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Abstract: After the discovery of functionally superior Tie2-positive nucleus pulposus (NP) progenitor
cells, new methods were needed to enable mass culture and cryopreservation to maintain these
cells in an undifferentiated state with high cell yield. We used six types of EZSPHERE® dishes,
which support spheroid-forming colony culture, and examined NP cell spheroid-formation ability,
number, proliferation, and mRNA expression of ACAN, COL1A2, COL2A1, and ANGPT1. Six different
types of cryopreservation solutions were examined for potential use in clinical cryopreservation
by comparing the effects of exposure time during cryopreservation on cell viability, Tie2-positivity,
and cell proliferation rates. The spheroid formation rate was 45.1% and the cell proliferation rate
was 7.75 times using EZSPHERE® dishes. The mRNA levels for COL2A1 and ANGPT1 were also
high. In cryopreservation, CryoStor10 (CS10) produced ≥90% cell viability and a high proliferation
rate after thawing. CS10 had a high Tie2-positive rate of 12.6% after culturing for 5 days after
thawing. These results suggest that EZSPHERE enabled colony formation in cell culture without
the use of hydrogel products and that CS10 is the best cryopreservation medium for retaining the
NP progenitor cell phenotype and viability. Together, these data provide useful information of NP
cell-based therapeutics to the clinic.

Keywords: intervertebral disc; nucleus pulposus; nucleus pulposus progenitor cells; cryopreserva-
tion; Tie2; spheroid colony; EZSPHERE; CryoStor 10

1. Introduction

Low back pain is the primary cause of disability worldwide and often leads to poor
quality of life for patients [1,2]. Low back pain is thought to relate to intervertebral disc
(IVD) degeneration, although the mechanisms have not been clearly identified [3]. The IVD
is composed of three distinct tissues: the nucleus pulposus (NP), annulus fibrosus (AF),
and cartilage endplate. The NP comprises the gelatinous tissue located in the center of
the IVD. The AF comprises layered collagen structures that surround the NP [4]. Previous
reports have indicated that IVD homeostasis is determined by the NP [5,6] and that IVD
degeneration is thought to be caused by dysregulation of extracellular matrix (ECM)
homeostasis within the NP tissue [7,8].

Disc degeneration is associated with a decline in NP cell numbers and potency, and
renewal by stem or progenitor sources appears to be limited [9]. Interestingly, in 2012,
Sakai et al. discovered a specific NP progenitor cell population species [9]. NP progen-
itor cells were shown to have the ability for self-renewal and multipotency, including
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adipogenic, osteogenic, and neurogenic differentiation potential [9–12]. NP progenitor
cells were reported to differentiate into two types of colony-forming units upon culture in
methylcellulose semisolid medium: spheroid colony-forming units (CFU-s) with high ECM
production and fibroblastic colony-forming units (CFU-f) with low functionality [9,13]. The
propensity of NP progenitor cells for CFU-s was linked to the expression of the cell surface
marker angiopoietin-1 receptor (Tie2) [9]. Tie2-expressing NP progenitor cells have since
been identified in human, canine, murine, and bovine IVD samples [12–14]. Interestingly,
the presence of Tie2-expressing cells within the IVD declines sharply with aging [9] and
is similarly linked with progression of disc degeneration [9]. Thus, Tie2 progenitor cells
provide a promising therapeutic target in the treatment of IVD degeneration.

Cell therapy is a rapidly evolving field and is thought to be safe and effective for the
treatment of low back pain associated with degenerating IVDs [15] Cell therapy has been
suggested to be effective through repopulation of the IVD cells or reactivation of endemic
cells through paracrine signaling, thereby switching the disc environment from catabolic
to anabolic [15]. Our group has conducted one of the first IVD cell therapy clinical trials,
which involved the transplantation of autologous NP cells that were reactivated using
coculture with mesenchymal stem cells (MSCs) [16]. The trial revealed that NP cells could
be safely transplanted and that cell transplantation appears to be effective in preventing
disc degeneration [16].

Although these results are promising, NP materials are often derived from aged and
diseased patients, which can compromise their regenerative potential [17–19]. We believe
that the potency of NP cell therapy could be increased by using a cell population with
high Tie2-positive rates. However, Tie2-positive cells remain difficult to maintain in culture
because they rapidly lose their Tie2 expression and consequently their proliferative capacity
and potency [13]. In addition, mass production of these cells is limited by the high viscosity
of the methylcellulose medium and unsuitability for industrialization.

A variety of studies have investigated ways to improve the culture conditions [10,14,20]
or isolation methods [21] to increase the number of Tie2-expressing cells. For example,
Tekari et al. reported beneficial effects of fibroblast growth factor 2 (FGF2) and hypoxic
culture conditions [14]. Recent work by Guerrero et al. [10] showed the benefits of three-
dimensional (3D) pellet culture environments for maintaining the multipotent capacity
and retaining Tie2 expression in Tie2-positive NP progenitor cells. These findings provide
evidence for the potential of culture augmentation to increase the retention of NP progenitor
cells. However, an optimized culture method that would be scalable, marketable, and
clinically applicable remains to be determined.

Another consideration that could hinder the translation of Tie2-positive NP progen-
itor cells to the market is their preservation. Tanaka et al. has shown that cell viability,
differentiation ability, and ECM production do not change significantly from before to
after NP cell cryopreservation [22]. This finding suggests that activated NP cells could be
used in a cryopreserved state whenever needed according to the patient’s condition, thus
increasing their potential as a commercial, mass-produced, off-the-shelf (OTS) regenerative
therapeutic product. In a canine study, an OTS discogenic NP cell product was shown to
be as effective in regenerating induced disc degeneration compared with freshly cultured
cells [23]. These products are currently undergoing clinical trial evaluations (NCT03347708,
NCT03955315).

There is a large difference between the actual clinical application and the results in
laboratory-based reports. In addition, the time required before and after freezing is rarely
considered [24]. The cytotoxicity of animal serum and dimethyl sulfoxide (DMSO) con-
tained in the cryopreservation solutions may also present safety and regulatory problems
during clinical applications [13,25]. Furthermore, during the product management and
transportation after mass culture, the process from cell isolation to storage becomes more
complicated and time consuming.

We wanted to examine the potential for optimization of the practical aspects of NP
cell production in terms of cell culture, storage, and logistic handling. Given the needs of
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future commercialization, we aimed to identify optimal cryopreservation solution(s) that
could limit the functional deterioration and maintain the high cell viability of Tie2-positive
NP cells. We examined the potential for using specialized nonadherent EZSPHERE®

dishes, which have been used with induced pluripotent stem cells and cancer cells but not
with NP cells. This culture dish supports 3D cell cultures without the need for hydrogel
encapsulation to enable mass production of spheroid-forming NP cells.

2. Materials and Methods
2.1. Human NP Cell Isolation

Human NP tissues were collected from 10 patients undergoing surgery for lumbar disc
herniation at Tokai University Hospital and related facilities (Table 1). All patients provided
their informed consent for the collection and use of surgical waste for research purposes.
All research procedures described in this study were approved by the Institutional Review
Board for Clinical Research, Tokai University (application number 16R-051: 15 July 2016).

Table 1. Details of clinical samples. Age, sex, total weight of IVD tissue collected at the time of
surgery, and weight of NP tissue after selection are listed for each sample. LDH: lumber disc hernia,
IVD: intervertebral disc, NP: nucleus pulposus.

Code Age Sex Disease IVD Tissue
Amount(g)

NP Tissue
Amount(g)

1 T19 19 M LDH 8.05 7.59
2 A29 29 F LDH 3.76 2.57
3 K30 30 F LDH 4.26 2.5
4 E32 32 F LDH 4.75 4.75
5 A16 16 F LDH 3.58 1.9
6 K21 21 F LDH 7.52 4.79
7 A24 24 M LDH 8.04 4.69
8 T23 23 M LDH 5.06 4.6
9 T18 18 M LDH 3.38 3

10 A18 18 M LDH 5.88 3.73

NP cells were isolated as described previously [13]. Briefly, the collected NP tissue
was washed with excess saline and the tissue wet weight was measured. In a 100 mm
dish, the tissue was cut into 3–5 mm-sized pieces with sterilized scissors and scalpels. The
shredded NP tissue was carefully transferred to a 50 mm conical tube and centrifuged at
1200 rpm for 5 min at 4 ◦C. After centrifugation, the supernatant was removed, and the
tissue was resuspended in 10 mL of 10% (v/v) fetal bovine serum (FBS), minimal essential
medium α (MEMα, Fujifilm Wako Pure Chemical Corporation, Osaka, Japan), and 10 mL
of TrypLE Express (Thermo Fisher Scientific, Tokyo, Japan). The suspension was incubated
with gentle swirling at 37 ◦C for 1 h. The tissue dissolution state was confirmed and the
sample was centrifuged at 1800 rpm for 5 min. Next, the tissue was resuspended in 15 mL
of 10% FBS–MEMα and 5 mL of 0.25 mg/mL collagenase P (Roche, Basel, Switzerland),
and incubated for 2 h at 37 ◦C. After digestion, the tissue was again centrifuged and
resuspended in 20 mL of 10% FBS–MEMα, the cell suspension was filtered through a 40 µm
cell strainer (Corning, Corning, NY, USA), and the cells were subjected to experimental
cryopreservation or culture conditions as described below.

2.2. NP Cell Culture Conditions

Primary human NP cells (n = 4, Table 1: T19, A29, K30, E32) were suspended at
10,000 cells/mL in 10% FBS–MEMα. Cells were seeded in 2 mL onto different types of
EZSPHERE® plates (spheroid-formation culture vessel: IWAKI, Tokyo, Japan) and cultured
at 37 ◦C in 5% CO2 and 5% O2 for 14 days. EZSPHERE® plates have a uniform well
structure on the surface of the dish that allow cells to form different shapes of germ
layers or spheroids depending on the size and type of the well (Figure 1). Here we
used the following EZSPHERE® dish types: 4000-900 (caliber: 500 µm, depth: 100 µm,
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number of wells: 2300); 4000-901 (caliber: 200 µm, depth: 100 µm, number of wells: 9200);
4000-902 (diameter: 500 µm, depth: 200 µm, number of wells: 2300); 4000-903 (diameter:
800 µm, depth: 400 µm, number of wells: 600), and 4000-904 (diameter: 800 µm, depth:
300 µm), number of wells: 200); type 4000-905 (caliber: 1400 µm, depth: 600 µm, number of
wells: 2300). After 2 weeks of culture, the established colonies were collected carefully by
pipetting. For analysis of marker expression, standard monolayer culture was performed
by seeding NP cells at a density of 4.5 × 105 cells/cm2 into 100 mm plates and culturing
them under identical conditions for 7 days. These cells were used as the control.
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Figure 1. Cells cultured giving rise to spheroid forming units within EZSPHERE® dish (A) type 4000-900, (B) type 4000-901,
(C) type 4000-902, (D) type 4000-903, (E) type 4000-904, and (F) type 4000-905 at 4× (left) and 10× (right) magnification.
Images visualized by inverted phase contrast microscope. 20,000 human nucleus pulposus cells were seeded per dish and
cultured for 14 days at 5% CO2, 5% O2, and 37 ◦C.

NP cells (n = 1, donor E32) were also cultured in EZSPHERE® dish type 4000-903 with
normal medium or medium supplemented with 100 ng/mL epidermal growth factor (EGF;
R&D Systems, Minneapolis, MN, USA), 10 ng/mL FGF2 (PeproTech, Cranbury, NJ, USA),
100 ng/mL platelet-derived growth factor (PDGF; R&D Systems), or a combination of all
three factors. The colonies obtained were similarly harvested and evaluated.

2.3. Cryopreservation of NP Cells

After confirming they were free of contamination and the state of the cells, primary NP
cells were treated with 5 mL of TrypLE Express for 3 min and then collected into a 15 mL
conical tube. Samples were centrifuged at 500× g for 5 min at 4 ◦C, resuspended in 5 mL of
buffered saline, and centrifuged again at 500× g for 5 min at 4 ◦C. The cells were counted
using the trypan blue exclusion method to determine their cell number and viability.

For the first experiment, the cell suspension (donor T19) was centrifuged once more to
prepare a 1 mL suspension of CELLBANKER 1 (CB1), STEM-CELLBANKER GMP grade
(SCB), or STEM-CELLBANKER DMSO Free GMP grade (SCBD-Free) (all from Zenoaq
Resource, Fukushima, Japan) (Table 2), each containing 1 × 106 cells in their respective
cryopreservation solution to be dispensed into a cryotube. The samples were kept at room
temperature or on ice for 0.5, 1, 2, 3, 4, and 5 h, and cell viability was directly analyzed either
or analyzed following cryostorage at –80 ◦C for 1 day. Cryostorage was prepared with
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BICELL containers (Nihon Freezer, Tokyo, Japan) in same way as previously reported [22]
to control the cooling rate.

Table 2. Details of cryopreservation solutions. Whether include the animal serum, clears GMP
grade, and concentration of DMSO are listed for each cryopreservation. CB-1: CELLBANKER 1, SCB:
STEM-CELLBANKER GMP grade, SCBD-free: STEM-CELLBANKER DMSO Free GMP grade, CS10:
CryoStor® CS10, and PF: Pro Freeze™-CDM.

Cryopreservation Animal Serum Concetration of DMSO GMP Grade

CB1 Included 10% Not Cleared
SCB Not Included 10% Cleared

SCBD-free Not Included 0% Cleared
CS10 Not Included 10% Cleared

CP-1™ Not Included 5% Not Cleared
PF Not Included 15% Not Cleared

Next, the effects of cryopreservation solutions on NP cell potency and surface marker
expression were examined. Based on the previous step, a 3 h incubation time on ice was
selected. NP cells (n = 3, T19, A24, and T23) were aliquoted at 1 × 106 cells in 1 mL of CB1,
SCB, or SCBD-Free. The cells were then frozen at –80 ◦C for 1 day, thawed, and cultured in
monolayer culture for 5 days. The cells were retrieved using TrypLE Express and analyzed
by flow cytometry.

Tie2 expression and cell viability of NP cells (n = 1, donor, T19) were examined using
six different cryopreservation compositions: CB1, SCB, SCBD-Free, CryoStor® CS10 (CS10)
(Stemcell Technologies, Vancouver, BC, Canada), CP-1™ (Kyokuto Pharmaceutical Industry,
Tokyo, Japan), and Pro Freeze™-CDM (PF) (Lonza Bioscience, Basel, Switzerland). The
final tubes were incubated on ice, frozen at −80 ◦C, and cultured before being analyzed as
previously described.

Finally, 1 × 106 NP cells (n = 3, T19, A18, and T18) were kept in 1 mL of CB1 or CS10
on ice or at room temperature for 0, 2, 3, or 5 h. Cells were either analyzed directly or
cryopreserved at –80 ◦C for 1 day.

2.4. Thawing Protocol of NP Cells

Cells cryopreserved in cryotubes were slowly warmed in a bath with 37 ◦C water
for about one minute. The tube was removed from the pre-heated water and kept on
room temperature until complete thawing was observed. When thawed, the solution
was carefully transferred to a falcon tube, and dropwise media containing 10% FBS was
added to slowly resuspend the cells and dilute the cryo-storage media. The samples were
then centrifuged at 1200 rpm for 5 min at 4 ◦C to collect the cells and applied for the
respective experiments.

2.5. Colony Formation and Cell Proliferation Rates

After the cells were cultured for 14 days in EZSPHERE® plates, an inverted phase-
contrast microscope was used to count the number of colonies that had formed per 100 wells.
To calculate the number of cells, the entire colonies were collected, centrifuged, and treated
with 1% Liberase (Roche) for 30 min at 37 ◦C. The cells were centrifuged again and
resuspended, and the number of cells derived from the colonies was counted.
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2.6. Cell Viability

Cell viability was measured using the standard trypan blue exclusion method and an
inverted phase-contrast microscope; the percentages of living and dead cells were counted.

2.7. Real-Time Polymerase Chain Reaction (PCR) Analysis

Cultured human NP cells (n = 3, E32, A16 m, and K21) were homogenized using ISO-
GEN II (Nippon Gene, Tokyo, Japan), and RNA was prepared using an RNAqueous Micro
RNA isolation kit (Applied Biosystems, Thermo Fisher Scientific, MA, USA) following the
manufacturer’s instructions. High-Capacity cDNA Reverse Transcription Kits (Applied
Biosystems 4387406) were used to reverse transcribe mRNA and to synthesize cDNA. Based
on TaqMan gene expression assays (Applied Biosystems), gene expression levels were de-
tected using TaqMan Universal PCR Master Mix and the following primers: TaqMan Gene
Expression (human): ACAN (Hs00153936; Applied Biosystems), COL1A2 (Hs01028956; Ap-
plied Biosystems), COL2A1 (Hs00264051; Applied Biosystems), and ANGPT1 (Hs00919202;
Applied Biosystems). PCR was performed using an amplification machine (7500; RealTime
PCR Systems) with stage 1 (95 ◦C for 20 s × 1 cycle) and stage 2 (95 ◦C for 3 s, 60 ◦C for
30 s × 50 cycles). CT values were calculated relative to the CT value for the housekeeping
gene GAPDH (4333764F; Applied Biosystems).

2.8. Flow Cytometry and Fluorescence-Activated Cell Sorting

NP cells were analyzed using a FACSCalibur flow cytometer (BD Biosciences, Franklin
Lakes, NJ, USA). Only living cells were targeted by using a living (propidium iodide-
negative) gate. The cell sorting methods and monoclonal antibodies used for analysis were
performed as described previously [13].

2.9. Statistical Analysis

All data were collected and processed using Microsoft Excel (Microsoft, Redmond,
WA, USA). Statistical analysis was performed using IBM SPSS Statistics software (version
26; IBM Corp., Armonk, NY, USA). Significant differences were identified using the Mann–
Whitney U test and Kruskal–Wallis test. All values are presented as mean (±standard
deviation). p values of <0.05 were considered to be significant.

3. Results
3.1. Spheroid Colony-Formation and Cell Proliferation Rates in EZSPHERE Dishes

The ability of EZSPHERE dishes to support NP cell colony formation was evaluated by
determining the colony formation and cell proliferation rates (Figure 1). Interestingly, the
colonies formed in each plate were similar in size (Figure 1). The average colony formation
rates were 9.1% (±3.0%) for type 4000-901, 15.6% (±9.6%) for type 4000-900, 24.0% (±1.0%)
for type 4000-902, 45.1% (±12.1%) for type 4000-903, 17.5% (±7.0%) for type 4000-904, and
15.1% (±5.1%) for type 4000-905. Dish 4000-903 significantly outperformed almost all other
dish types (Figure 2A).

Similarly, the cell proliferation rates were highest using the 400-903 plate, although
the only significant difference was compared with 4000-905 (p = 0.029) (Figure 2B). Dish
type 4000-903 seemed to be the most suitable type for NP cell CFU culture. Next, growth
factor supplementation showed strongly increased proliferation rates by up to 45 times
when stimulated with FGF2 or 62.5 times when stimulated with all three factors combined
(Figure 2C).
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3.2. NP Cell Marker Expression in EZSPHERE Spheroid Colonies

Real-time PCR was performed after culturing cells in each of the six types of EZ-
SPHERE dishes. The expression levels of ANGPT1 and COL2A1 were higher in 3D com-
pared with 2D culture (Figure 3A,D). The COL2A1 expression was particularly prominent,
which supports previous reports of high ECM production performance in colony-forming
cells [9]. Augmentation of EZSPHERE culture conditions by growth factor supplementa-
tion revealed strong reduction in the expression levels of ACAN, COL1A2, COL2A1, and
ANGPT1. (Figure 3E–H). Notably, the standard deviation for type 4000-901 was observably
high for COL2A1 and ANGPT1 outcomes, predominantly due to high expression found for
the A29 donor. (Figure 3A,D) The expression levels for the FGF2- and PDGF-supplemented
conditions were similar to those of the monolayer-cultured NP cells.

3.3. Cell Viability after Addition of Cryopreservation Solution

To examine the effects of different cryopreservation solutions on NP cells during
mass cell batch production, we tested extended exposure of NP cells to three types of
cryopreservation solution (CB1, SCB, and SCBD-Free). At room temperature, cells exposed
to SCB and SCBD-Free showed a rapid decline in cell viability, with >50% cell loss within
1 h (Figure 4A). In the same process on ice, a high cell viability of ≥80% was obtained in all
solutions for up to 2 h, but the number of viable cells decreased with longer incubations in
SCB and SCBD-Free (Figure 4C). Samples left at room temperature for ≥1 h followed by
cryopreservation showed complete loss of viability (Figure 4B). Samples kept on ice before
cryopreservation had better viability, although cell viability was 67% in SCB and 57.8% in
SCBD-Free conditions after 2 h and decreased further with time (Figure 4D). Cells exposed
to CB1 had a survival rate of ≥90% even after being left for 5 h on ice, although the cell
viability decreased with time at room temperature.
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Figure 3. Relative gene expression levels of (A) COL2A1, (B) COL1A2, (C) ACAN, and (D) ANGPT1 for nucleus pulposus
cell spheroid colonies cultured on different EZSPHERE® dish types. (n = 4) Relative gene expression of (E) COL2A1,
(F) COL1A2, (G) ACAN, and (H) ANGPT1 of nucleus pulposus cell cultured on EZSPHERE® dish 4000-903 (n = 1) without
(-) or with 100 ng/mL epidermal growth factor (EGF), 10 ng/mL fibroblast growth factor (FGF), 100 ng/mL platelet derived
growth factor (PDGF), or a combination of all three growth factors (Mix). Data is calculated relative to monolayer cultured
nucleus pulposus cells. Values derived using 2−∆∆Ct method and presented as mean values with error bars presenting
standard deviation.
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3.4. Cell Potential after Cryopreservation

Next, NP cells were exposed to cryostorage solutions (CB1, SCB, or SCBD-Free) for 3 h
on ice before freezing. The cells were thawed and subsequently cultured. The cells frozen in
CB1 had an average cell viability of 95.7% (Figure 4A), but the other two cryopreservation
solutions resulted in considerable cell loss (Figure 5A). The average growth rate of cells
frozen in CB1 was 5.9 times (p = 0.53), which was lower than the growth rate of cells frozen
in SCB (8.93 times; Figure 5B). The Tie2- and CD24-positive rates in flow cytometry analysis
showed a trend toward reduced Tie2- and CD24-expressing fractions for NP cells kept in
CB 1 compared with SCBD-Free, although this difference was not significant (Figure 5C,D).

Additional investigation with a wider range of cryopreservation solutions (CB1, SCB,
SCBD-Free, CS10, CP-1, and PF) revealed viability ranging from 63.6% (PC) to 84.6% (CS10)
(Figure 6A). Interestingly, the Tie2-positivity rates of NP cells was 12.6% in cells in CS10,
suggesting a higher Tie2 retention rate in cells in CS10 than in CB1 (Figure 6B).
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Figure 5. Cells (n = 3) were suspended in CellBanker-1 (CB-1), STEM-CELLBANKER (STEM-CB), or
STEM-CELLBANKER without DMSO (STEM-CBDMSO FREE) and kept for on ice for 3 h and frozen
for 1 day. Subsequently (A) cell viability was assessed. Following cryostorage and thawing cells
were seeded cultured for 5 days. The (B) fold-increase in cell numbers was analyzed, as well as the
fraction of (C) Tie2 expressing and (D) CD24 expressing cells as analyzed by flow cytometry. Data is
presented as mean values with error bars presenting standard deviation. * p < 0.05.
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Figure 6. Comparison of 6 types of cryopreservation solutions, namely CELLBANKER 1 (CB-
1), STEM-CELLBANKER GMP grade (STEM-CB), STEM-CELLBANKER DMSO Free GMP grade
(STEM-CBDMSO FREE), CryoStor® CS10 (CS10), and Pro Freeze™-CDM (ProF). Nucleus pulposus
cells suspended in the cryopreservation solutions and kept on ice for 3 h before cryostoring them for
1 day. The cells were recovered and cultured for 5 days. Subsequently, the (A) viability rate and the
(B) fraction of Tie2 positive cells were determined. Data is presented as mean values with error bars
presenting standard deviation.

Finally, CS10 and CB1 were used to resuspended primary NP cells and the effects
on cell viability in cells with time left at room temperature or on ice were examined. The
average cell viability was 95.2% (±1.8%) for cells in CS10, and this value was maintained
even after 5 h on ice (Figure 7A) and at 89.9% (6.5%) in cells stored at room temperature
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(Figure 7B). CB1 produced similar results (Figure 6B). The average cell viability after
cryopreservation and thawing also remained high: 88.4% (±4.6%) in cells on ice in CS10 or
87.7% (±6.0%) in CB1 (Figure 7C). However, when kept at room temperature, the survival
rate after cryopreservation and thawing appeared to decrease to 67.5% (±29.9%) after 3 h
in CS10 compared with 82.1% (±6.5%) in CB1 (Figure 7D).
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4. Discussion

In this study, we aimed to tackle some practical issues that potentially limit the market
and clinical translation of NP progenitor cells as a regenerative cell transplantation product.
First, we examined the ability of EZSPHERE cultures plates to allow large-scale colony-
forming culture of NP progenitor cells. Second, we examined the effects of cryopreservation
solution on NP cell viability and potency under real-world conditions.

Spheroid formation rates were highest using EZSPHERE plate type 4000-903, which
has wells with a diameter of 800 µm and a depth of 400 µm. The proliferation rates were
also the highest for this plate type. 3D cell cultures are used widely in research in various
tissues, such as the vascular endothelium and cartilage, in an attempt to simulate the
in vivo microenvironment. Better differentiation potential has been demonstrated in vitro
compared with monolayer cultures of MSCs in spheroid cultures [26]. Previous work has
shown that spheroid-forming NP cells have a greater ability to produce ECM [9,27] and
are thus considered as promising cell types for regenerative and cellular therapeutics.

Our data support these previous findings, as EZSPHERE cultured cells exhibited a
markedly higher COL2A1 expression (on average 836-fold) compared with monolayer
cultured NP cells. By contrast, COL1A2 expression, as a negative NP marker [28], was
markedly downregulated (on average 0.6-fold). The ECM produced by NP cells in human
IVD tissue is classified mainly as type II collagen and proteoglycans, and IVD is not
formed normally in type II collagen-deficient mice [29]. Therefore, type II collagen is
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thought to play an important role in the formation of the IVD, which suggests that NP
cells that can be collected by this culture method should have excellent functionality. This
supports our previously stated belief that the ability for colonization is an indicator of NP
functionality [7].

We were particularly interested in the potential application of EZSPHERE plates
as an alternative to the current standard of methylcellulose-based CFU-s cultures [13].
Culturing in EZSPHERE plates has an additional potential advantage because the diffusion
gradient of the cultured cells and solution can be controlled more closely, which should
improve the reproducibility and quality control for commercialization [30]. Conversely,
methylcellulose-based culture leads to the formation of spheroid colonies of different sizes
and, because of the high viscosity of the culture medium, cell recovery can be complicated.
By contrast, the size of colonies obtained using EZSPHERE culture relies on the well’s
dimension, which produces relatively uniform colony sizes (Figure 1A). Moreover, the
colonies are not maintained in a hydrogel, and the recovery of large quantities of colonies
is much easier.

The EZSPHERE culture systems offer a promising culture device that could be scal-
able for production of CFU-s NP cells. As a goal for commercialization, for example,
cells from one sample must be extracted and available for at least 100 people. This is
important because IVD cell therapy products generally involve the transplantation of a
total of 1–100 × 106 cells per disc (although an optimal concentration has not been deter-
mined) (15). For example, in our previous clinical trial [16], we obtained an average of
1.24 × 106 primary cells/7.92 g tissue per patient donor material (Table 3). Assuming that
a cell therapy product requires 1 × 106 NP cells, ~100 times the cell proliferation effect
is required. However, with the EZSPHERE method alone, the cell proliferation rate was
7.75-fold in our study, which would mean that only nine patients on average could be
treated with cells from a single-batch production following EZSPHERE culture methods.
Our data in the present study show that growth factor supplementation can markedly
increase the NP cell proliferation rate. These findings are consistent with previous work
showing that FGF2 has a Tie2 expression-enhancing effect on NP cells [14]. In our study,
FGF2 supplementation had positive effect by increasing the cell proliferation rate by up to
62.5%. This would make it possible to manufacture NP cell products for about 77 patients
from a single tissue sample. However, cells cultured with other growth factors showed a
marked decrease expression of COL2A1 and ACAN, which may be a disadvantage com-
pared with the original colony assay culture. Further analysis and in vivo experimentation
are needed to elucidate these effects.

Table 3. Details of previous Mochida et al. clinical trial of autologous NP cell transplantation. In the clinical trial of Mochida
et al. [16], surgically removed NP tissue and obtained cells were cultured and administered to prevent adjacent degenerative
disc disease. The average time required to recover the transplanted cells was 122.9 min using a similar procedure in this
study. IVD: intervertebral disc, NPC: nucleus pulposus cell.

Age Sex IVD Tissue Amount
(g)

Number of Collectied
NPC

Number of Cultured
NPC

Cultured Cell
Recovery Time (min)

1 21 M 8.2 1.25 × 106 7.2 × 106 115
2 28 M 4 0.93 × 106 5.85 × 106 113
3 28 M 10.9 3.42 × 106 10.80 × 106 105
4 27 M 8.9 1.20 × 106 5.8 × 106 174
5 29 M 3.6 0.71 × 106 3.36 × 106 100
6 28 M 7.7 1.0 × 106 3.02 × 106 120
7 21 M 11.9 1.05 × 106 2.88 × 106 120
8 29 M 6.6 0.5 × 106 2.48 × 106 125
9 21 F 9.1 0.93 × 106 2.63 × 106 115

10 25 M 8.3 1.43 × 106 2.80 × 106 142
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The different types of cryopreservation solutions and exposure times used in the cryop-
reservation of cellular products are thought to affect the product quality [24]. Especially in
undifferentiated cells such as MSCs, the maintenance and prevention of phenotype loss and
changes in metabolism during storage are important. Reports have suggested inadequate
therapeutic results can arise because of the effects of cryopreservation in clinical trials using
MSCs [31,32]. Given our aim to deliver multipotent, undifferentiated NP progenitor cells
with high Tie2 positivity, concerns were raised about the effects of cryopreservation on NP
cells and their potency. In the trial reported by Mochida et al. [16], the collection of cultured
cells before their administration in the operating room was performed in a similar fashion
as in our experiments; that is, the NP cells were cryopreserved before transplantation.

The purpose of the current study was to identify the most appropriate cryopreserva-
tion solutions and freezing procedures by investigating their effects on NP cells over time.
Of the 10 patients treated in the previous clinical trial [16], an average of 4.6 × 106 NP cells
were administered following harvest from their respective coculture conditions. At the
time of surgery, the cryostored NP cells were recovered, thawed, and transported from a
cell-processing center to the operating room, and the waiting time before transplantation
was on average 122.9 min, which meant that the cells were exposed to the cryopreserving
agents for about 2 h. Our current results show that NP cells subjected to cryopreserving
agents for up to 3 h had survival rates of ≤70% in SCB and SCBD-Free. Interestingly, cells
kept on ice in CB1 retained a cell viability of 90% for up to 5 h.

Although CB1 has been shown to be optimal, for clinical translation, it is desirable
to preserve and administer cells in solutions devoid of animal-derived serum or DMSO.
Therefore, we examined six additional commercial cryopreserving preparations. We found
that cell viability after thawing was maintained at ≥80% with CB1, CS10, and CP-1. CS10
was also able to maintain a high Tie2-expressing faction. In addition, CS10 is an animal
component-free GMP-certified formula, making it potentially ssafer to administer directly
to patients than CB1 when used as an OTS [23]. However, SCB is a product with an identical
composition as CB1, but without animal components, and this resulted in a sharp decrease
in viability at room temperature or on ice with time. Moreover, the CS10 formula does
contain 10% DMSO, which showed a decrease in the number of cells after an incubation of
≥3 h incubation, which suggests that the collection and freezing of harvested cells should
be performed in the shortest possible time. If we select one type of cell preservation solution
for industrialization, CS10 is considered to be most optimal because it showed similar
levels of cell viability maintenance as CB1 but does not contain any animal components.

The limitation of our study is that procurement of human-derived cell sources was
limited, and some experiments had a limited sample size. Moreover, in this experiment, the
cryopreservation period was only 24 h and long-term storage might have a more impactful
effect on NP cells. Still, freezing and thawing process is likely the most important and
damaging phase in cryopreservation, as such we believe this experiment is sufficient to
compare the usefulness of solutions. Additionally, we did not further assess the impact
of cryopreservatives on NP cell potency. Furthermore, a recent study by Croft et al.
suggested that the type of cryopreservation medium, including CS10, had limited effects
on NP cell multipotency [33]. The work by Hiraishi et al. suggested no effect on the in vivo
regenerative potency of NP cells [24]. However, the effects on the potentially more sensitive
Tie2 cells remains unclear [13]. Further advances in culture, storage, and logistics for NP
cell-based cell therapeutics are needed to expand their potential as effective and marketable
products in the clinic [17,25].

5. Conclusions

EZSPHERE culture plates enabled us to examine colony formation in cell culture with-
out the use of methylcellulose or other hydrogel products. EZSPHERE culture methods
produced high colony formation and increased proliferation rates, which could be aug-
mented by FGF supplementation. Continued examination of the optimal culture methods
is required for further development and commercialization. The derived cells should be
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assessed in vivo for their potential as a regenerative medicinal product. Our study showed
that CS10 is presently, the best cryopreservation medium for retaining NP progenitor cell
phenotype and viability when cells are kept on ice or even at room temperature for up
to 3 h. Our findings provide information that may be useful for the translation of NP
cell-based therapeutics to the clinic.
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