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Abstract: Wi-Fi sensing technology based on deep learning has contributed many breakthroughs in
gesture recognition tasks. However, most methods concentrate on single domain recognition with
high computational complexity while rarely investigating cross-domain recognition with lightweight
performance, which cannot meet the requirements of high recognition performance and low com-
putational complexity in an actual gesture recognition system. Inspired by the few-shot learning
methods, we propose WiGR, a Wi-Fi-based gesture recognition system. The key structure of WiGR is
a lightweight few-shot learning network that introduces some lightweight blocks to achieve lower
computational complexity. Moreover, the network can learn a transferable similarity evaluation
ability from the training set and apply the learned knowledge to the new domain to address domain
shift problems. In addition, we made a channel state information (CSI)-Domain Adaptation (CSIDA)
data set that includes channel state information (CSI) traces with various domain factors (i.e., envi-
ronment, users, and locations) and conducted extensive experiments on two data sets (CSIDA and
SignFi). The evaluation results show that WiGR can reach 87.8–94.8% cross-domain accuracy, and the
parameters and the calculations are reduced by more than 50%. Extensive experiments demonstrate
that WiGR can achieve excellent recognition performance using only a few samples and is thus a
lightweight and practical gesture recognition system compared with state-of-the-art methods.

Keywords: few-shot learning; gesture recognition; lightweight network; Wi-Fi sensing technology

1. Introduction

With the rapid development of the Internet of Things technology, various smart
devices have changed people’s lives. Human–computer interaction technologies, i.e., infor-
mation interaction between humans and computers, have become essential. Since gestures
have the advantages of easy learning, rich information, and simplicity, gesture recognition
technology [1] has become a research hotspot in recent years. Gesture recognition tech-
nology can be widely used in virtual games, automatic driving assistance systems, sign
language recognition, and intelligent robot control. Currently, the main problems of the
existing gesture recognition methods based on wearable sensors [2,3] and cameras [4,5] are
that they are not convenient enough, the required equipment is expensive, and there is a
risk of privacy leakage, which limits the wide application of gesture recognition systems
in reality. Gesture recognition technology is more practical than ever before under the
booming development of Wi-Fi sensing technologies, progressively transitioning from
theoretical research to practical landing application stages due to their advantages of a
contactless manner, low cost, good privacy, and the fact that they do not require line-of-
sight propagation (LoS) [1]. Specifically, the development of gesture recognition systems
is moving from the single domain to the cross domain, from recognizing fixed types of
gestures to new types of gestures. In addition, a gesture recognition system is increasingly
deployed in the mobile environment, and its model has also transformed from heavyweight
to lightweight to meet the requirements of mobile device deployment.
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Wi-Fi sensing technologies recognize a gesture by analyzing a gesture’s feature, ex-
tracted from the channel state information (CSI) of Wi-Fi signals, which are generated
during the execution of the gesture. A convolution neural network [6–8], an important
neural network model of deep learning, has excellent feature extraction capabilities. There-
fore, Wi-Fi-based gesture recognition methods mainly adopt deep learning algorithms to
recognize gestures [9–12]. However, these methods concentrate on single domain recogni-
tion. Once they face new types of gestures or gestures performed in a new domain, the
recognition performance will dramatically degrade, and a large amount of testing data
from the new domain is needed to adjust the model. This problem is called a “domain
shift” and is a substantial challenge for improving the practicality of the gesture recogni-
tion system. In addition, deep-learning-based gesture recognition systems usually have a
complex neural network model. Due to the limitations of storage space and computation
consumption, the storage and calculation of neural network models on mobile devices are
other substantial challenges. Therefore, designing a lightweight gesture recognition system
with good recognition performance in the new domain using a small amount of data is an
essential aspect of facilitating the application of gesture recognition technology.

Recently, there has been an increasing amount of literature adopting the transfer
learning technique [13–15], generative adversarial networks [16], or a manually designed
domain-independent feature body-coordinate velocity profile [17] to eliminate the domain
shift problem. However, the excellent performance of these methods depends on high
amounts of data, and the manual modeling method needs to analyze complex CSI data.
Since the influence pattern of gestures on Wi-Fi signals is complicated, the model of velocity
profiles is complicated as well.

In addition, inspired by the few-shot learning technique [18–22], Zou et al. [23] and
Zhou et al. [24] combined a few-shot network and adversarial learning to remove domain-
related information. Lan et al. [25] proposed a few-shot multi-task classifier to address
the domain shift problem. The basic idea is to initialize the parameters of the classifier so
that the classifier can quickly adapt to a new domain. Yang et al. [26] proposed a Siamese
recurrent convolutional architecture to remove structured noise and used convolution neu-
ral network (CNN)-long short-term memory (LSTM) to extract temporal-spatial features.
Although these methods can eliminate the domain shift problem with a small amount of
data, they require more computation. Their complex models with many parameters are
not suitable for deployment.

To address the challenges mentioned above, we proposed WiGR, a novel, practical
Wi-Fi-based gesture recognition system. The key structure of WiGR is an improved few-
shot learning network, which consists of a feature extraction subnetwork and a similarity
discrimination subnetwork. The feature extraction subnetwork adopted a 2-D convolu-
tional kernel [6] to simultaneously extract the spatial features and temporal dynamics of
gestures. Similar to the relation network [22], the similarity discrimination subnetwork
uses a learning-based neural network as the similarity measurement method to determine
the type of gesture, and this is more accurate than using fixed functions as measurement
methods [18–21]. The whole network can learn a transferable similarity evaluation ability
from the training set and apply the learned knowledge to the new testing domain via
an episode-based training strategy [20] to eliminate the problem of domain shift. In ad-
dition, there is evidence that lightweight networks [27–31] play a crucial role in mobile
deployment. Therefore, we introduce depthwise separable convolution and an inverted
residual layer of a linear bottleneck [30,31] in a few-shot learning network to reduce model
computations and parameters. Simultaneously, to reduce the complexity of the model
while the recognition performance does not decrease accordingly, we introduce a squeeze
and excitation (SE) block [32] to improve the quality of the features generated from the
network by explicitly modeling the interdependence between the network convolution
feature channels. Later extensive experiments on two data sets (CSI-Domain Adaptation
(CSIDA) and SignFi [10]) demonstrate that WiGR can achieve excellent recognition per-
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formance in cross-domain evaluation, and our network design dramatically reduces the
model computations.

Our contributions can be summarized as follows:

• We designed a novel Wi-Fi-based gesture recognition system called WiGR that is more
practical than existing gesture recognition systems. The practicality is reflected in its
ability to recognize new gestures or gestures performed in new domains using just a
few new samples.

• A lightweight few-shot learning network, which consists of a feature extraction sub-
network and a similarity discrimination subnetwork, is proposed to address the hard
domain shift problem. Lightweight and effective blocks are introduced in the network
to achieve lower computational complexity and high performance.

• We made a CSIDA data set, which includes CSI traces with various domain factors, to
simulate real scenes. The CSIDA data set was helpful for us to verify the accuracy of
the proposed WiGR in cross-domain evaluation.

• Extensive experiments on the SignFi data set and the CSIDA data set show the supe-
riority of the proposed WiGR over existing gesture recognition systems in terms of
cross-domain accuracy and computational complexity.

2. Preliminary
2.1. Related Work
2.1.1. Wi-Fi-Based Gesture Recognition Methods

With the rise of Wi-Fi sensing technology, the CSI of Wi-Fi can convey rich information
and achieve precise tracking. There are many different types of methods based on CSI
to achieve gesture recognition. For example, WiGeR [33] employs a multilevel wavelet
decomposition algorithm and the short-time energy algorithm dynamic time warping
(DTW) to recognize gestures. WiCatch [34] utilizes the support vector machine (SVM) with
the MUSIC signal processing algorithm to recognize gestures. Ma et al. [10] proposed
SignFi, a deep learning method with a nine-layer CNN architecture, to recognize sign
gestures. However, these methods have not dealt with the hard domain shift problem.

Few-shot learning methods [18–22] have achieved great success in addressing the
domain shift problem. Zou et al. [23] proposed a new few-shot domain adaptation scheme
(F-CADA). F-CADA adopts adversarial learning to construct an embedding space, which
needs a large number of unlabeled target data. It then enhances the performance of the
target classifier by a few labeled target data via greedy label propagation. Zhou et al. [24]
proposed three adversarial learning processions to remove the distribution discrepancy
between source and target data, increasing the complexity of the system. Lan et al. [25]
proposed a multi-task classifier to address the domain shift problem. The basic idea of
addressing domain shift is to initialize the classifier with multi-task classifier parameters
so that the classifier can quickly adapt to any new sensing domain while it is difficult for
the cross-tasks classifier to converge. For the deep Siamese recurrent convolutional net-
work [26], it is a typical method of using a few-shot learning network to recognize gestures.
The Siamese network relies on CNN-LSTM architecture to extract spatial–temporal features,
which also increases the complexity of the model. Taken together, these methods ignore the
problem of model calculation complexity, which is not beneficial for model deployment.
In this paper, our proposed system adopts a different feature extraction network, i.e., a
2-D convolutional neural network, which has a better performance in feature extraction
compared with the CNN-LSTM architecture. In addition, we not only focus on the domain
shift issue but also introduce a lightweight block to meet the performance requirements of
mobile deployment.

2.1.2. Few-Shot Learning Network

The few-shot learning method [18–22], the key technology used in this paper, is com-
mitted to addressing the domain shift problem using just a few support samples. This is
the key difference between the few-shot learning method and other domain adaptation
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methods. Traditional few-shot learning methods use a certain measurement method to
express the correlation of samples. For example, the Siamese network [18] is a two-way
neural network that determines whether the samples belong to the same class depend-
ing on their distance. This network is fed a pair of samples in a sequence to calculate a
contrastive loss function in each iteration process, which has less efficiency in updating
the network’s weights compared with the number of batch samples [19]. A matching
network [20] utilizes the idea of metric learning based on deep neural features and aug-
ments the neural network with external memories to achieve few-shot learning. Snell
et al. [21] proposed a prototype network that measures the similarity of features by a fixed
equation (e.g., negative Euclidean distance and cosine similarity). In the above methods,
the similarity measurements are fixed functions that are not flexible when applied in a
complex embedding space. In 2017, Sung et al. [22] proposed a relational network that
adopts a learning-based neural network as the similarity measurement method, and this
measurement method helps determine the relationship between samples more accurately,
compared with a fixed manual measurement method. Therefore, we introduce a relation
network as the basic model for solving the domain shift problem in our system. Addition-
ally, we introduce some lightweight blocks in the model to make the system more suitable
for mobile devices.

2.1.3. Lightweight Network Designs

Lightweight neural networks have fewer parameters and consume fewer computer re-
sources, so these networks are more suitable for deployment on mobile devices. SqueezeNet [27]
reduces the network’s parameters by replacing the 3 × 3 convolution kernel with a 1 x 1
convolution kernel and limiting the number of channels. ShuffleNet [28] adopts pointwise
group convolution to reduce the model computational cost and uses channel shuffle to
improve the information presentation ability of the network. InceptionV3 [7], Xception [29],
MobileNetV1 [30], and MobileNetV2 [31] adopt depthwise separable convolution instead
of traditional convolution to reduce parameters and computing consumption. In addition,
MobileNetV2 uses an inverted residual layer of a linear bottleneck to achieve better perfor-
mance with less computing consumption. Overall, these studies prove the effectiveness
of the deep separable convolution model and the linear inverted residual lightweight
structure. Therefore, we introduce these strategies into our network to make our system
more lightweight.

2.2. Overview of CSI

As a signal descriptor of the Wi-Fi signal, CSI reflects the signal information of the
communication link, such as signal scattering, multipath fading, and the power decay of
distance. A wireless channel usually uses the channel impulse response (CIR) to describe
the multipath propagation of the signal from the amplitude characteristics and the phase
characteristics. The measurement of CSI is mainly used to obtain CIR values [35]. The CIR
is mathematically expressed as

X(i) = ||X(i)||ej∠X(i) (1)

where ||X(i) || represents the amplitude of CSI measurement at the ith subcarrier, and ∠X(i)
denotes the phase of CSI measurement at the ith subcarrier. Since the phase information
is more sensitive to environmental changes, our interest is in obtaining the CSI phase
information for each subcarrier.

Currently, some network interface cards (NICs) have been able to continuously mon-
itor the state changes of signal frequency response in wireless signals [36], such as Intel
5300, Atheros 9390 [37,38], and Atheros AR9580 [39]. We can obtain CSI data directly from
the NICs by modifying the open-source driver of the NICs.
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3. Methods
3.1. Problem Definition

In actual testing scenarios for gesture recognition, the testing conditions are usually
different from those for training procedures. It is not feasible to collect a large amount of
data in new scenarios to adapt the system to the current scenario. Therefore, a practical
gesture recognition system should achieve excellent performance using just a few samples
of gestures when facing new types of gestures that have not been seen in a training
procedure or when gestures are performed in a new domain. Formally, our system is
trained by training set D, which consists of samples with corresponding labels of the old
types of gestures. We then divide the samples with corresponding labels of the new types
of gestures or gestures performed in the new domain into two subsets, i.e., support subset
S and testing subset Q. Our goal is to train the system by training set D and then use
the transferable knowledge learned from D and the feature knowledge learned from the
support subset S to identify the label yj of each sample xj in the testing subset Q.

3.2. Overview of WiGR

In this section, we introduce the framework of the proposed WiGR system. As illus-
trated in Figure 1, WiGR mainly contains three parts: CSI data collection, data processing,
and a lightweight few-shot network. First, the input of the system is CSI data contain-
ing gesture information. These CSI data collection methods are described in detail in
Section 3.2.1. We will explain the data processing in Section 3.2.2. The key structure of the
system is a lightweight few-shot network, which is explained in Section 3.2.3. We describe
the episode-based training strategy [19] used to train the lightweight few-shot network in
Section 3.2.4.

Figure 1. The framework of the Wi-Fi-based gesture recognition (WiGR) system contains four steps: (1) input the channel
state information (CSI) data collected from the Wi-Fi environment; (2) process the CSI data; (3) feed the processed CSI
data into the lightweight few-shot network; (4) train the network via an episode-based training strategy and output the
predicted results.

3.2.1. CSI Data Collection

In this section, we introduce the collection method of the CSI data. The CSI data used
in this paper came from two Wi-Fi data sets, i.e., our own CSIDA data set and the public
SignFi data set [10], which were created via different data collection methods.

The collection of the CSIDA data set. We used two Atheros AR9580 Wi-Fi chipsets sup-
porting the IEEE 802.11n standard as a transmitter (Tx) and a receiver (Rx) [39], respectively.
Each Wi-Fi chipset was equipped with three antennas with an interval of 0.1 m (m). It
should be noted that, considering the performance of the computer, only one transmitting
antenna and three receiving antennas were used in our experiment. Therefore, there were
3 (1 × 3) Tx–Rx pairs in total. The bandwidth was 40 MHz, and the Wi-Fi frequency was
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5 GHz. Since orthogonal frequency division multiplexing (OFDM) was used in protocol
802.11n [40], many subcarriers could be obtained. Therefore, one CSI datum included 114
subcarriers for each Tx–Rx pair. In addition, each CSI datum was collected in 1.8 s (s)
with a sampling rate of 1000 data frames/s. Denote the number of antennas at the Tx as
NTx, the number of antennas at the Rx as NRx, the number of subcarriers as Nc, and the
sampling data frames as T. The CSI data can be represented as a complex matrix of T ×
Nc × (NTx × NRx) (i.e., 1800 × 114 × 3), which indicates the size of the input data of our
proposed network.

We collected CSI data in two different indoor environments (Room 1 and Room 2).
The layout of the indoor environment is shown in Figure 2. From Figure 2, we can see
that the distance between Tx and Rx is 2.6 m [41]. In Room 1, we marked three locations
on which the users stood and performed predesigned gestures. In Room 2, we marked
two locations. The distance between the user and the transmitter/receiver refers to [17,41].
The user stood on the premarked locations and saw the instructions on the screen of a
computer. The computer was used to automatically label the CSI data generated during
the execution of the gestures.

Figure 2. The layout of two different indoor environments: (a) Room 1; (b) Room 2.

Five users performed predesigned gestures. As shown in Figure 3, the predesigned
gestures were of six types: upward, downward, leftward, rightward, circle, and zigzag,
which are commonly used in the field of human–computer interaction. When collecting the
data, the user stood on the premarked location and faced the computer screen. Before data
collection, the screen showed the type of gesture and reminded the user to raise their hand
to prepare for the action. After 3 s of preparation time, the user started performing the
gesture, and the duration time of each gesture was 1.8 s. At the same time, the computer
started collecting CSI data frames with a sampling rate of 1000 data frames/s, and each
CSI datum had four labels: the identity of the users, the room number, the location number,
and the gesture category. Afterward, the screen showed instructions to stop for 2 s, and the
user took a short break. Thus, the CSI data collection of one gesture was completed. We
kept repeating the above process until the data collection was completed.

Table 1 shows a summary of the CSIDA data collection. The five users with different
figures stood on five different locations (three locations in Room 1 and two locations
in Room 2) to perform six predesigned gestures. Each gesture was repeated 20 times.
Therefore, there were 1800 (5 × 3 × 6 × 20) samples of gestures in Room 1 and 1200 (5 × 2
× 6 × 20) samples of gestures in Room 2.

The collection of the SignFi data set. The SignFi data set was collected using an
802.11n CSI tool based on Intel 5300 NIC [10]. The CSI collection system contained a Tx
and an Rx, equipped with one and three antennas, respectively. In addition, there were
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30 subcarriers, and the sampling time was 200 data frames in that system. Therefore, the
size of one CSI datum inputted into the lightweight few-shot learning network was 200
× 30 × 3. The SignFi data set contains 276 sign gestures collected by five users, and each
gesture was repeated 10 times. There are 14,280 gesture samples in total, which consist of
11,520 gesture samples obtained in a lab and 2760 gesture samples obtained in a home. A
detailed description is given in Table 2 [10], where “Number of Samples” denotes the total
number of samples (number of gestures × number of repetitions).

Figure 3. Six common types of gestures: upward, downward, leftward, rightward, circle, and zigzag.

Table 1. CSI-Domain Adaptation (CSIDA) data collection summary.

Environment Locations Users Weight/Height Number of Samples

Room 1
# 1 User 1 50 kg/160 cm

1800# 2 User 2 48 kg/163 cm
# 3 User 3 65 kg/170 cm

Room 2
# 4 User 4 56 kg/168 cm

1200# 5 User 5 81 kg/185 cm

Table 2. The SignFi data collection summary.

Environment Users Weight/Height Number of Samples

Lab

User 1 90 kg/170 cm 1500 (150 × 10)
User 2 61 kg/174 cm 1500 (150 × 10)
User 3 55 kg/168 cm 1500 (150 × 10)
User 4 65 kg/180 cm 1500 (150 × 10)
User 5 68 kg/171 cm 5520 (276 × 20)

Home User 5 68 kg/171 cm 2760 (276 × 10)

3.2.2. CSI Data Processing

Before feeding the raw CSI data into the proposed WiGR model, we needed to remove
noises to improve gesture recognition accuracy. As we know, pulse and burst noise
are usually at a higher frequency than the reflected signal caused by human movement,
whereas static reflectors usually have a lower interference frequency [42,43]. Therefore, it is
necessary to filter this interference noise. In our experiments, we adopted a finite impulse
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response (FIR) filter [44] designed by the least-squares method, with the cutoff frequencies
set to 2 and 80 Hz. Figure 4 shows the CSI phase waveform of the “upward” gesture in
200 data frames and its corresponding CSI radio image. As shown in Figure 4a–c, the CSI
radio images have both spatial and temporal characteristics that are useful for recognition.
The x-axis represents the duration of one CSI datum collection, which shows the temporal
characteristics of the CSI data. The y-axis represents 114 subcarriers, which shows the
spatial change of the CSI data. For the sake of clarity, we randomly selected one subcarrier
of the CSI data to show its phase waveform in Figure 4d–f. In addition, the sampling
clock and carrier frequency of the Tx and Rx were not synchronized in the real-world
Wi-Fi systems, and this led to sampling time offset and sampling frequency offset, which
introduce random phase shift. Therefore, the raw CSI phases were wrapped in the range of
[−π, π], as shown in Figure 4d, which wrongly shows the changing trend of CSI phases.
We unwrapped the CSI phases to recover the lost information by removing random phase
shifts [10], as shown in Figure 4e. Unwrapped CSI phases were then filtered with an FIR
filter to remove noise interference, as shown in Figure 4f.

Figure 4. Comparison of the CSI phase before and after processing. The upper row shows CSI radio images, and the lower
row shows the waveform of the CSI phase.

3.2.3. Lightweight Few-Shot Network

The key structure of WiGR is a lightweight few-shot network that consists of a feature
extraction subnetwork and a similarity discrimination subnetwork. The function of the
feature extraction subnetwork is to extract advanced features of support samples and
testing samples, and the features of testing samples and support samples are then combined
in-depth. The function of the similarity discrimination subnetwork is to determine the
relationship of combination features and output the similarity score of these gestures.
The samples with the highest score are considered to be of the same type. Additionally,
we introduce depthwise separable convolution and an inverted residual layer of a linear
bottleneck [30,31] in the network to reduce model computations and parameters.

Feature extraction subnetwork. As shown in Figure 5, we adopted the one “conv
block” and five “mobile blocks” to construct the feature extraction subnetwork.
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Figure 5. An illustration of the structure of the feature extraction subnetwork (a) and the SE (Squeeze and Excitation)
module (b). The feature extraction subnetwork consists of a conv block and a mobile block.

Specifically, conv block is a normal CNN structure that consists of a convolutional
layer, a normalization layer, and an activation layer. Each convolutional layer has multiple
three-dimensional (3-D) convolutional kernels, and each 3-D convolutional kernel consists
of multiple two-dimensional (2-D) convolutional kernels. Each 2-D convolutional kernel
performs a convolution operation on the CSI data and can simultaneously extract the
spatial features and temporal dynamics of the CSI data. The CSI datum of each gesture
obtained from one antenna is a 2-D radio image (see Figure 4a), which can be denoted as

X ∈ RNc×T (2)

where R is a real number, Nc is the number of subcarriers, and T is the number of data
frames. As an analogy to the image recognition problem, one CSI datum is analogized to
a video frame, where Nc looks like the pixel in one frame and T looks like the number of
frames. If there are N CSI data (N = NTx × NRx), the output Qi of the ith 3-D convolutional
kernel can be denoted as

Qi =
N

∑
N=1

XN ∗WN
i + bi (3)

where XN is the Nth 2-D CSI datum, WN
i is the Nth 2-D convolutional kernel of the ith 3-D

convolutional kernel, and bi is the ith bias parameter. Benefitting from the excellent feature
extraction capabilities of CNN [6–8], the feature extraction process of the feature extraction
subnetwork is effective. In addition, we use depthwise separable convolution instead
of ordinary convolution operations in the convolutional layer to reduce the network’s
parameters and computing consumption. The normalization layer can accelerate network
training by reducing the internal covariate shift. The activation layer adopts two different
activation functions, i.e., H-swish [45] (HS) and ReLU [46] (RE). H-swish is an improved
version of rectified linear unit (ReLU) and can work on more features, but the calculation
consumption of H-swish will also increase compared with the ReLU. Therefore, we used
H-swish and ReLU alternately to balance the complexity and accuracy of the network.

The mobile block is based on a linear bottleneck with an inverted residual struc-
ture [30], which is beneficial for deployment on mobile devices. Firstly, the block makes



Appl. Sci. 2021, 11, 3329 10 of 18

a low-dimensional compressed feature high-dimensional using a pointwise convolution
layer consisting of M convolution kernels with a kernel size of 1 × 1. M is the number
of convolution kernels, whose size is determined by the parameter fac. fac is used to
change the number of feature dimensions proportionally, which is beneficial for reducing
the model calculation complexity. It then uses a depthwise convolution layer consisting
of M convolution kernels with a kernel size of 3 × 3 or 5 × 5 to further extract features
and uses an SE module to enhance the robustness of the feature map. The SE module is
optional in the mobile block. Finally, the features are projected back to a low-dimensional
representation using another pointwise convolution kernel.

The SE module, as per [32], is a lightweight attention model based on the squeeze and
excitation structure. The SE module is used to enhance the robustness of the feature map
by generating relation weights for each channel of the feature map. Firstly, the SE block
uses a global average pooling layer to squeeze the feature map obtained from the upper
layer into a 1 × 1 × c feature channel vector, where c is the number of channels. To show
the correlation between feature channels, it then uses two fully connected layers to reduce
c to c/r, where r is the reduction factor, and then return c/r to c to obtain a feature attention
weight of the feature map. This operation reduces the consumption of the calculation. The
Scale operation multiplies the feature attention weight with the feature map and outputs
a robust feature. Table 3 shows the specifications for the feature extraction subnetwork,
where #Out denotes the number of channels of output features map, SE denotes whether
there is an SE module in block, NL denotes the types of activation function, and S stands
for stride.

Table 3. Specifications for the feature extraction subnetwork.

Input Operator Kernel Size M #Out SE NL S

1800 × 114 × 3 Conv Block 3 × 3 - 16 False HS (2, 1)
900 × 114 × 16 Mobile Block 3 × 3 16 × fac 16 × fac True RE 2

450 × 57 × (16 × fac) Mobile Block 3 × 3 72 × fac 24 × fac False RE 2
225 × 29 × (24 × fac) Mobile Block 5 × 5 96 × fac 40 × fac True HS 2
113 × 15 × (40 × fac) Mobile Block 5 × 5 240 × fac 80 × fac True HS 2
57 × 8 × (80 × fac) Mobile Block 5 × 5 240 × fac 80 × fac True HS 2

Similarity discrimination subnetwork. Similar to the feature extraction subnetwork,
we also adopted a CNN structure to construct the similarity discrimination subnetwork.
As shown in Figure 6, we utilized a conv block to further analyze the representational
information of the combination features obtained from the feature extraction subnetwork.
We used an average pooling layer made up of a 3 × 3 kernel to reduce the number of
parameters. The following layer is a convolutional layer used to further extract features. A
flatten layer was used to condense multidimensional features into one dimension, and it is
usually used in the transition from a convolutional layer to a fully connected layer. The
fully connected layer mapped the learned distributed feature representation to the sample
labeling space with a sigmoid as an activation function and output the similarity score of
gestures in the range of 0 to 1. A large score means that the combined features belong to
the same type of gestures. Thus, the similarity discrimination subnetwork could determine
the relationship of samples accurately. Table 4 shows the specifications for the similarity
discrimination subnetwork.

3.2.4. Episode-Based Training Strategy

We adopted an episode-based training strategy [20] to train the lightweight few-shot
network. In each episode, we extracted K (e.g., 5) types of gestures uniformly at random
from the training set D without replacement, and took G (e.g., up to 5) samples from each
gesture to simulate support set S. We then took the remaining samples of each gesture
to simulate testing set Q. Subsequently, we used a feature extraction subnetwork fΦ(·) to
calculate the feature e of support sample xi and the feature o of testing sample xj. These
features were combined in-depth with the operator concate (e, o). Finally, we fed these
combined features into the similarity discrimination subnetwork gΦ(·), which produced
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a similarity score hi, j, representing the similarity between xi and xj. The hi, j is defined
as follows:

hi,j = gϕ(concate( fϕ(xi), fϕ(yi))) (4)

Additionally, the lightweight few-shot network adopts the mean square error loss
function J, defined as follows:

J =
Q

∑
j=1

K

∑
i=1

(
hi,j − P

(
yi == yj

))2 (5)

where yi and yj represent labels of sample xiand sample xj, respectively. P (yi == yj) indicates
whether yi and yj are equal. If they are equal, P (yi == yj) = 1; otherwise, P (yi == yj) = 0.
Moreover, we adopted the gradual warmup learning scheduler [6] to minimize the loss
function J.

Based on the episode-based training strategy, in each training episode, we can ran-
domly produce a training support set and a training query set to simulate the support set
and testing set encountered in the test scenario. We repeated the above process until the
model could learn a robust transfer knowledge from the labeled training set D. We then
applied the learned transfer knowledge to the new testing domain to address the domain
shift problem.

Figure 6. Structure of the similarity discrimination subnetwork.

Table 4. Specifications for the similarity discrimination subnetwork.

Input Operator Kernel Size #Out SE NL S

57 × 8 × (160 × fac) Conv Block 1 × 1 576 × fac False HS 1
57 × 8 × (576 × fac) Pooling Layer 3 × 3 - False - 1
57 × 8 × (576 × fac) Conv Layer 1 × 1 128 × fac False HS 1
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4. Results

We conducted extensive experiments on two data sets (SignFi [10] and CSIDA) to
verify WiGR’s effectiveness. We implemented the proposed system on a PyTorch 1.8.0
framework on an Intel(R) Xeon(R) CPU E5-2630 v4 @2.20GHz with an Nvidia Titan X
Pascal GPU and 32.0 GB of RAM.

The SignFi data set and our CSIDA data set are both Wi-Fi data sets and include CSI
data with various domain factors. The SignFi data set includes two domain factors, i.e.,
different environments and users. The CSIDA data set includes three domain factors, i.e.,
different environments, users, and locations.

4.1. Recognition Performance Evaluation

Recognizing new types of gestures. The ability to recognize new types of gestures
is important for enhancing the scalability of a gesture recognition system. The few-shot
learning method, the key technology used in this paper, can realize the generalization of
the model through just a few support samples. This is the key difference between the
few-shot learning method and other domain adaptation methods. To verify the ability
of the proposed system to identify new types of gestures through just a few samples, we
compared it with other few-shot learning methods on the SignFi data set and the CSIDA
data set. Table 5 demonstrates that the WiGR model can achieve 98.6%, 97.2%, and 95.8%
accuracy when it recognizes 10, 20, and 30 new types of gestures, respectively, under the
condition that 100 new types of gestures are used for training and each new gesture has
three support samples. Compared with other methods, the improvement in accuracy is
more than 10 percentage points.

Table 5. Accuracy of recognizing new types of gestures with three samples using the SignFi data set.

Models Number of Training Types
Number of New Testing Types

10 20 30

Siamese Network [18]

100

84.1% 85.2% 79.5%
Matching Network [20] 78.4% 73.2% 69.9%
Prototype Network [21] 76.6% 71.5% 67.8%
Relation Network [22] 89.2% 85.5% 81.4%

WiGR (fac = 1/6) (ours) 98.2% 96.8% 93.0%
WiGR (fac = 1/4) (ours) 98.6% 97.2% 95.8%

Table 6 demonstrates that our WiGR model has better recognition performance than
the other few-shot learning models. When WiGR was trained with three old types of
gestures, it achieved 91.4% and 84.9% recognition accuracies for two and three new types
of gestures, and each new type of gesture had three support samples. Because our CSIDA
data set does not have enough training types for training, the recognition accuracy dropped
slightly compared with the SignFi data set. In general, the accuracy of the proposed WiGR
model is remarkably higher than the other few-shot learning models in all evaluations.

Cross-domain evaluation. To verify that the proposed WiGR system does play a
role in cross-domain recognition, we conducted extensive cross-domain experiments by
splitting the data set according to the layout of the environment, the user who performs the
gestures, and the user’s location. We compared our model with other traditional gesture
recognition systems, such as WiGeR [33], which utilizes a classifier with a DTW algorithm,
and WiCatch [34], which employs SVM with a MUSIC signal processing algorithm. In
addition, since the proposed WiGR adopts components of a CNN to construct a network,
then, to verify the superiority of the CNN-based WiGR, the selected comparison systems
were based on machine learning algorithms (i.e., WiGeR and WiCatch) or based on only
a sample structure of a CNN without the capability of cross-domain recognition (i.e.,
SignFi [10]). Moreover, Siamese-LSTM [26], using a Siamese network that consists of a
CNN and LSTM to address domain shift problems, is a typical few-shot domain adaptive
method and was used as a baseline method. These competitive methods were useful in
verifying the effectiveness of our WiGR model in cross-domain evaluation.
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• Cross-environment evaluation. For the environmental shift, we used CSI data from
two different environments. All the data from one environment were used for training,
while data from the other environment were used for testing. Figure 7 shows the
accuracy for recognizing gestures that are collected in a new environment with three
support samples for each gesture, where A→ B denotes that A is the training set and
B is the testing set. We can see that traditional machine learning methods, such as
WiGeR and WiCatch, and an ordinary convolutional network, such as SignFi, have
almost no shift ability when testing samples from a totally new environment, while
our proposed WiGR model could achieve an average accuracy of 98% and 88% using
the SignFi and CSIDA data sets, respectively, and therefore remarkably outperforms
the other methods.

• Cross-user evaluation. For the user shift, we evaluated all methods in the same envi-
ronment to control variables, and then conducted leave-one-user-out cross-validation
using CSI traces from different users. In other words, we adopted CSI traces collected
by some users as the training set and utilized the CSI traces of the other users as the
testing set. Figure 8 shows the results of recognizing new user’s gestures, and each
gesture has three support samples. From Figure 8, we can see that the cross-user
recognition accuracies of WiGeR, WiCatch, and SignFi are no more than 80%, but still
better than the cross-environment performance. The reason is that the training data
set has abundant user domain information for extracting common features. Our WiGR
model achieves state-of-the-art performance with a recognition average recognition ac-
curacy of 92% and 91% using the SignFi and CSIDA data sets, respectively. Compared
with the domain-adaptive Siamese-LSTM, our method improves its performance by
about 10%, which demonstrates that WiGR alleviates the problem of domain shift
effectively by learning transferable knowledge from the training set and using the
features extracted from the support samples to recognize gestures.

• Cross-location evaluation. For the location shift, we evaluated all the methods in
the same environment to control variables, and then performed leave-one-location-
out cross validation using CSI traces. As shown in Figure 9, our proposed WiGR
model still shows excellent performance with an average recognition accuracy 90.8%,
and, therefore, outperforms other methods. In addition, when the testing CSI data
are collected at Loc. 1 and Loc. 3, the recognition performance is slightly reduced
compared with the data collected at Loc. 2. This is because that the user performed
gestures at Loc. 1 or Loc. 3 is very close to Rx or Tx. In this case, the user’s body
will block more signals, resulting in weaker signal propagation, which in turn affects
gesture recognition performance.

Table 6. Accuracy of recognizing new types of gestures with three samples using the CSIDA data set.

Models Number of Training Types
Number of New Testing Types

2 3

Siamese Network [18]

3

65.0% 63.4%
Matching Network [20] 60.2% 55.4%
Prototype Network [21] 63.6% 58.4%
Relation Network [22] 77.4% 74.6%

WiGR (fac = 1/6) (ours) 89.9% 83.6%
WiGR (fac = 1/4) (ours) 91.4% 85.9%

Different users have different physical body conditions, gesture speeds, and hand
movements for the same gestures, and there are two different layout environments. More-
over, different locations can result in different signal propagation paths. These three factors
may result in different CSI signal patterns, even for the same gesture. However, due to the
excellent feature extraction capabilities of the CNN, CNN-based gesture recognition sys-
tems (i.e., WiGR and Siamese-LSTM) have superior cross-domain recognition performance
compared to other gesture recognition systems based on traditional machine learning
methods (i.e., WiGeR and WiCatch). Although SignFi also adopts the components of a
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CNN, the structure of SignFi is too simple to play a role in cross-domain recognition.
Additionally, the WiGR model can learn more robust transferable knowledge through
supervised training, thereby eliminating the influence of individual, environmental, and
location factors on gestures, which allows WiGR to achieve gesture recognition under a
new domain with only a few samples.

Figure 7. Accuracy of cross-environment evaluation.

Figure 8. Accuracy of cross-user evaluation.

Figure 9. Accuracy of cross-location evaluation using the CSIDA data set.

4.2. Model Complexity Analysis

The complexity of a gesture recognition model, affecting storage space and compu-
tational cost, plays a vital role in mobile deployment. We utilized indicators Params and
MACs to reflect the complexity of the model. Params refers to the model’s parameters—the



Appl. Sci. 2021, 11, 3329 15 of 18

smaller the value, the smaller the storage space required by the model. MACs refer to the
calculations required by the model, and a smaller value corresponds to fewer computing
resources be consumed. M is an abbreviation for million. The key network of the WiGR is
an improved few-shot learning model, in which lightweight blocks are introduced. There-
fore, to verify the effectiveness of these lightweight blocks, we compared them with normal
few-shot learning models [18,20,21]. Table 7 shows that the WiGR outperforms other popu-
lar few-shot learning methods [18,20–22] about the model’s complexity by a clear margin,
and we can see that Params and MACs have the smallest value when scaling factor fac
= 1/6. Thus, the value of fac also plays an important role in the model’s computational
complexity. Experimental results show that WiGR is a state-of-the-art lightweight gesture
recognition model by far when fac = 1/6.

Table 7. Models’ complexity performance.

Models
Complexity

Params (M) MACs (M)

Siamese Network [18] 33.081921 98.998656
Matching Network [20] 0.087254 489.910816
Prototype Network [21] 0.014248 2.693704
Relational network [22] 0.155681 80.842768
WiGR (fac = 1/4) (ours) 0.095417 38.393904
WiGR (fac = 1/6) (ours) 0.005617 1.349448

4.3. The Influence of The Number of Antennas

Since only some high-end mobile devices are tailored for multiple input, multiple
output (MIMO) communication with several antennas, it is necessary to study the influence
of the number of antennas on the recognition performance of the WiGR model.

With different numbers of receiving antennas, we conducted cross-domain recognition
evaluation and single-domain recognition evaluation. Specifically, the CSI data collected
in Room 2 are selected as the test data in cross-environment evaluation, the CSI data
performed by User 5 are selected as test data in cross-user evaluation, and the CSI data
collected in Location 3 are selected as test data in cross-location evaluation. In single-
domain recognition evaluation, we selected some CSI data of six gestures performed by
User 1 at Location 1 of Room 1 as training data, and the remaining CSI data of each
gesture as testing data. Similarly, there are three support samples provided for each gesture.
From Table 8, we can see that the larger the number of receiving antennas, the better the
recognition performance. This is because multiple receiving antennas can transmit richer
CSI data, which helps the WiGR model recognize gestures more accurately. In addition,
when only one transmitting antenna and one receiving antenna are used, the cross-domain
recognition accuracy of the WiGR model can only reach 70.2–73.2%, and the single-domain
recognition accuracy of the WiGR model can reach 91.3%. To a certain extent, it can still
show a cross-domain recognition ability and a good single-domain recognition ability,
although the effect is not as good as using MIMO.

Table 8. The influence of the number of antennas on the performance of cross-domain recognition.

Number of Transmitting
Antennas

Number of Receiving
Antennas

Cross-Domain Evaluation Single-Domain
EvaluationRoom 2 User 5 Location 3

1 1 70.2% 79.8% 73.2% 91.3%
1 2 78.4% 85.4% 80.7% 95.2%
1 3 87.8% 92.8% 89.2% 98.4%

5. Discussion

There are several limitations to our proposed WiGR, and they can become fruitful
directions of further investigation. Firstly, we only discuss the impact of finite domains
(i.e., environment, users, and locations). In fact, CSI signals will also be affected by the
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orientation of the face [17] and other signal sources. These factors need to be considered in
future work.

Secondly, in many human–computer interaction scenes, such as virtual games, auto-
matic driving assistance systems, sign language recognition, and intelligent robot control,
the distance between the user and the transmitter/receiver, or the distance between the
transmitter and the receiver, is not fixed. Therefore, we simply set these distances ac-
cording to [17,41]. In future work, we will focus on a specific application scenario (e.g.,
controlling a mobile phone with gestures) and discuss the setting of distance based on the
application scenario.

Finally, in our experiment, the gestures were performed in the LoS. Wi-Fi signals do
not require LoS propagation. Therefore, we are interested in expanding WiGR to the LoS
scenario. For example, we can separate the transmitter and receiver with a wall, and then
study the impact on the Wi-Fi signal in this case.

6. Conclusions

In this paper, we propose WiGR, a novel and practical Wi-Fi-based gesture recognition
system. This system uses a lightweight few-shot network that is trained by an episode-
based training strategy to eliminate the influence of domain shift. Lightweight and effective
blocks are introduced into the network to achieve lower computational complexity and
high performance. In addition, we made a CSIDA data set that includes CSI traces with
various domain factors to verify the accuracy of the proposed WiGR in cross-domain
evaluation. Extensive experiments on the SignFi [10] and CSIDA data sets show that the
proposed WiGR is excellent in cross-domain recognition and computational complexity
evaluation. It is a practical and lightweight gesture recognition system compared with
existing gesture recognition systems.
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