b   is the number of batches and    |   f i   |    indicates the number of samples in fold    f i   . In the conventional training method, if we train the model on  D  for   e p s   epochs and the number of batches is   n b  , the total number of times the loading samples are calculated is given by Formula (7).


   N  c o n v e   = ⌊    | D |    n b   ⌋ ⋅ n b ⋅ e p s ≈  | D |  ⋅ e p s  



(7)







To ensure that the YMufT training strategy results in faster training than conventional training methods, we solve inequality (8).


   N  Y M u f T   ≤  N  c o n v e    



(8)






  ⇔   ∑   k = 1  P   α k  ⋅   ∑   i = 1  q   (   |   f i   |   )  ≤  | D |  ⋅ e p s  



(9)







Since we can determine   q ,  |   f i   |  ,  | D |    and the number of epochs   e p s   used in conventional training, we only need to define the sequence      (   α k   )    k = 1  P    that satisfies inequality (8). If we choose this sequence as consecutive natural numbers beginning with  1 , inequality (8) becomes


    ∑   k = 1  P   α k  ⋅   ∑   i = 1  q   (   |   f i   |   )  ≤  | D |  ⋅ e p s  



(10)






  ⇔   P  (  P + 1  )   2  ⋅   ∑   i = 1  q   (   |   f i   |   )  ≤  | D |  ⋅ e p s  



(11)






  ⇔  P 2  + P −   2  | D |  ⋅ e p s     ∑   i = 1  q   (   |   f i   |   )    ≤ 0  



(12)







Based on Vieta’s formulas, the left-hand side in inequality (12) has one positive solution. We select the natural number   P ∈  [  1 ,   − 1 +  Δ   2   ]    to satisfy (8), in which


  Δ = 1 +   8  | D |  ⋅ e p s     ∑   i = 1  q   (   |   f i   |   )     



(13)







To assure the maximum possible value of  P  is at least 1, we need to solve inequality (14):


    − 1 +  Δ   2  ≥ 1  



(14)






  ⇒ 1 +   8  | D |  ⋅ e p s     ∑   i = 1  q   (   |   f i   |   )    ≥ 9  



(15)






  ⇔ e p s ≥     ∑   i = 1  q   (   |   f i   |   )     | D |     



(16)




which means that the number of epochs in a conventional training method must be greater than or equal to the ratio between the total number of samples in  q  folds and the total number of samples in the training set.




5. Experiments


5.1. Performance Metrics


We applied the metrics described in [23] to evaluate the performance of the conventional and YMufT strategies for training of a DNN model on an imbalanced dataset. Suppose the evaluation dataset  D  contains  m  images of  c  species. Assume    R i  ⊂ D   is the set of images classified as species    c i   , then



	
True Positive (  T  P i   ): The number of images in    R i    that are classified correctly.



	
False Positive (  F  P i   ): The number of images in    R i    that are classified incorrectly.



	
False Negative (  F  N i   ): The number of images of species    c i    that are incorrectly classified as not being    c i   .






We define the overall performance using four metrics: Accuracy, Precision, Recall, and F1 score.



	
Accuracy: The percentage of images in  D  that are correctly classified.


  Accuracy =     ∑   i = 1  c  T  P i   m   



(17)







	
Precision: The average percentage of images predicted to belong to species    c i    that are correctly classified, across all  c  species.


  Precision =  1 c    ∑   i = 1  c    T  P i    T  P i  + F  P i     



(18)







	
Recall: The average percentage of images in    c i    that are correctly classified across all  c  species.


  Recall =  1 c    ∑   i = 1  c    T  P i    T  P i  + F  N i     



(19)







	
F1 score: The harmonic means of precision and recall. This metric is suitable for measuring the performance of training strategies on an imbalanced dataset.







   F 1    score  = 2 ⋅   Precision ⋅ Recall   Precision + Recall     



(20)





In addition, we measured precision and recall on every species to estimate the behavior of minority and majority species.




5.2. Training of DNN Models


We trained the DNN models using the Keras library on an Ubuntu 16.04.5 LTS Linux server, Intel(R) Core(TM) i9-7900X CPU @ 3.30 GHz, 125 GB RAM. The graphics processing unit is a 12 GB NVIDIA TITAN V with CUDA 10.1. We selected 3 DNN models for the experiment. These models have different architectures, and capture species characteristics in different ways.



	
Mobilenet [38]. This model architecture uses depthwise and pointwise convolution to learn an object’s features. There are fewer parameters in the model than in traditional convolution operators. Mobilenet is the lightest of the 3 DNN models. We used Mobilenet version 1, which has nearly 3.5 million trainable parameters.



	
Resnet [39]. This is a deep residual learning model in which a shortcut connection is added between two blocks of convolutional layers, allowing information from one layer to flow directly to another layer. We used the 50-layer Resnet model that has over 24 million trainable parameters.



	
NASNet [40]. This model architecture is generated by using Neural Architecture Search to build a network from the ImageNet dataset. We used the mobile version of NASNet, which has over 4.5 million trainable parameters.






We applied transfer learning, and used parameters trained on the ImageNet dataset as the initial parameters to train the model. We fine-tuned all three models by adding a fully connected layer of length 256, batch normalization, ReLU, and a Softmax layer. The input RGB image for the three models was   128 × 128  , normalized to the range    [  0 , 1  ]   . Stochastic Gradient Descent was used as the optimization method with a learning rate of 0.001. We applied these model configurations on both strategies to enable a fair comparison between the conventional and YMufT strategies, except that the batch size varied depending on the model and dataset. Table 1 show the batch sizes for each model and dataset, which were applied for both training approaches.



We evaluated model performance on two small datasets (small PlantVillage and PlantSeedlings) by applying 5-fold cross-validation and 2 data augmentation techniques, random rotation, and random zoom. We used the YMufT strategy and divided the training set into folds. Due to the small number of samples in each fold, we duplicated the images in each fold four times in PlantSeedlings and three times in the small PlantVillage dataset to avoided overfitting when training the model using those folds. On two large datasets (CNU Weeds and large PlantVillage), we randomly selected 60% of each species’ images for training, 20% for validation, and 20% for testing. We used no data augmentation techniques in the training set.



We applied a sequence of consecutive numbers      (   α k   )    k = 1  P    as the training loop on  P  periods, which required us to select a value of  P  that satisfied inequality (16). Table 2 shows the total number of samples in the folds (2nd column) and the training set (3rd column) with   k = 0.5  . The ratio in the 4th column indicates that use of   e p s ≥ 8   when training the model in the conventional training method guarantees that   P ≥ 1  . We trained the DNN models using the conventional training method on 50 epochs in CNU Weeds and PlantVillage, and 100 epochs on the PlantSeedlings dataset. We chose the maximum possible natural number  T  that satisfies inequality (16), as shown in Table 3.



In the conventional training method, we validated the model on every epoch. In YMufT, we made every training loop through all periods. The number of times the model is validated in YMufT is calculated using expression (21). Table 4 shows the number of validations in the conventional and YMufT strategies. As shown in this table, the YMufT strategy required more time to validate the model than the conventional training strategy, except on the PlantSeedlings dataset.


  q ⋅   P  (  P + 1  )   2   



(21)








5.3. Computational Complexity


Two factors affect the processing time of both approaches: The training and validation time of the model. Assume that the model finishes training, without validation, at time    T t   , and the time it takes to validate the model is    T v   . We estimated the total time  T  for training and validation of the model using Formula (22)


  T =  T t  + v  T v   



(22)




where  v  is the number of times the model was validated. In the conventional training method,  v  equals the number of epochs, while in YMufT,  v  was calculated using Formula (21).



Figure 9 shows the number of times,    T v   , the model was validated. Only Resnet on the CNU Weeds dataset ran faster than Mobilenet. On the other datasets, Mobilenet was the fastest at validating a model, followed by Resnet and NASNet. Figure 10 compares    T t    and  T  when training a model using the conventional method and YMufT strategy. In every case, YMufT required slightly less time to train a model than the conventional method. However, the increase in the number of validations meant that the YMufT strategy took more time to complete the training process, except on the PlantSeedlings dataset.




5.4. Results


5.4.1. CNU Weeds Dataset


Figure 11 shows the learning curves of the 3 models trained by the conventional and YMufT strategies. In contrast to the smooth training curve of the conventional method, the training curve of YMufT had a sawtooth appearance, which reflected the transitions between folds. When the model began to converge, sawtooth marks appeared when it learned features from samples in one fold on a few training loops but then changed to a new fold with new samples. In this case, the model first showed a drop in performance but then began generalizing on the next training loop. Notice that later folds contained many species that already appeared on previous folds, which helped the model not decrease in performance to the same extent and made it easier to converge. After a few periods, the amplitude of each sawtooth was reduced and the model started to converge throughout many folds.



The model converged at the 10th validation in the conventional strategy; this was faster than in the YMufT strategy, which required 60 validations to converge. However, as illustrated by the overall performance scores in Figure 12, use of YMufT led to a higher F1 score, while the accuracy was approximately the same as that seen with conventional training. Figure 13 shows a comparison of the precision, recall, and F1 scores by species between the YMufT and conventional training strategies. In this figure, the species are arranged in ascending order, based on the ratio of the number of samples in a species to the maximum number of samples.



On Mobilenet, although YMufT did not have a clear advantage in terms of precision, it showed improved recall on minority species over the conventional training strategy while maintaining recall on majority species. Thus, the F1 score slightly increased on minority species. In Resnet, YMufT showed an advantage in terms of precision over the conventional training strategy on minority species but remained imprecise in terms of recall. Still, the F1 score of minority species was slightly better than that of the conventional training method. In NASNet, although the overall F1 score using YMufT was marginally higher than that of the conventional strategy, recall on minority species did not improve. Only precision showed a clear advantage of YMufT on minority species, which resulted in a slight improvement in F1 score on minority species.




5.4.2. Large PlantVillage


The learning curves in Figure 14 show a shorter sawtooth than the CNU Weeds dataset because of the lack of variety in samples in the large PlantVillage dataset. In a given training fold, despite prior knowledge from the previous folds, the samples were not significantly different, which help the model converge quickly.



As with the CNU Weeds dataset, the model converged on the first few validations faster than YMufT, which needed 60 validations to converge. Figure 15 shows the outstanding overall performance of YMufT in Mobilenet. Training Mobilenet in this dataset using the YMufT strategy resulted in an overall performance that was superior to those of Resnet and NASNet. The learning curves of the two latter models show more oscillation, illustrating the difficulty in generalizing sample characteristics in this dataset.



In Figure 16, minority classes showed a slight improvement in precision and recall using Mobilenet trained by the YMufT strategy. This improvement led to an increase in F1 score in those classes. In contrast, YMufT showed inappreciable improvement on minority classes in terms of precision and recall, making the F1 score lower than that of the conventional training method.




5.4.3. Small PlantVillage


Figure 17 shows the learning curves of the 3 models trained on the small PlantVillage dataset. Unlike the large dataset, the validation curves of Resnet and NASNet trained using the conventional training method showed a large degree of oscillation. Specifically, Resnet was unable to converge. In contrast, the training and validation curves of the models trained using the YMufT strategy converged quickly after 20 validation times, which was faster than those of the models trained using the conventional method. The amplitudes of the sawtooth markings were also smaller than those on the large dataset.



Figure 18 shows the average overall performance on 5-fold cross-validation. The performance of the model trained using YMufT was far superior to that of the model trained using the conventional training strategy. In general, Mobilenet and Resnet showed good performance on this dataset. As shown in Figure 19, all three models showed high precision, recall, and F1 scores in most minority classes when the models were trained those models using the YMufT strategy.




5.4.4. PlantSeedlings Dataset


The learning curves in Figure 20 show that both the YMufT and conventional training strategies helped the models converge quickly. In contrast, the validation curves of models trained using YMufT converged at the first few validation times, except that NASNet suffered from overfitting before the 30th validation, then quickly converged later. Like on the small PlantVillage dataset, in Figure 21, YMufT was better than the conventional training method in terms of accuracy, precision, recall, and F1 score. In Figure 22, in most cases, use of YMufT served to increase precision, recall, and F1 score in both minority and majority species.





5.5. Analysis


Generally, on large datasets (CNU Weeds and large PlantVillage), training a model using the YMufT strategy rather than the conventional training method made the validation slower to converge. Still, the overall F1 score and the score on minor species improved, while the F1 score was maintained on major species. Of the three models, NASNet achieved the best performance on the CNU Weeds dataset, while Mobilenet was the optimal solution on the large PlantVillage dataset.



On small datasets (small PlantVillage and PlantSeedlings), the models trained using the YMufT strategy were faster to converge on validation than those trained using the conventional training method. Furthermore, using the YMufT strategy, the overall performance of the models and the performance on minor species were significantly improved in comparison to the performance of the models trained using the conventional training method. Mobilenet and Resnet were the optimal models on the small PlantVillage dataset, and Resnet achieved the highest performance on the PlantSeedlings dataset.



Table 5 compares the YMufT strategy to other methods. On the CNU Weeds dataset, the NASNet model trained using the YMufT strategy showed slightly lower performance than the other 2 DNN models. On the large PlantVillage dataset, Mobilenet trained using YMufT was the optimal solution. On the two small datasets, DNN models trained using YMufT were superior to other methods. The optimal models on the small PlantVillage dataset were Mobilenet and Resnet. Resnet was also the optimal model on the PlantSeedlings dataset.



Figure 23 compares the number of images that were correctly classified using the conventional training method but incorrectly classified using YMufT (CtYf) and vice versa (CfYt). In all cases, use of YMufT effectively enhanced the models’ ability to classify images in both minor and major species.



To further explore the effectiveness of YMufT, we applied Grad-CAM [41] to visualize the behavior of the models trained by the conventional method and YMufT strategy. Figure 24 shows examples of images that were incorrectly predicted by the models trained with the conventional method but correctly classified by those trained using YMufT. On the CNU Weeds dataset, YMufT helped the models focus on the leaf surface, while conventional training was more focused on high-level features. Specifically, for the species Veronica persica Poir. and Amaranthus powellii S.Watson, conventional training focused on the lower curve position, while YMufT concentrated on leaf veins and leaf blades. A similar phenomenon also occurred on Ambrosia artemisiifolia L., Ipomoea coccinea L., and Chenopodium album L. species. The only image from Chenopodium ficifolium Smith contains overlapping leaves, so the YMufT strategy guided the model to localized areas around leaf centroids, while the conventional training method focused on a lower region. Similar things happened on the large PlantVillage dataset, such as for images of Cherry___healthy, Tomato___Late_blight, Tomato___Bacterial_spot, Apple___Apple_scab, and Potato___Early_blight. For one image of Pepper,_bell___Bacterial_spot, both methods focused on the leaf surface, but the YMufT strategy mainly concentrated on the petiole region. Generally, on large datasets, YMufT helped the model focus on the leaf surface to capture essential low-level features. In contrast, the conventional training method focused on high-level features such as leaf curves, which may not be significant in terms of species characteristics.



In contrast, both the conventional training and YMufT strategies concentrated on the surfaces in images in the small PlantVillage dataset. Still, the heatmap color shown in Potato___healthy, Apple___Cedar_apple_rust, and Tomato___Leaf_Mold indicated that YMufT made the model pay more attention to the local area in the surface and reduced its attention to patterns in the background. Other images show that the two methods displayed different feature localization behavior. The conventional training method focused on the wide region in the middle of the leaf in Corn___ Cercospora_leaf_spot Gray_leaf_spot, but the YMufT strategy looked at micro-characteristics towards the top. In Corn___Northern_Leaf_Blight, the small region near the middle was not sufficient to classify this image, so YMufT extended the region towards both sides to collect additional essential features. Consider Potato___Late_blight image: although both methods focused on the left half of the image, the conventional method mainly focused on the upper and lower curve, while YMufT considered the inner region to capture essential features. In the PlantSeedlings dataset, low-quality images, as well as the small shapes of parts of the weeds, meant that the model trained by the conventional method suffered from difficulty in localizing the target weeds. This was true for images of maize, black-grass, charlock, and sugar beet. However, the YMufT strategy guided the model so that it localized the target properly, which increased the model’s performance. Examples include images of common wheat and cleavers.





6. Conclusions


In this work, we presented YMufT, a strategy for training DNN models on imbalanced datasets. Given an imbalanced dataset, YMufT divides the training set into multiple folds, and the model trains these folds consecutively. We proposed an MCMB procedure to divide samples from the training set into folds such that the model is trained on minority species more often than majority species, thus reducing the bias toward majority species. We developed a formula to determine the numbers of training loops and training periods. The number of times training samples are loaded in the YMufT strategy is smaller or approximately the same as that for the conventional training method. We used a sequence of decreasing consecutive natural numbers, starting with the number of the training period, as the number of training loops.



We experimented with our strategy on two large datasets (CNU and large PlantVillage) and two small datasets (small PlantVillage and PlantSeedlings). Without considering validation times that can be changed on purpose, on all types of weeds datasets, training of the model using the YMufT strategy was faster than training using the conventional training method. Despite a slight reduction in accuracy, YMufT produced an increase in the overall F1 score and the F1 score on minor species on the in-the-wild CNU weeds dataset (a large dataset). The F1 score was 0.9708 using the NASNet model. Similar results were obtained on the plain large PlantVillage weeds dataset, for which Mobilenet showed the best performance in terms of both accuracy (0.9942) and F1 score (0.9928). Use of YMufT to train DNN models on small datasets results in better model performance than use of conventional training methods. Mobilenet and Resnet were the optimal solutions for the plain small PlantVillage weeds dataset, with an accuracy of 0.9981 and F1 score of 0.9970 for Mobilenet, and an accuracy of 0.9979 and F1 score of 0.9970 for Resnet. Resnet was also the best-performing model on the in-the-wild PlantSeedlings dataset, with an accuracy of 0.9718 and an F1 score of 0.9689.



We used Grad-CAM to visualize and analyze the models’ behavior on large datasets. YMufT guided the model to focus on learning essential features on the leaf surfaces, while conventional training method led the model to pay attention to high-level features such as leaf curves or leaf centroids, which might be insufficient to describe species characteristics. On the small PlantVillage weeds dataset, both approaches concentrated on the leaf surface. Still, YMufT made the model pay more attention to the local area on the surface and reduced capture of patterns in the background. On the PlantSeedlings dataset, YMufT guided the model to properly localize the weeds targets.
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Figure 1. Distribution of species in the PlantSeedlings dataset. 
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Figure 2. Example images of the 12 species in the PlantSeedlings dataset. The order of species (left to right, top to bottom) corresponds to the labels (from left to right) in Figure 1. 
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Figure 3. Distribution of classes in the small PlantVillage dataset. 
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Figure 4. Example images of each of the 39 classes in the small PlantVillage dataset. The order of classes (left to right, top to bottom) corresponds to the labels (from left to right) in Figure 3. 
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Figure 5. Distribution of species in the CNU weeds dataset. 
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Figure 6. Examples of the 21 species in the Chonnam National University (CNU) weeds dataset. The order of species (left to right, top to bottom) corresponds to the labels (from left to right) in Figure 5. 
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Figure 7. Distribution of classes in the large PlantVillage dataset. 
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Figure 8. Illustration of the YMufT strategy, with   k = 0.5  . The original dataset contains 5 species: A, B, C, D, and E. 
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Figure 9. Total validation time of each of the models on the four different datasets. 
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Figure 10. Comparison of elapsed time between the conventional method and YMufT strategy. 
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Figure 11. Performance of models trained on the CNU Weeds dataset using the conventional training strategy (upper row) and the YMufT strategy (lower rows). 
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Figure 12. Overall performances on the CNU Weeds test set. 
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Figure 13. Precision, recall, and F1 score by species on the CNU Weeds dataset. The blue bars indicate the ratio between the number of samples of a species and the maximum number of samples in all species. 
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Figure 14. Performance when models were trained on the large PlantVillage dataset, using the conventional training (upper row) and YMufT strategies (lower rows). 
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Figure 15. Overall performance on the large PlantVillage test set. 
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Figure 16. Precision, recall, and F1 score on each class in the large PlantVillage dataset. The blue bars indicate the ratio of the number of samples of a class to the maximum number of samples in all classes. 
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Figure 17. Performance of models trained on the small PlantVillage dataset, using the conventional training (upper row) and YMufT strategies (lower rows). 
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Figure 18. Average overall performance of 5-fold cross-validation on the small PlantVillage dataset. 
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Figure 19. Precision, recall, and F1 score on each class in the small PlantVillage dataset. The blue bars indicate the ratio of the number of samples of a class to the maximum number of samples in all classes. 






Figure 19. Precision, recall, and F1 score on each class in the small PlantVillage dataset. The blue bars indicate the ratio of the number of samples of a class to the maximum number of samples in all classes.
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Figure 20. Performance of models trained on the PlantSeedlings dataset, using conventional training (upper row) and YMufT strategies (lower rows). 
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Figure 21. Average overall performance of 5-fold cross-validation on the PlantSeedlings dataset. 
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Figure 22. Precision, recall, and F1 score on each species in the PlantSeedlings dataset. The blue bars indicate the ratio of the number of samples of a species to the maximum number of samples in all species. 
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Figure 23. Number of images that were correctly classified using conventional training method but incorrectly classified using YMufT (CtYf), and vice versa (CfYt). 
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Figure 24. Grad-CAM visualization of models trained by the conventional method and YMufT strategy. The original images were misclassified using the conventional method but classified correctly using YMufT. Below each original image is the species name. 






Figure 24. Grad-CAM visualization of models trained by the conventional method and YMufT strategy. The original images were misclassified using the conventional method but classified correctly using YMufT. Below each original image is the species name.
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Table 1. Batch size according to model and dataset.
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	CNU
	PlantVillage (Large)
	PlantVillage (Small)
	PlantSeedlings





	Mobilenet
	128
	32
	32
	128



	Resnet
	32
	16
	16
	32



	NASNet
	16
	8
	8
	16










[image: Table] 





Table 2. Total number of samples in the folds and training set.
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	      ∑   i = 1  q   (   |   f i   |   )     
	     |  D  |     
	        ∑   i = 1  q   (   |   f i   |   )     |  D  |       





	CNU
	271,713
	125,081
	2.17



	PlantVillage (large)
	80,124
	36,895
	2.17



	PlantVillage (small)
	329,721
	44,360
	7.43



	PlantSeedlings
	28,296
	4431
	6.39
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Table 3. Number of training periods,  P .
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	CNU
	PlantVillage (Large)
	PlantVillage (Small)
	PlantSeedlings





	  P  
	6
	6
	3
	5
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Table 4. Number of times the model was validated in the conventional and YMufT strategies.






Table 4. Number of times the model was validated in the conventional and YMufT strategies.












	
	CNU
	PlantVillage (Large)
	PlantVillage (Small)
	PlantSeedlings





	Conventional
	50
	50
	50
	100



	YMufT
	315
	231
	156
	90
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Table 5. Performance comparison between the YMufT strategy and other methods.
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Dataset

	
Method

	
Accuracy

	
Precision

	
Recall

	
F1 Score






	
CNU

	
YMufT, Mobilenet

	
0.9673

	
0.9602

	
0.9583

	
0.9591




	
YMufT, Resnet

	
0.9795

	
0.9720

	
0.9681

	
0.9698




	
YMufT, NASNet

	
0.9802

	
0.9721

	
0.9698

	
0.9708




	
2 models, product rule [23]

	
0.9844

	
0.9725

	
0.9768

	
0.9746




	
Large PlantVillage

	
YMufT, Mobilenet

	
0.9942

	
0.9930

	
0.9926

	
0.9928




	
YMufT, Resnet

	
0.9937

	
0.9921

	
0.9918

	
0.9919




	
YMufT, NASNet

	
0.9927

	
0.9910

	
0.9918

	
0.9914




	
Convention, Mobilenet

	
0.9922

	
0.9898

	
0.9902

	
0.9900




	
Convention, Resnet

	
0.9938

	
0.9925

	
0.9918

	
0.9921




	
Convention, NASNet

	
0.9937

	
0.9923

	
0.9920

	
0.9921




	
Small PlantVillage

	
YMufT, Mobilenet

	
0.9981

	
0.9970

	
0.9971

	
0.9970




	
YMufT, Resnet

	
0.9979

	
0.9967

	
0.9973

	
0.9970




	
YMufT, NASNet

	
0.9965

	
0.9944

	
0.9955

	
0.9949




	
SE-MobileNet [28]

	
0.9978

	
-

	
-

	
-




	
Resnet50 [29]

	
0.9959

	
-

	
-

	
-




	
DenseNet [29]

	
0.9975

	
-

	
-

	
-




	
ReLU [30]

	
0.9960

	
-

	
-

	
-




	
GoogleNet, transfer learning [31]

	
0.9935

	
0.9935

	
0.9935

	
0.9934




	
ResNet34, deep [32]

	
0.9967

	
-

	
-

	
-




	
Inception_v3 [32]

	
0.9976

	
-

	
-

	
-




	
PlantSeedlings

	
YMufT, Mobilenet

	
0.9637

	
0.9614

	
0.9587

	
0.9596




	
YMufT, Resnet

	
0.9718

	
0.9713

	
0.9672

	
0.9689




	
YMufT, NASNet

	
0.9682

	
0.9665

	
0.9643

	
0.9652




	
3 models, weighted linear Combination (per-species) [23]

	
0.9704

	
0.9706

	
0.9659

	
0.9683




	
AgroAVNET 12 species [24]

	
0.9364

	
0.9300

	
0.9400

	
0.9300




	
ResNet-50 [25]

	
0.9621

	
0.9525

	
0.9583

	
0.9542




	
CFMNN [26]

	
0.9110

	
-

	
-

	
-




	
ResNet 50 [27]

	
0.9523

	
0.9500

	
0.9500

	
0.9500




	
MobileNetV2 [28]

	
0.9350

	
0.9400

	
0.9400

	
0.9300

















	
	
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.











© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).






media/file56.jpg





media/file13.jpg





media/file52.png
0.

1
9

=
]

0.
0,

0.

0.
0.
Q.

0.

&
6,6‘

e

7
]
5
4
3
2
1
0

,(g.

NASNet, Precision, PlantSeedlings

".,
Qr

& & Ry ‘d‘
o d & i 'nb \
25 o . > o
‘&& @.\%L + - g s & <}$ R “‘
Q,Q *\Q} \\%"
& &
%}‘ %

W Ratio ™ Corwentional @ YMfT

@F

e‘bé

1

=]
W

"b
&
.
&
(_’0

{\F'

<+

'-'F

08
0.7
06
05
0.4
03
0.2
01

0

&h

[

\ﬂﬁ

NASNet, Recall, PlantSeedlings

= .Qz"*

A
& & e?' @a?
ﬂ; L
O‘ﬂ o 0@‘. ‘Eﬁi"‘e \Gﬂ .¢-'-.
E & &3"
\
Q‘S*z 41.69
,§¢
WHatio ™ Conventional  ® YRAFT

1

o
io

o7
0.6
05

0.3
0.2
0.1

0

NASNet, F1 score, PlantSeedlings

& & & &

& & & F & da"’ & 0@? _(‘,,e @, *,;,t»
é\a q}é\}— of ,;}@‘ & @ &F
e = &

o d-‘zb 6}‘? & &

o S
P <

W Hatio W Comventional — ® YRWFT





media/file39.jpg





media/file18.png
A 482 A 482 A 0 A 248 A 0 A 399 A 0 A 52 A 0

B 730 ———— B 482 B 248 ———— B 248 B 0 ———— B 39 B 0 —_— B 52 B 0
K xY[MC]=241 e—KxY|MC|=124 e—KxY[MC|=143 e—KxY[MC]=26

c 1016  Mhouciisy C 482 C 534  (mhoucizi C 248 C 286  mhouc(206599) c 286 cC o nboue (52] c s2 )

D 1129 D 482 D 647 D 248 D 399 D 399 D 0 D 52 D o

E 1181 E 482 E 699 E 248 E 451 E 399 E 52 E 52 E ©





media/file21.jpg
Motilenet, CNU. Resnet, CNU NASNet, CNU

: I I o I
il -l






media/file44.png
F1 score, small PlantVillage

Iichilenet

small FlantVillage

Mobilenet, Recall,

Maobilenet, Precision, small Plantvillage

Ill|||||||J|

v Ru g dunzy

QU
SENLTR

En_,._rp.. [EYET}

APl Mapieid  LEEras
£a] zpojiles w0l
_nuiu R

i w_“__“ A
DELaL
FI5] Aaneln
e

1153
— 005 13t
— | SRR TP

R, |

Tuuy
—_— oy T b
LITHTTER Y

meufl

\

P ——TELI 4..... _ﬁ.an\u.,_umm E
yrncs |28 EINED FS) [ e
—— T S| LA PR sdean m
e rapa T hapagT m
E e ——— R NI LT TV R THET RS L
e g 31 23y 2
s, I AJET ORI &
— LG ._._._..vn_ an iandag =
—
———— Pl
)
s, (JEDE Ailzy 3|y
——— 0] {1E]] =3y
(PRl BInnITIEY ]
e L T g
e MJYE3L ALIRCDSEY
e T
e B BT T M B B Bl
(SR T= I =~ B~ R~ = ]
] dulgEuiEdne  22aen
| ;.1_ u.r OELLZL DAL
TuRamghng
g
sy T nomud)
e 1LY 29T OLELLD
— EP(L] AIRINOS Ysenbs
b=t L _um_ FLzdag  mewsL
—_— S T TRA NPy |
—_—— T
e SLLBIL OELID
S  ALLEAL  dJaqanig
PR A aEddag
BT L o T
. SR L E RS
e su'mtaii L
3
-
£
£
el armm
woagy =
EI LT
1 z
a3 adia) ™
T (1)
—— L IR B R
EEEEE—————] A ST ST
B —— - = & JToddy T wpedy
@t u_cn:
e lam ye3) [FEL SIS
R TR TITH
e D .r_mn_n_::
e —T AlLlean L2Eay
AF IEpan Ay
Ty
4 wHueg
QL]
—_———
"I T ugeyg
LSRR TN
122 “izdday
OZELL 2
————— |EEE|, ¥7F|F) 20E) sdEID
m— D =
e ——— a
—_— 5
—_— n
= ———————————————— o
&
N o
n
ﬂ” T nFLng
by
sl T
FlI ,_.Fs apdde

T el ..ﬁm_,ro.— OLELL D]
— U ELl| Lianisey

MEE)T YA

e addrTiepan T sndy

AggeagT ey

- "

0.z
0.1

=

n.a
.3
B
L]
U]
0z

=

small Plantvillage

Resnet, Rccall, small FlantVillage Rasnet, F1 score,

. small Plantvillags

Resnet, Pracision

AU E a0 2y T
R [ETR N SLEL D]
& ._y agy FEEEISS

FEER]
T
Clae
ysenby
vuugdey Loewu)
DLELD]
Ay
[TEINS
Aoy Aaanany
Spzel o geq add
TN
N ey
o
=daig

e EAED| IMCJLA PUNCUE D2

—_—— g

———————————

B —

e

e —

Y028 JE2T AdEINELS
A gz ades
Adapeace) foag

W AHET  01ELO|

WE o ayuo_

W2 Aded

O T EN

PloLy 250

12
WA e WRLLION

PECIEN
Ly

I il | 21a3Eq

-—

TSRS SRR
l :u._n_um u_»m._

s |00l 21131790 1Ry
OYELLID

WEL a1ET OQELID)

EE] Euccu_ ianbey

Tuophay™T e

-
]

a

-

i

..,_._u_ 2L

R (=Pt (TR R LT |

A uﬂ_ﬁ_unx

oAl

TNOLTLE S EYIEg
ALBAELT

AU

T wang

Clawe|

el
[ETT]

W Ezuo WCamsertorl

LRIETE ]

c
-
£
=
5
-
[
]
x
[

uveaf

W 4aba W Zprveatanal

MASMet, F1 score, small Plantyillage

MASMet, Recall, small Plantvillage
||I)IJH“ﬁMM“"“"““““

Precision, small PlantVillage

Il Il Ille”ﬂhﬂ. | |IIIIH

I|H|

LRSI

”.IHH|

hm|l|l||||nlli

B0 gl qurepT aiueaD
T oMO||Z4 SlE0] SyEU0)
AyEIY L2EgAce

mis |E LWﬁam.n JIES

RUEIE

o] u_._cE.E IR
Japily OLeLS

Jus”,

aiddy
TeuaL

_.E_mw;
A3t
& _._:Uu_._

4B T i)
P T T T s
JEF, UOLILST  LaT
FUT I ST I E3 o)

[E T T R

AIEIY ALIALY
3|y

00 H{Ieg 2y

.IH..IIIII

HH|

— .t I =

7
.0

[

.5
0.4

09
0.E
a
0
a

l

IIHI.

Illlllll|||||l|

U

.n..._ W aER g

(PRl EInnITIET A

.._._H_mw: __.:wn ZEEY
AE3Y LIREY

150 Rpdne JepRs Ay

ey sang

T Y TTTERTIEY R
T urangaos
[Ty R ]
[LRES ST I EIN T
TR R e

W AEzmng T ysenhg
(B3| ELOLNES TIRLDL
TiamdeT srewng

1003

P _w,..._

LTI aEt
mee Ay |...__.__._<
o0 aEg Fddy

43 .e3| elodsomEn LI0]
Aupesy = NE
A3 BCET
A B0 Bm._._o_ B ElNE
ALJyESL
MERY

A adde JEpe; apddy
ALESY  0gEID

S [RTRRTNTENTTI}
Ay aoy QLERIEINLN

[T

E:_ ]
EC L ALREAN,
pods B3| B0

T Aoy
_.:H.: njp
T dasgang

P

JEATE (e TRy
Ly |
U LSy

L E:._.

Loy
adedny

ol

SEAER| IS pUnnItlyIEg

YUI0IE JEIT AL3GAZNS
e el EdRIn
| AlEpmne ALRLD
1_» n a.__.u R L

[N

ERTEN
ERTEH

SAENESS
arle. g

ll

1
[=]

na
L)
oy
08
as
.1

0.z
nz

=]

nELIng

WHato EOanwerticr

maf

B Lonverael

W -k

| it o

W 3aka W Ik anal






media/file26.png
Mobilenet Resnet NASNet

Training and validation accuracy using Mobilenet Training and validation accuracy using Resnet Training and validation accuracy using NASNet
1.00 - 1.00 - 1.000
0.98 4 0.975 A
0.95
0.96 - 0.950 4
0,90 - 0.925
Convention
0.900 -
0.85 0.52
0.875
0.90
0.80 0.850 -
= Training acc p.as —— Training acc Training acc
—— Validation acc — Validation acc 0.825 —— validation acc
10 20 30 40 50 0 10 20 30 a0 S0 0 10 20 30 40 50
Training and validation accuracy Training and validation accuracy Training and validation accuracy
1.0 4 Vv 1.0 1 1.0 Y e -
0.9 4
0.8 0.9 1
0.8
0.8
0.6
0.7
YMufT
0.6 4 0.4
0.6
0.5 -
0.2
0.4 0.5
—— Training acc Training acc —— Training acc
— Validation acc 0.0 —— Validation acc — validation acc
031 . - . ' 0.4 4

T T T T T T T T
0 50 100 150 200 250 300 i] 50 100 150 200 250 300 1] 50 100 150 200 250 300





media/file55.jpg
Dataset Model [ Original __| Convention Original

Mabilenet

Amaranis o

o Remet
. = Cropodion ol s
_OEERE
P ey

ponoescceines Grenopdiom abn

large
il . . .






media/file7.jpg
Distribution ofclases inthe smal lantViage cataset

e 41173 e e
oo ol
—
—_——
prpeiser
=
[l
—
e
e
.

§ 8 § 8 B 8 °





media/file28.png
0.985
0.98
0975
097
0.965
0.96
0.955
0.95
0.945
0.94

Mobilenet, CNU

Accuracy Predsion Recall

m Conventional mYMufT

0.985
098
0.975
0497
0.965
096
0.955
0495
0.945
094

Resnet, CNU

Accuracy Precision Recall

B Conventional ®mYMufT

0.985
098
0975
0497
0.965
096
0.955
0495
0.945
094

NASNet, CNU

Accuracy Precision Recall

®m Conventional = YMufT





media/file10.png





media/file5.png





media/file49.jpg
/7

,,///u////

i ﬂ

PRSI
S Al //«

IHIMII

2
/ ¢ F






media/file11.jpg
Distribution of species in the CNU Weeds dataset

— o0 e

[Rpm—r—

— e swod sy
— ) o 55
— e 003
[ERET—
s oy

1 s






media/file6.png





media/file15.jpg
D ——— e Y
e e,
frmmm——————
[
[Emp—
[rm——
— e,
— G b
]
[

itiuions ofcasses i the age lareilage dotser.

[
— o

§ 8§83 8°





nav.xhtml


  applsci-11-03331


  
    		
      applsci-11-03331
    


  




  





media/file54.png
MASNet, opposite cases, CHLU

CNU

Resnet, opposite casas,

CHU

»

Mobilenet, opposite cases

20

11 EEIPELL PET D EXGSU|

] SISUSPELES U013

QTR TR

] EEDPUGIY FLESNE
IIH {71 13dse snuyaucs

EMEIEIZ|D SNYIITS

] 3] 233110 WNYILEY

RN

LT AR LA SR TUE IRy

113 5N 7 1ET SALIURIALNY
“JWung) 8 wnjzadouay

] By Eacuad

(TN

LIS Ao T ipadauans
1 BN IEILLELIT BISOIG MY

] U g suaplg

1 un i
1 FPLLT ASD LY
T EUEE N DEUES

NSV RTRIEE

7 A|EWE D LINIIEY
5120213210105 B2

edagis

Wt mofe

REOA RN N RE I

| g LNpossaay

A1 P0G FT LS,

o EJNRIRT B3IU0AN

B w2y s wnipodio 3

LI g

|- e |
S e T e N e S o N e N e L e
e s B = = ]
E534cE

A empesupenb 2o

I

—

.. o
_— SUsELL [FOTE:: (T

T OBSDEJGH SUETY

| H LT cadse SNz aeg

n
1
— e 1S

l_ T E 2ILE D WINLIUEY

5L LIS F

B AR IR SRS IR

g

EIISILA 2 Ly Ly

T EYELdIg g suEtig

oL

L usi]

MASNet, opposite cases, large FlantYillage

Resnet, cpposite cases, large PlantVillage

Mobilenet, opposite cases, large PlantVillage

UgHUDBURES]  EiUE.) A SR 1T 1Y 1= VR P Py
. T — WD) DJELD| ChED)
~ ;,_._.._c..:._ [TESITRIES
EEL
n_au._LA
1)
=g~ yEienbg
—.U_ Fl.ornag DTRLLDY
CLapds T menng
a|de
DYELID |
fLdEzan|g
|12y saddz)
Ectc_

mnm\ o
il
v aunoayaeg W
H

— 00 IE|]
T LEN]

ENTEL RIS

W

77
ALAORENS

MASHet, opposite cases, small Plantvillage

il
i

B | [TV =TS (RTCET

wduein

R n«;..:r.p DB |

—15EE OB

| DTN W
Resnet, oppasite cases, small Flantvillages

_lm_.__;!._:_wh_. HT A
..:. RVTEY R
e
Ty
IR
T ey
I

CIFCUTITE

— YL ._.vm.:.._, [ENTENET
IRl EN] T anmg
- ﬁ:._ Lowidoy Loy

SIAED| t_rf._.,. pUA0IEIE] m
™ _tEH qeay AL =.__...\_._.../ -
£

]

WE
e ._ NTENELE

Maohilenet, apposite cases, smallPlantVillage

218304
ENEEEN

¥ = s
=ils JE3| ERdS0MET W]
= AJR2E4 AU

Wy adde epzy Ejooy

w0 e addy

= e sddy adehy

[ R R R T R T 1
[T I B -

T

.:_u_mw_._
A ZESOU

mﬂmfu

=) Fon|Eaney
— | u., CaEnnl meng

are.

MR R TR T

085 1atel
"|SPA HIRIE; BIST

yers

Hn._.._ 13 .._aﬂ.vm

AHLE.D

i

MUBINELS

SULE )

1Ay
IERERABNH
wdiaey
WLy
DUEL D

ng ea L Lag
pIeRIFAT SrRanL
RN TT \.__n_.u
TopengT apddy
BT xu_._,._ <l
TR ET O S TR
_:.:__. ST S YNTLLATET NS
fgieay 2deay
hBIBSDUL S1ELA0) OpEL0]
Allacssey
LI2Ed
150 3pdse cepaEs adny

Aapean

220

Wit WP

morf mofe

Livt

move m

MASMet, opposite cases, FlantSeedlings

Rocnet, opposite cases, PlantScedlings

Mabilenet, opposite cases, PlantSeedlings

1
]
]
0
10
o

I

_—

-

]

[ |

[

[

1

]

[

|

[

=

"

I

I

[

-

n

n

n

(]

u

[ = b = [~ L= bl
= I - A ~ i

I

[

-

]

_—

u

1

-

—

|

u

[

[

|

—

—

_—

1

[

I

—

i

® 2 § 8 8 8 °

[ Jaoi i B

WL mOL

u
4
m





media/file2.png
Distribution of species in the PlantSeedlings dataset
800

700

600

5
4
3
2
1
0
&

X
AN
& & & " <> & <@
< ~ &

(,o& & @°° >
e}é\ & * °
¢ N

8

8

3

8

3

o X
v ?
2

<« &

N
>





media/file53.jpg
y

N////‘ 7/ /I////, ////






media/file37.png
Mobilenet, F1 scare, large PlantVillage

NWobilenet, Recall, large PlantVillage

Mabilenet, Precision, large PlantVillage

e DT DSUnEH auc..\ﬁ L E T B - )
————— | oy gy
cumn_ Aog

e |

—_— .:: Esl

ey J0dls [EU2IIRG Y323y
T oiEwa)

3

=

I — ?mu___tl.._;uu...na F_mm.:nﬂ
—_————— s Jodls Jud) aueldag olELD)

l R Tu.wn 23Ea| —— ) )R odsT ciewn
—_— ey —_—— e ey apody
e MEDY 3 ——— ] kUL
——— CVEBYT ALIAGE0S —_— . AVEzy AuEzang
T———— ey AT s e Caardag
e ————————— R Y A E) I N % _H_mE_u._.
——— QRS LR =R T = “ ey oy
" w.m Eaa e G R T Lo TP b
= m B Tt =
" i ——— QL ([T T ) [ ]
38 w 1 e GOARD PO NN BUNGIHYOEY
YIeDE Jea]T AJFGMEILS ] m I —] _._x._n...lumm._ L ROEIE ._nl
B e ———— UL R | I P TE I iz _,_wa - oz gy M
MaSp AEpamog ALAYD 6 v huaud n.
ey N NESOLT 01ELLD T CAEWIC] W 2 EE S I T R T EITTEY | M
S ——— [ EET QR & h plokl T1EET 01ELID) <
———— G g 1) = rr —_— AP mEa) M
———————— . MJUEBY ALBGRENS = e MUV ESL T u
—————— _u_mwﬁ_l.: 1305 5EH = e
SEEEEEEE—————— h T —— 1F _almnmn_
————— NEAL
—— | T AT gEing
1 aadsag e Jods |2AREg (2] J2ctay
—pead
2 adag
T wog L Ly, s
e 0T 5, Ew_ TzoodEoaiEnT w10 T eS| mlodsoziayT wan
E e T TR I PN EH T Sy
_—_————— ¥iru addr Jep2y ey e BH| m_.._n_u Jepan” s ddy
s 1OITy3213~ 3(ddy =_— o Y opedy
eur oy ajody s 0235 3yddy T 5(d
EE= = S = R T A B B
[ T R N e e
e aITBwgEuo Zunzy ™ aduzin T EELeD
) BT CIEID T D1ELLD | ToopEwg |
E——— e ueE ATy =
YrEa,
e L g OlEwD
e — aay
NI AT |
e 10ds JEE[ BLOklRS 03EOL
AW T epdsT olEwn)
e | oy
— AL EE WU R TR
s Rl ASEN —————— s, AyleRy” A3can|g
e —— R ledag l _._._u_mm_._ [ELET E
————————————— iy R oo o LT 1L
E e QICERILT R 3 adsig M_u " muE Tyrgl 2y adein
s 1570 DDl Ul = W "ﬂ ET UL LY _..
s, 10U TY2E19T 2dRUG = = JTyzeRT edeln =
R || mw_._ [T [] i L] ]
> punoufjize & w... e SR INCULA PUNOUEOEY 5
.»:2_.2 5 ] e RILELAN T WMRILE 3
.__ L TS i) s ooLes) | Ty J g e edein @
MapAnd RO m _”... Eaa————— U8 | m
CiOES0N CARWG) GIRWE) M U —— "4 JEIOW CIEWO] 22w W
= pjo|y J2a]  olEWwo) o M e BN EC o 2
e V. B0 TAP2TT 01EL O] 2 PR e ——— SN D [ R TR =
e MUERYT AUSOWRAS L] m ———————— ARAY ADOARNE L]
. [} a@_ﬁ_l.__:_qé,._.n.: ] s AUERY T Asl3CISEY
| .(F | ) o] &= ———— 1By e oyEIDg
—_— .:: (=] e apag
——] ool mEng Eane e VL TC TR IR TS TN
— Snﬁ EUmREg |ag ‘Jadoay g 1007 ELE132g |20 aacday
———————— AEay” Y323y L —————r T R LR
ey, MippERYT 2dE) —_— Ay g
e UG IPLEY EUET AT Yt = W7 Jea) daonon w0l
l s e TeCsUTE T Len e Ol R T EAOCEDIIRT T LD
1 g — A A
apler aenny oy 5. ZdOE Jepdn adidy
ajcdy s, 10/ yoE|g” idoy
qaxs m__un_..._. addy — oo addyT addy
e B R A B B R T A S R B e B
(=3I = T = T = T =1 i R e s
AU Buo)Faney iqduc|dunzy ™ sEVEND
T
Lsenhg
AR L
el AL ._mu_nm CIELL O,
E ———  — | .»E_um: m_n_“_.q l AUpesLT apddy
| i n
e MWERY AEgENIG
R %num,._ o l AUpEsT | eg aadaag
uon_m jafE]T ajRwoL Wb oy ey g
1l = _muwa ¥IEq) ExE] adein
S 1SN LOWWOYT WD I W l BT EPETTFTTT e S TP ....m
WoEg s 2 A (ST A 5 =
e M| 1ERY L u O e MUERY UMD L}
S saAEa[ 1IN0UYW punouEyoeg i W_o I SANES u Rl AL _| __._n._u.‘um.n [
Yaza |E] ALDneanng = = : Aoy m.
= tones)] By e adun D |n., o IR adein
E———— =D ABEMS T ALEYD w O — AT pACAT AR w
——— g QU IR o o] . m Eaaae W L iy 4l [ ]
o G e R ST | £ o _uo__z 1B O1ELIOL &
——— 1.1 ApegT ciewo) = - I 1DqTA eI miEwD) =
———JRINIEETT _».:La BI5 L) Am.. - - " s haEpenny L]
| E e Alpezy Ausgdsey
T EEEEEE——S—S u._m 0 =21E h TR 15T olEng
EE——————————————— I T ou....n,_ ——————  hyyEay Eing
e I ApE] CRI0g s, LEIQTAETT 0E1DY
R, s |ELAL ey zdeay —— T ﬁpml IELHEY]
"“ Afljany adrig —_—
. 1D [H JeE ) Weyiauy L R — _,.w__m_l._,.m.lz\ﬁ__._cxl
——ods s RindsoouanT wac] —_———————— i LED] oidinidag
oS G BT e Ui R
T—— a0 e aeody addy —— e e T e e T iy

—_— W HIE|g 3ddy W oaee Ay
qeas aedy ajedy s q73s s|ddyT 3 jddy

a
1
o4





media/file24.png
Mobilenet, large PlantVillage Resnet, large PlantVillage NASNet, large PlantVillage

45,000 45,000 45,000
40,000 40,000 40,000
35,000 35,000 35,000
30,000 30,000 30,000
4 25,000 4 25,000 4 25,000
S g g
g 20,000 g 20,000 g 20,000
15,000 15,000 15,000
10,000 10,000 10,000
5,000 . 5,000 . . . 5,000
, N O ; ;
Time for training Total time Time for training Total time Time for training Total time
m Conventional mYMufT B Conventional W YMufT B Conventional mYMufT
Mobilenet, small PlantVillage Resnet, small PlantVillage NASNet, small PlantVillage
90,000 90,000 90,000
80,000 80,000 80,000
70,000 70,000 70,000
60,000 60,000 60,000
4 50,000 4 50,000 £ 50,000
- = =)
g S S
¢ 40,000 2 40,000 ¢ 40,000
30,000 30,000 30,000
20,000 20,000 20,000
10,000 l 10,000 . 10,000
, H o= B , I 0
Time for training Total time Time for training Total time Time for training Total time
B Conventional mYMufT B Conventional mYMufT B Conventional ®YMufT
Mobilenet, PlantSeedlings Resnet, PlantSeedlings NASNet, PlantSeedlings
8000 8000 8000
7000 7000 7000
6000 6000 6000
5000 5000 5000
5 4000 § 4000 5 4000
g g a
3000 3000 3000
2000 2000 2000
1000 1000 1000
0 0 0

Time for training Total time Time for training Total time Time for training Total time
®m Conventional m YMufT B Conventional = YMufT B Conventional ® YMufT





media/file29.jpg





media/file1.jpg
Distribution of species in the Planteediings dataset

8 B8 8§88 8 8 °





media/file12.png
Distribution of species in the CNU Weeds dataset

25,000

20,000

15,000

10,000

5,000

0

<] wng|e wnipodouay)
"] SNES[JO413d SNYIUEBIELWY
‘ned @ Z\ny ele|peliipenb edosules

[I1H {71) 43dse shyouos

OYIUES' D 7§
1ysnid (2ye|gd'4°s) sisuaiiewins ezhuoy

] 3|EIUILO Wn|Yluey

"1104 edistad ejuoiap,

] SIpLIA SNYIUBIEWY

Y3ws wnijojdy wnipodouay)
1 {*7) sha2ela|o sNYaUog
LOs1EAN'S HIf|@mod snyjueleny
"] ESOpUOUY sUBplg

] sisuspeued uoladiig

1 eaU|2202 eaowod]

] eI|OJISILWS L BISOIqUIY

"1 ejeuuld|q suaplg

"] Pl BlSOIqUIY

*1 suedjna oi3ausg

ea3150) (1)
SNI2EJB|0 "dsgns wni|g sNyjueiewy

*14 ejljod educiap

‘lopag snjnled snyiuelewly





media/file9.jpg





media/file42.png
Mobilenet, small PlantVillage Resnet, small PlantVillage NASNet, small PlantVillage
099 0.999 0.999
0.998 0.998 0.998

0.997 0.997 0.997
0.996 0.996

0.995 0.995

0.994 0.994

0993 0.993

0.992 0.992

0,991 0.991

0.99 0.99

0.989 0.989

0.99
0.995
Accuracy Predsion Recall Accuracy Precsion Recall Accuracy Predsion Recall

0994
0993
0.992
0.991

0.99
05989

m Conventional = YMufT m Conventional = YMufT m Conventional = YMufT





media/file22.jpg
Mobilene, large Pantitage Resoet e Paravisge ASHe g Paravloge

For - .
2 = [ II II
X i fom II

f II
| I

B EREEEEE






media/file47.jpg





media/file38.png
MASMNet, Recall, large PlantVillage MASMet, F1 score, large PlantVillage

MaSMet, Precision, large PlantVillage

—_— Al EugduciBunzy

BELEID

_— S% jixaj C.fa,._m

————ae e e s
—— |

CLELLO
Hjcdy
O}ELD]

EEL

—_— i1 Lol oy

EEo R L Rl BRG]

e ALV ESLT
E I

e ———— TR [R5

15 1T |
——————————— AR ALy
. " 11250 D)2 |

_— a1

E—————— W1
I LV ESLT
—————————————} .A._.__

oz
[T

2] “huliog
LG )

—————— |5 e e T e

14y

ES AL BOWEIS

L

AJEI DiEWa]

o]

AEEE.
hargnry

s, 1UHI|q A2B] C1EI0.)

———— sy
i AlLE]

njEing
nyELay

L S N

|I
l 1= m,__.._u lepanT s

I

1
05
1
u

[}
(%]
0.7
0.6
0.8
03
0.2
)

wdi je2 Eumdag

Wl ane ajcdy
~

ddy™ = ddy

r:_or\u_u:1mr w
LAY
.:.Emm_._

T adein
RNTRIN
oo

T ouwann

NN

drdy

ELEID

CIELIO]

—— A EPIGE T Coewn |
—_— Ay a3y
Eaa———————— ZELLD
ArppprsnyT A sangan g
e A ERY |ag acdag
odsTiEie T uumEn_

|| ||l

A YAl o
IR UOWSTT Lo
LTYTE AT BOEIN

l
T—

. ...,m_u__r_ ThoEpmogT
i L] :_\.EO._.
ey DO JRET CRELIO)

e UL i "
e A ey .,.._bn_.., L35
T T R [
s L ) g
L —————— T EN =l ]
I —— -

||H||

I

| ||

|

:

l

| .|H||||| M.|

|

|||I.

e KAt

ods

e
AYlERY  UEACADS
T

r

jEa Euodas
...mmz_.: TiEpIes

LR
e A

Ay 2
.:t_mm_._ C1EI0,

@127 caewo |

LTI

_un FEER|
w0l
STF ftaly ]
__._u_ru_._ :._..._._J
sn T EddeTaepan T sddy
= mUulw_n_n.u.Iw_n_n_{
SugEso@uned” BELEID

15138 wIER
uagaeg LEMEINNINE ]

g

TagEwe

T adEIn
R b

SIS
19

g hmm._ Tudaypcy
adu _-i_ oy
AyEay  Alays
Ensdde L Epan T F

CLELIO]
T oELIn |

o acday

|
Al gy

_u__.__._n._uu JER

_.:__.._.:.
AYLERY  ABgNRIL
Ayrpesy T Addend

uzitlag

wio
T

#|ddy

ERASI

srweional

L]
=3
I
m
a
L]

T

LRI

W Ratlo WCareertion:

T

LA

W Eatlo WCarvertions





media/file17.jpg





media/file30.png
[

Mabilenet, Recall, CNU

Maohilenet, Precision, CNU

:....., e o
7 sEubpeE uoiahig

T EpYIA EROIGUY

NS UERNA 003G

1 EOpUaL SUPIE

1K 17} sacke s nuouag

RN IR EEIET AR TR TS

) FELALE WL

erAUOY
d |IPE|E 4 505E &

SNBIEIBN0 CEOIE WG|GS MELEIE Ly
) S A0 B 5 PSR Wy

ST AN S )]3S NLJUR IR

1 wnge winipodousyy

1S IPABLA S NAILIBIE RNy

] ESUEDI00 BA0uwod)

4 Enjod euoiag

0 e3E a0 ENU0IBS

NS W02 Wnipodouan sy
] BIOpIS D) R gLy

7 Eyed|g sUApE

1
05
08

]

05
04
03
0.2
0.1

R TR TN PR "o
] SEUBPELIED LOIBPUY

LT LT T

Tsuefin ooauas
LR ]

I 7] JaE e S rmpusog

0715 NB0EIF0 S P0G

il

W Ratio W Conventional W YMufT

e | S{EJUISLC WWFREILIEX
e "D N {30{E)] 475 ) S B U HE WG BZALD)
— :

AR S0 R NG NI S MILIEIE Ny

—_—_—— Tsmagona sy Y

_————————— 5 mi | v
ﬂ JOQIEE S L § U Wy
1 wingpe winsgod owsyy
TSP S AUy
"] BRI B0
e "yeppd oA,
R oy v ),
e yuws wn|jojoy wijpod
sy, M wayE e eE0IqUY
S —— ] EYELILINI 501

e B s
e e
e — "] € (|11} €[ O
e —— "] % U1, CAEVS2G
———— orossumn
e i s
e (s se0S
e —— | O[F1U3L10 (LIARRALEY
e [ 111 | BO{E1]"4 5 ) § 6 LI2 (B WG BZALIDY
5 VYR K31) 1 (8 (] WAMI|C]  MAALIEIE Ly

—————SIIse s agana sy
l UCEJEAY G Njamod S IURIE LY
— youagsned sniueswy
] wingpe wingod oy
TSP SRR
"] BAUG0 BOUY
@ LT AEYY
R oy s ),

Lt L]

|

| RHORIEILIE EE Oy

1 EFEULN S U

W Ratio = Conventional = YMulT

WRatic W Corventional  mYRMWFT

WHRatic W Conventional  m YR

Resnet, F1 score, CNU

Resnet, Recall, CNU

Resnet, Precision, CNU

|
-
-
i —
R
———————————
—_—

"1 BP0 ER QUG
—_—— i
e () s
m 70 71h naoR R0 SsnLpUDE
——— 0w
e CLPRER

FNAILIA0 TR WM S UEe Yy

|

®Ratic ®orventional =YMulT

ETALIOTY

) STNE| 000 S MLIURIE LY

s s s mppwad sy

1 wingpe wmpodausy s

S APUA S LR IE Y

] BFIDD00 ER0 0]

e —m—==. "y epd @woaas

I 10 e s L0 B0,

e w5 Wiy wipodousy)

/=== e eraquy
—_— 1 g suspig

"hed o LFa ™ w o
I SEUEapeIED uoaaig

T EPYIA BEQIqNY

T suedna opauasg

1 EopuOLy Suspig

IH (7} sack e S nupLIeg

T T nER R SnupUeS

1 SRR RUmn U

LRl Rt o
ENIOEIN0 eI Wi S Uy

I.IIII|.“ 1§ MEE|OAA0 S DLILIRIE LR
e —m—=—,
UOSTE A S |30 S IELIRIE Iy

|

— e 1w wnipadouay )
—=== Mepup sy

| EESNCI1(1) 30 1810}

“AY By L0,
i

— ] eapssad Emnaag
I aIs, winjopey wnpodousy)
0’0 =2 ey aym ex DIy

e —— ) oo SUBRIG

o

N =
L= =]

o
]

R ELEE EO YT R

|
UOSTR AN S |30 S PELIEIE Ly

7 wnge wnpodaualy

. My sty

e | BEHCI1(1) 30 1A1CH

— ey XA,

-_—
— ] papssad Emnaay

A1 WiOpoy winpodousy

e, 1 s A e DUy
= Iy 5 unp)

1

W Ratio W Conventional  mYMufT

MASMNet, F1 score, CNU

NASNet, Recall, CNU

MNASNet, Precision, CNU

7 wnge WpoooumE
R
— = teg gy erpeipe e
mememem———————p—

e RICTRTL
0 ENS 180 EMU0IBH,

15 |PUgA S LR IR Ly

&

07115 naoe @0 SPUDS

-] SmOpuUny sUaplg

il

1 sEuapesEs uosafing

e — 7] 303 €30WOM)
]
— TN B0 eSS IE B ROy

] ERRUL SUApIE

—
9 epiyia eRaIquIy

15 HENNA 0OMUSS

I

— e L] R = T T T T T (TR

e ) ENRd O
l”...-w.mn:.am.uu_lzcm._m._bt

1

o

"1 e o d o

S | OGO SRR

b e
Loy

wd Ty S Y {3

e —— R
e 1) ke s

vy (aqeg LEUt ]

— e

04 B3E B EXU0EA

e |1 31011 SMUUE Iy
YIS wnjjojoy wnjpodaualy
e ,

(] SN0 IFE 5 MEHINS

WRatic W Comventional W YMfT

| Emopuoy suspg

|

] SEUBPELIED BOJBRIY

==, M uur erowoly
= o — LB T
e —
— 7 ElRULEG SUSpIg
B —
— g L T
R ue i cosug

S AR )0 (RO WING||0 S MILIEIE LR

|

e ) Euod BROI
0SB E S gnged § ngue ey

1 Wi wnepodouagy

e ————————
S —
e —
e
—
S —

——R T
———— e s sk
e ] 3[EluSLI WARpUEY,
H0g B35 B U0 ES

] SIPLA S USRIy

£

HILES L et

e ———— ISR R

e — e,
e *| E5 LD SU8
|I ] SEUApEUED B0JaRII
e 1 rua raowed

I 1 ENOFISILIAIE &5 oWy
——————————————————— R P T T
= 1P EEOKUY
e — 7] & E BN DE3U35
|l.4.£uurw_c ORI WANGI0] S DAILIEIR Wy
e —mmD==== 'yenpd Do,

“TEN (340115 5 2

m YMUFT

mRatio  mConventional

B YMufT

W Hatio W Conventional





media/file57.png
Dataset Model Original Convention Original Convention | YMufT
5, ¥
Mobilenet e
CNU Resnet &%
Chenopodium ficifolium Smith
NASNet o
Chenopodium album L.
1
21EE Mobilenet

PlantVillage






media/file35.jpg
|l|HI||I||I|||IIIlIIIIIHIIHHIIHIII l||HIIl||l|||IIJlIIIIIHHIIIHHIIHI ||lHIl||lHIHIHHUUHHIUIIHHII
|\IHIH||l||lIHIIHIJIIHIHIH|||||| I||HIl||lIIJl||VIHIJIIIIINIHIHIIII IHIHlIIHIHIIIJIIHIIHIIIIHIIIHII






media/file48.png
05975
0.97
0.965
096
0955
045
0945
094
0.935

Mobilenet, PlantSeedlings

Accuracy Precision Recall

m Conventional = YMufT

0.975
097
0.965
0.96
0.955
045
0.945
094
0935

Resnet, PlantSeedlings

Accuracy Precision Recall

m Conventional mYMufT

0.975
097
0.965
0.96
0.955
0495
0.945
094
0,935

NASNet, PlantSeedlings

Accuracy Predision Recall

m Conventional mYMufT





media/file27.jpg





media/file3.jpg





media/file19.jpg





media/file23.png
Mobilenet, CNU Resnet, CNU NASNet, CNU
300,000 300,000 300,000

250,000 250,000 250,000

200,000 200,000 200,000

150,000 150,000 150,000

100,000 100,000 100,000

50,000 l I I 50,000 l . I 50,000 I I I
0 0 0

Time for training Total time Time for training Total time Time for training Total time
m Conventional m YMufT ® Conventional ®m YMufT m Conventional m YMufT

seconds
seconds
seconds





media/file58.png
Tomato___ Late_blight

Cherry___ healthy

Resnet
_Bacterial_spot
NASNet
Potato___ Early_blight
Mobilenet .
Apple__ Cedar_apple_rust
small R ¢
PlantVillage eene
Tomato_ _ Leaf Mold
Corn__ Northern_Leaf_Blight Potato___Late_blight
Mobilenet
Common wheat
PlantSeedlings | Resnet
Black-grass Charlock

Cleavers

Sugar beet






media/file50.jpg
AT A i

b //u/w A s/, 22y






media/file40.png
Convent.

YMufT

Mobilenet

Training and validation accuracy

1.000 4

0.975

0.950 1

0.925

0.200

0.875 4

0.850

0.825 1

—— Training acc
—— Validation acc

[=]

T T T T

10 20 30 40 50

Training and validation accuracy

1.00 4

0.95 1

0.90 4

0.85 4

0.80 4

0.70 1

—— Training acc
—— Validation acc

40 60 B0 100 120 140 160

Resnet

Training and validation accuracy

= Training acc

0.86 —— Validation acc
0 10 20 30 40 50
Training and validation accuracy
1.0 A aa A . Y - o n A v
0.9 1
0.8
0.7
0.6+
—— Training acc
051 Valdation acc
o 20 40 10} a0 100 120 140 160

NASNet

Training and validation accuracy

1.000

0.975

0.950 1

0.925 -

0.900 -

D.875 -

0.850 1

0.825 4

0.800

= Training acc
—— Validation acc

10 20 30 40 50

Training and validation accuracy

,.v- V 1""'—"’7

— Training acc
—— Vvalidation acc

40 60 80 100 120 140 160





media/file36.jpg
LA HIN4HIIIIIIIIIflllllll[lllllij!\lll[






media/file33.jpg





media/file32.png
Convent.

YMufT

Mobilenet

Training and validation accuracy

1.00 A

0.98

0.96

0.94

0.92 4

0.90

0.88

= Training acc
—— Validation acc

o4

10 20 30 40 50

Training and validation accuracy

1.00 4

0.93

0.96 4

0.94 4

0.92 4

0.20

0.88 4

0.86

0.84 4

-"v—v—

= Training acc
—— validation acc

50 100 150 200

Resnet

Training and validation accuracy

1.00

0.98

0.96 4

0.94 1

0.92

0.90 4

—— Training acc
— “alidation acc

10 20 a0 40 a0

Training and validation accuracy

1.00

0.98 1

0.96 1

0.94 4

0.92 1

0.90

0.88 1

Lu e W

—— Training acc
— \Vahdation acc

50 100 150 200

NASNet

Training and validation accuracy

1.00 4

0.98 1

0.96 4

0.94 4

0.92 1

0.90 4

0.88 1

0.86 1

0.84 -

—— Training acc
—— Vvalidation acc

T T T T

10 20 30 40 50

Training and validation accuracy

1.000 4

0.975 1

0,950 1

0,925 1

0.875 1

0.850

0,825 1

= Training acc
—— Vvalidation acc

50 100 150 200






media/file14.png





media/file41.jpg





media/file46.png
Convent.

YMufT

Mobilenet

Training and validation accuracy using Mobilenet

—— Training acc
~—— Validation acc

20 40 &0 80 100

Training and validation accuracy

104

0.9 1

0.8

0.7 1

0.6

0.5

—— Training acc
— Validation acc

20 40 60 80

Resnet

Training and validation accuracy using Resnet

1.00

0.95 1

0.90 4

0.85 4

0.80 A

0.70 1

0.65

0.60

—— Training acc

— Validation acc

T T
0 20 40 &0 a0 100

Training and validation accuracy

—— Training acc
— Validation acc

V] 20 40 60 80

NASNet

Training and validation accuracy using NASNet

—— Training acc
—— Validation acc

20 40 60 80 100

Training and validation accuracy

= Training acc
—— Validaticn acc

20 40 60 80






media/file45.jpg





media/file16.png
Distributions of classes in the large PlantVillage dataset

6000

SNALA AND JEDT MOJ3L DIBWO]  0lBWO)

B SnJAIAT JIESOW OJEWO)T OIFWO|
e 10dS 19die] ojewo]

“om] sIW apidsT olewo |

s 10ds je3| euoldag” oleWOL
B D(O\N JE37 Ojewo)

W e oewo)

Ayjesy”  ojewo)

wang Apde3”  olewo]

jods  |ealaeg olewo|

Y035 jean  Alagmens

Aylesy Auusgmeas

mapw Alapmod” ysenbg

Ayyeay—  ueaghos

Ayiesy Adlaqgdsey

w3g 2187 01el0d

Ayieay ojelod

WEg AMeT olelod
Aylesy  j12q uaddad

jods |euayzeg”  ||2q ‘1addag
Ayyeay™ yaead

10ds |eisaeg” yoead

{(Buuaaug snuyn) Suigduojduney 23uelp

5000

4000

3000

{10dg jea sisdoues|) g jea1”  adeig
Ayyeay— adeln

{sa|sE3|N yIe|g) E253  =deun

o4 yelg  2dein

WEg T eaT waynoN T wio)

Aylesy™ wio)

I5NAT UOWWoD)” wod

jods jea| Aelig jods” jes| elodsooual wio)
map|iw~AlapmogT Alayd

Ayyesy Auayd

Ayyeay Aulaganig

sanRal InoyuM punoidyoeg

Ayjesy™ s|ddy

1snd ajdde uepa)y”  9)ddy

o4 yelg”  ogddy

geas a|ddy™  addy

0

2000
1000





media/file20.png
Validation, CNU

11

Resnet

seconds

Validation, large PlantVillage

Mobilenet

Validation, small PlantVillage

| ol

Mobilenet

seconds

Validation, PlantSeedlings

al

Mobilenet






media/file31.jpg
Convent.

YMufT

[ITTTeTIT]
[ETRERE]






media/file25.jpg





media/file0.png





media/file4.jpg





media/file8.png
Distribution of classes in the small PlantVillage dataset

6000

5000

4000

3000

2000

1000

0

SNUIA - [AND7JB3T MO||9A OlBwO] Olewo|
SNJIA DIBSOW O}BWIO] OlBWO)|

jodgs 1adie]”  ojewo)

-om] sauw JapidsT  olewo]

jods jeas| euoldss  ojewo)

ploW jea1  olewo]

WBig ee7”  ojewol

Aylesy olewo]

WaNg Alue3 ojewol

jods |elsa10eg”  ©jeWOL

Y2402s jea]  Auagmeldis

Ayyeay  Auagmelis

map|w Alapmod ysenbsg

Ayyeay  ueaghog

Ayyesy  Auisqdsey

Wsiq e1e7  olelod

Ayyeay  oi1elod

waig Ale3”  o1elod

Ayyesy |12q ‘uaddad

jods |eliaioeg  ||2q 1addagd

Ayyeay yoead

jods |elialoeg” Yoead
{8ujuaaud snuyD) 3uigBuojBuney”  aBuesp
{(1ods jea7 sisdoues|) 1ydig jea7  adeig
Auylesy adeln
(sa|seay joe|g) eas3™  adely

j007yoe|g” adeln

W8Ig 4ea7 wlyLoN wio)

Ayyesy  wiod

1SN UoWWODY Wio)

jods™jea| Aedo jods jes| elodsodie)y”  wio)
map|iw~Adlapmod— Auay)
Ayyesy™ Ay
Ayyeay Awuageanig

SaAR3| INOYUM punocidyoeg
Ayyesy a|ddy
1sni”a|dde 1epany”  9|ddy
jou 7 yoe|g 9|ddy

gels addy =)ddy





media/file51.png
0.
0.
Q.
0,
0.
0.
0.
Q.
0.

9
)
T
]
5
4
3
2
1
0

Maobilenet, Precision, PlantSeedlings

o

w"b»z

& A &

& ﬁ“& & ‘gp Jf*“" &
é@‘.:‘ q,é\é "b = E}Q‘b .b#c, 0{\0 \pn#
< o R\Q‘t" "}95\ (,6‘6\

&
W Aatio W Conventional = YMufT
Resnet, Precision, PlantSeedlings

1
09
0.8
o7
0.6
L1
0.4
03
0.2
0.1

0

2 e

qu“ze é‘“} bQ“' &,ﬂ}# cs,ﬁ‘t c‘?‘h 5 03& -5&;? Fsﬁt“'zb &

& I, & o zbd o o(}\ &
(-pf"o e & é\\\a <& \pﬁ'f'

& 5 S
W Aatio @ Conventional = YT

&

Maobilenet, Recall, PlantSeedlings

& o >
& > & $

é‘? a& o
& & A
':
& a‘:‘\d’ @“‘Pﬁ s
e\\e o7
o
W Ratic MW Conventional = YMUFT

Resnet, Recall, PlantSeedlings

@ el o R
ﬁ.ﬁ@f#b&'ﬁfﬁ ar
o scy & oF d& S o

@B qﬁg&‘b & ‘10% ;jb 2 (F ,Lg,
e o
o of a\‘f\& :.;.é& °6\6‘° N
'§; o

W Aatio = Conventional @ YT

1

o
e

a7
0.6
0.5

03
0.2
0.1

0

1

=
o

o7
0.6
05

03
0.2
0.1

0

o

&

(-_D

Mobilenet, F1 score, PlantSeedlings

f@ﬁﬁ"‘a\a"fa\

r.v o & -i‘)
B o
Al

3 &
& &
b .‘kx . o ,q?

o
o i

{}
® Ratic @ Conventional @ YuiT

Resnet, F1 score, PlantSeedlings

A & a & o qu
& > \} el o ‘\‘P d
E C&#’* @a\ ?\ & & W @x?'
& B [+ o &
e & ] & o o
5& & & &
&
&
W Ratio ™ Corventional  ® YT





media/file43.jpg





media/file34.png
Mobilenet, large PlantVillage Resnet, large Village NASNet, large PlantVillage

0.995 0.995 0.995
0.994 0.994 0.994
0.993 0993 0993
0.992 0.992 0.992
0.991 0.991 0.991

099 099 0.99
0.989 0.989 0.989
0.988 0.988 0.988
0587 09587 09587
0986 0.986 0.986
0985 0.985 0.985

Accuracy Predision Recall Accuracy Predsion Recall Accuracy Predsion Recall

| Conventional  mYMufT m Conventional mYMufT m Conventional  mYMufT





