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Abstract: The multi-frame super-resolution techniques have been prosperous over the past two
decades. However, little attention has been paid to the combination of deep learning and multi-frame
super-resolution. One reason is that most deep learning-based super-resolution methods cannot
handle variant numbers of input frames. Another reason is that it is hard to capture accurate temporal
and spatial information because of the misalignment of input images. To solve these problems, we
propose an optical-flow-based multi-frame super-resolution framework, which is capable of dealing
with various numbers of input frames. This framework enables to make full use of the input frames,
allowing it to obtain better performance. In addition, we use a spatial subpixel alignment module for
more accurate subpixel-wise spatial alignment and introduce a dual weighting module to generate
weights for temporal fusion. Both two modules lead to more effective and accurate temporal fusion.
We compare our method with other state-of-the-art methods and conduct ablation studies on our
method. The results of qualitative and quantitative analyses show that our method achieves state-of-
the-art performances, demonstrating the advantage of the designed framework and the necessity of
proposed modules.

Keywords: multi-frame super-resolution; subpixel alignment; dual weighting

1. Introduction

The super-resolution techniques, as one type of fundamental enhancement methods
in the computer vision area, have received more attention over the past two decades.
The purpose of these techniques is to recover high-frequency information from degraded
low-resolution images to generate high-resolution images with rich details. Now, the super-
resolution techniques have been widely applied to different areas, such as post-processing
of optical imaging, image manipulation and video enhancement for Internet resources.

The super-resolution techniques can be divided into three categories according to the
number of input and output images: single-frame super-resolution (SFSR), multi-frame
super-resolution (MFSR) and video super-resolution (VSR). SFSR aims to recover one
high-resolution image with only one input image, while the other two kinds of super-
resolution techniques make use of a series of low-resolution images for restoration. The
main difference between VSR and MFSR is that MFSR does not require the constant number
of input images, while VSR only utilizes a fixed number of frames within a fixed sliding
window to generate one high-resolution frame. Therefore, MFSR can be seemed as a
generalized VSR.

Recently, deep learning-based methods have been applied to super-resolution tasks,
leading to substantial performance gain, especially in SFSR [1-6] and VSR [7-20]. However,
few works have explored the combination of deep learning and MFSR because of the
following two difficulties.
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One difficulty is that MFSR should make full use of fluctuating numbers of inputs.
Theoretically, because the super-resolution restoration is an ill-posed problem, the restora-
tion performs better if we use more input frames to fuse. Therefore, MFSR methods need to
consider all the input frames to obtain better results. However, the numbers of input frames
are variant in real-world situations, which is hard to process by current deep learning-based
super-resolution methods. Specifically, a convolutional layer, one type of the essential basic
layers in deep learning, naturally has difficulties processing variant numbers of inputs
because the convolutional weights in a convolutional layer are fixed after training. Hence,
the fixed shape of weights means the fixed input shape of a convolutional layer, resulting in
a fixed number of input images. VSR methods do not solve this problem and use only part
of the inputs. In other words, the low-resolution target frame together with its adjacent
frames within a sliding window are sent to the VSR models to generate high-resolution
target frames. In such conditions, once the size of the sliding window is determined, it
cannot be changed during the inference procedure, which means the frames out of the
window will not participate in the restoration. Thus, VSR methods are not applicable
to MFSR.

Another difficulty is how to utilize the temporal and spatial correlation for restoration.
There are two kinds of solutions to extract temporal and spatial information using deep
networks, but none of them are perfect. One solution is to use optical flow as a motion
vector [9,12,13]. Frames are warped to align with the target frame under the guidance of
their optical flows. This kind of solution is suitable for dynamic scenes. However, both
forward warping and backward warping will introduce extra error, which influences the
restored results significantly. Moreover, sometimes it is hard to estimate optical flow accu-
rately, which also results in the failure of the restoration. Another solution is to implicitly
compensate temporal motion by the convolutional network, including 3D convolution [17]
and recurrent structure [21]. However, when motions between frames become large, they
fail to capture the correlation because of the limit of the receptive field.

To solve the first problem, we propose an optical-flow-based framework with a flexible
number of inputs. We believe the key for a flexible number of inputs relies on the framework
design, instead of proposing new deep learning layers, considering the fact that current
deep learning layers do not meet the basic requirements in the MFSR task because the shape
of weights in deep networks keeps unchanged once the model is determined. Therefore, it
is necessary to build a framework, which replaces the deep learning layers with flexible
temporal fusion operations. As a result, we fuse the features of different input frames
together through a weighted sum operation, which is a non-deep-learning approach. The
features for fusion are extracted from input frames by a deep network, and the fused
features are input into another deep network to recover high-resolution images. In a word,
the main difference of this framework is that it does not use deep learning layers to fuse,
which allows variant input numbers in MFSR.

To solve the second problem, we propose a spatial subpixel alignment (S5SA) module
and a dual-weighting (DW) module. In the MFSR task, we should align the input frames
to one of the input frames, a basic frame, before fusion. The accuracy of this alignment
operation is essential for temporal fusion. Therefore, we propose a new alignment module,
the SSA module, to conduct a subpixel-wise alignment in a high-resolution grid, while
other methods perform a pixelwise alignment. As for the DW module, we design it to
cooperate with the weighted sum fusion strategy. It generates a series of weights for all
low-resolution input frame to increase the accuracy and eliminate the potential errors for
fusion. It deploys a distance weighting network to eliminate the warping errors and uses
a content-aware weighting network to generate weights according to the content in the
frame. As shown in Figure 1, our method can generate sharper images with richer details
than state-of-the-art methods, Recurrent Residual network (RRN) [21].
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Figure 1. Visual comparison with one of the state-of-the-art methods Recurrent Residual network
(RRN). The numbers and words of our methods in zoomed area are more clear (The Korean on the
license plate in the figure are symobles for vehicle classification, having no explicit meanings).

The main contributions of this paper can be summarized as follows:

1.  We propose an optical-flow-based multi-frame super-resolution framework, which
is capable of handling any number of input frames to generate the high-resolution
target frame with only one network;

2. We propose an SSA module for spatial alignment and a DW module for temporal
fusion. The SSA module offers a subpixel-wise alignment, and the DW module
generates proper weights to decrease the errors caused by warping and optical flow.
The experimental results show that both modules can lead to performance gain.

2. Related Work

In the SFSR task, the deep learning-based methods totally surpass the traditional
methods [1-3]. Ref. [4] proposed a lightweight network by recursive learning. Refs. [5,6]
developed deeper and more complicated networks, allowing them to obtain better results.

VSR methods experienced huge performance improvement thanks to the deep learning-
based technology [7-10]. There are two main categories for temporal and spatial infor-
mation extraction: the flow-based methods and implicit temporal motion compensation
methods. Refs. [9,12] used optical flow for the motion estimation and performed warping
for alignment. Ref. [13] used the recurrent structure to enhance the temporal information.
These optical-flow-based methods have limited performance because of the inaccuracy
in optical flow estimation and the alignment operation errors. To solve this problem,
ref. [14] refined the optical flow in the image restoration task. Refs. [15,16] introduced
the high-resolution optical flow for video super-resolution (SOFVSR). For other methods,
ref. [17] used 3D convolution to estimate temporal information in dynamic upsampling
filters (DUF) networks. Ref. [18] used deformable convolutional layers to get temporal
information by their offsets. Refs. [19,20] explored the 2D convolutional layer. RRN [21]
revealed that recurrent, residual structure performs better than 2D convolution and 3D
convolution. These implicit motion compensations are purely based on convolutional
networks and removed the alignment step. Therefore, when the range of motion is larger
than the receptive field of the convolutional network, there will be no temporal information
available for restoration.

Multi-frame super-resolution methods mainly focused on the design of modeling
super-resolution tasks and a regularization term. Farsiu was the first to introduce maxi-
mum a posteriori into super-resolution task and proposed an edge-preserving regulation
term, total bilateral variation [22]. Then [23] used an M-estimator to deal with the outliers.
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Ref. [24] came up with a Bayesian approach to model the registration parameters and re-
stored images in one framework jointly. Zeng chose half-quadratic estimation to model [25].
He achieved the adaptive regularization of weight tuning by modeling noise levels [26].
Following [26], ref. [27] proposed a spatially adaptive Bayesian and reweighted the weight
of regularization in optimizing. Ref. [28] took the blur effect into consideration. Batz
regarded the super-resolution task as an interpolation based on Voronoi tessellation [29,30].
Ref. [31] also combined a hybrid super-resolution technique for SFSR with MFSR. Although
various models have been proposed, MFSR still lacks effective frameworks to incorporate
deep learning.

3. Methods
3.1. Framework

Most VSR methods fuse features from different inputs by convolutional networks,
which are only suitable for a constant number of fusion features. In our model, however,
we used a normalized weighted sum feature fusion strategy because this operation has no
limit to the number of fusion features. As a result, our framework could handle different
numbers of inputs.

The framework is shown in Figure 2. The target frame Iy, along with other N-1 frames,
Ii(i=1: N — 1) are sent into the body part to get series of deep features [Fy, F; ... F; ... Fy_1].
Each F; consists of M features, i.e., F; = {f;; |1 < j < M}. Then these features are aligned
to Fy by the SSA module to generate the aligned features F;'. Each feature i[fj in F} are input
to generate the fused feature fj, the j-th feature from the fused features £, by a weighted
sum operation, as shown in Equation (1):

N-1
fO,j + Y wix z'a‘
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fi = N—1 M)

14+ Y w;
i=1

where w; is the weight of features F' from each input frame I; and is generated by the DW
module. Then, the fused features F are fed into the enhancement part and the tail part to
generate the final output.
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Figure 2. The framework of our method.

As for the body part, it consists of one convolutional layer and some resblocks. Each
resblock has a basic form of conv-relu-conv, and all the resblocks has the same number of
channels and the same resolution. The enhancement part consists of several denseblocks.
The denseblock has dense connections between its three resblocks. The tail part consists
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of a pixel shuffle layer and a convolutional layer. In addition, the tail part can be directly
added at the end of the body part during the training phase to generate a raw output,
which accelerated training.

According to Equation (1), the fused feature F equals Fy when only one target frame
Iy is fed into the model, which serves as the SFSR. When the number of input frames N is
fixed, this model turns to VSR. Therefore, our framework is more flexible and was suitable
for various situations.

3.2. Spatial Subpixel Alignment Module

Commonly, most learning-based methods align the input frames to the target frame on
a low-resolution grid. This kind of operation may result in a loss of subpixel information,
which eventually affects the restoration. To solve this problem, we propose an SSA module
to get more accurate alignment. The SSA module provides subpixel-wise alignment, which
is processed with the aid of optical flow.

We aim to align features in high-resolution for more accurate alignment. First, we
upsample the dense optical flow and the features into a high-resolution grid. The optical
flow with a resolution of (H, W) is resized to the resolution of (H x r, W X r), where
H, W and r represent the image height, the image width and the image upscaling factor,
respectively. Similarly, the features with the size of (m x r x r, H, W) is resampled to the
size of (m, H x r, W x r) through pixel shuffle operation, where m indicats the number
of feature groups and each group has r*r features. Different from resizing, pixel shuffle
rearranges the values along the dimension of different features to a high-resolution grid,
keeping the total number of elements unchanged. Then a backward warping operation is
applied with both optical flow and features to generate aligned features with the size of (m,
H x 1, W X r). Finally, aligned features on the HR grid are converted into low-resolution
features with the size of (m x r x 1, H, W) by a reverse pixel shuffle operation. In this
paper, we set m to 8. A simple example is shown in Figure 3, wherem =1, r = 2.

Resized Optical Flow
Optical Flow

:_()
Resize )
‘ —
Pixel ‘
Shuffle Aligned Features

 — on HR Grid Warped Features

Features on
Features HR Grid

J . J
Y Y

Backward Warping Reverse Pixel Shuffle

Figure 3. The architecture of the spatial subpixel alignment (SSA) module.

The basic reason for such a design is that we choose pixel shuffle operation in our tail
part, which is a common choice. It is clear that low-resolution features in each channel had
a subpixel relationship with other channels because they are adjacent to each other after
pixel shuffle. As a result, any subpixel operation would modify all the channels of features,
and low-resolution features in our model should be determined by all the channels of
the former features. Under this premise, if we directly warp on a low-resolution grid for
alignment, each new channel is determined by one channel, which will cause the loss of
subpixel information.

Figure 3 shows a simple case that how the subpixel operation affects all channels.
For simplicity, four channels of features in red, yellow, blue and green are planned to
move 0.5 pixels in both horizontal and vertical direction, which is exactly 1 pixel in both
directions on x2 resolution. After applying the SSA module, the color order turns to green,
blue, yellow and red. This proves the cross-channel effect caused by optical flow.
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3.3. Temporal Dual-Weighted Module

To eliminate the errors caused by optical flow and warping operation, we propose a
DW module. Because we apply a weighted sum operation in the final fusion, as shown
in Equation (1), DW gives the weight w; of each frame according to its content and its
difference to the target frame, as shown in Figure 4. It is worth mentioning that although
one frame only computes one weight, this weight is applied to multiply each feature from
this frame for fusion. The w; is the multiplication of different weight w? and the content
weight w; as shown in Equation (2):

w; = w;’l X Wy ()

Subnet 1

F,

Target Feature £

Wrapped Feature F°

i

w.

1

Convolutional Layer ~ ResBlock Sigmoid Function

Figure 4. The architecture of the dual-weighting (DW) module.

The warped features or images often suffer from distortion, which is attributed to the
inaccuracy of optical flow and the warping itself. Therefore, we compute a weight wf for
each warped features, which measures the difference between the warped features and the
target features. By doing so, the unreliable areas are not taken into consideration in the
later fusion process. Difference weight wfl is generated by a small common convolutional
network with five layers, as shown in Equation (3):

w! = o(Nety(Fy — F7)) 3)

where Net;(*) denotes the inference process of the small network. It takes the difference
between Fy and F{ as the input, and the output is followed by a sigmoid function ¢ (*), so
that the range of w? is limited in the range of 0-1.

Moreover, we introduce content weight w{ to adjust the weights according to the

content. The computation of content weight w{ can be formulated in Equation (4):

wf = o(Net.(cat(Fy, F'))) 4)
where Net,(x) is the inference process of another small network with a similar architecture
to Net;(x). Differently, this small network processes a concatenation operation cat(x) in
the beginning.

The two subnets for computing the two weights have the same structure, as shown in
Figure 4. They are simply a cascade of two convolutional layers and one resblock placed in
the middle. Both subnets end with a sigmoid function. Differently, the channel number for
content weight is twice that of distance weight.
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4. Results
4.1. Dataset and Implementation Details

Currently, ref. [32] is the only dataset for MSFR. However, this dataset focuses on a
remoted multi-band vegetation images and is not suitable for general usage. Therefore, we
choose the realistic and dynamic scenes (REDS) dataset [33], one of the benchmark datasets,
as our training and evaluation set. One reason is that the REDS contains various realistic
and dynamic scenes. Another reason is that the motion range between frames in the REDS
dataset is larger and more complex than other datasets, which is in line with the real-world
situation. There are 270 clips in the REDS dataset, and each clip contains 100 frames. We
chose 240 clips for training and left the rest 30 clips for evaluation.

The number of resblocks in the body part was set to 10, and the number of denseblocks
in the enhancement part was set to 2. The channel number was 128. We selected the
pretrained pyramid, warping, and cost volume network (PWCNet [34]) as the optical flow
estimator. During the training phase, we divided 100 frames in each clip into 20 groups
and randomly selected the target frame and input numbers. We randomly selected crop
positions for different groups. The patch size was set to 256 pixels of height and width.
We applied data augmentation techniques, including flipping and rotation. We first used
Adam optimizer [35] to train our model for 100 epochs with a learning rate of 10~%. During
this stage, we computed the L1 distance to the labels for both the raw and final outputs.
Moreover, we froze the weights of PWCNet. After this, we trained our network for another
50 epochs. During this stage, we only computed the L1 distance between the final outputs
and the labels. The weights of PWCNet were added to the training list, and the initial
learning rate was 10~% and it decreased to 10~ after 30 epochs. We implemented our
method in PyTorch with NVidia 1080Ti GPU (manufacted by Gigabyte Technology in
Taiwan, China).

4.2. Comparisons with Other State-of-the-Art Methods

We compared our method with the following three state-of-the-art algorithms, DUF [17],
SOFVSR [16] and RRN [21]. DUF and RRN are two typical implicit motion compensa-
tion algorithms, which use 3D convolutional and the recurrent neural network to capture
the motion information between frames, respectively. SOFVSR is an optical-flow-based
algorithm, which surpasses other optical-flow-based methods. DUF and SOFVSR use 7
and 3 frames to generate one high-resolution frame, respectively. RRN is only capable
of handling 2 frames, so it uses 2 frames for evaluation. All the experiments with these
state-of-the-art methods were conducted using the corresponding code officially released
by their authors. To ensure a fair comparison, we used 2 and 3 frames in our method, which
means 1 high-resolution output was computed by its corresponding low-resolution frame
together with 1 and 2 adjacent frames, respectively. It should be mentioned that, as for
DUF, we did not use the official low-resolution input frames to evaluate because we found
huge misalignments between the restoration and the ground truth. Therefore, we used the
downsampling function in their code to generate low-resolution frames for evaluation.

The quantitative comparison results are shown in Table 1, where Ours-2 and Ours-
3 represent our method with 2 and 3 input frames, respectively. It was obvious that
our method could process different numbers of input frames, and it outperformed other
methods in terms of both the PSNR and runtime metrics on the REDS dataset.

Table 1. Quantitative comparison on the realistic and dynamic scenes (REDS) dataset.

Bicubic DUF [17] SOFVSR [16] RRN [21] Ours-2 Ours-3

PSNR (db) 25.76 26.13 28.17 28.28 28.39 28.45
Runtime (s) - 1.26 0.21 0.37 0.09 0.19

Compared to SOFVSR, an optical-flow-based method using 3 input frames, our
method with the same inputs (Ours-3) had an improvement of 0.28 db on PSNR. This
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proves that the performance gain of our method comes from the fusion strategy proposed
in this paper instead of the optical flow approach itself. It may be because that SOFVSR only
concentrates on the accuracy of optical flow, while our method focuses on the temporal
fusion approach, leading to better results.

RRN had better performance than SOFVSR and DUF, which indicated that the 3D
convolutional layer in RRN learns meaningful temporal information in the super-resolution
task. Even so, the value of RRN’s PSNR was still a bit lower than that of our method with
2 input frames. This means our fusion approach could obtain promising results.

As for the computational complexity, we computed an average runtime for 100 sam-
ples. As shown in Table 1, our method had the fastest runtime. We believe that the fast
speed was attributed to the lightweight of the body part and the fusion part in our network.

In addition, we show the visual comparisons of the results on the REDS dataset, as
shown in Figure 5. Our results were sharper and had fewer artifacts than other methods.

Bicubic SOFVSR Our Method  Ground Truth

Figure 5. Visual comparison of the results on the REDS dataset. The images on the left are the results of our method. The
zoomed images on the right side are the results of various methods for the area in the bounding box(The Korean in the third
figure means ‘busy’).
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4.3. Ablation Studies

We conducted three experiments with 5 input frames to demonstrate the effectiveness
of the SSA module and the DW module. As shown in Table 2, model 1, equipped with
both the SSA module and the DW module, had the best performance, whose PSNR reaches
28.50 db.

Table 2. Ablation study results on the REDS dataset.

Models Input Number Alignment Fusion Weight PSNR
Model 1 5 SSA DW 28.50
Model 2 5 Standard DW 28.19
Model 3 5 SSA Average 27.93
Model 4 1 SSA DW 28.18
Model 5 3 SSA DW 28.45
Model 6 9 SSA DW 28.52

Compared with model 1, model 2 removes the SSA module and had a substantial
drop of 0.31 db, which may have been caused by the loss of the subpixel information in
standard low-resolution grid warping operation. This means subpixel-wise alignment
was essential in MFSR tasks, especially in optical-flow-based methods. Therefore, we can
confirm the effectiveness of the SSA module through this comparison.

In addition, model 1 used the DW module to decrease errors caused by the optical flow
or the alignment operation before fusion operation. In contrast, model 3 replaces the DW
module with the average operation and gets a performance drop of 0.57 db compared with
model 1. It is not strange that, without the DW module, the fusion operation in our method
introduced many errors into the restoration procedure. This comparison demonstrates that
the DW module was indispensable in our method. Surprisingly, model 3 behaved even
worse than model 4, which indicated that errors introduced by optical flow were harmful
to the restoration if they were not carefully processed.

We also tested our method with different numbers of input frames to justify the ad-
vantages of our framework for being able to handle variant numbers of inputs. Comparing
model 1 with models 4 and 5, we found that the more low-resolution frames participated
in restoration, the better performance the model had. It shows that our model was capable
of computing useful temporal information between different input frames. However, when
the input number increased to 9, as shown in model 6, the performance gain became tiny.
This may have been caused by the decrease of the overlapping area when the motion range
between frames was large.

5. Conclusions

In this paper, we proposed an optical-flow-based MFSR network. On one hand, we
design a framework, which enables us to handle variant numbers of input frames by
replacing deep learning layers with a weighted sum operation for fusion. This design
allows making use of more temporal information from input frames. On the other hand,
our method contains an SSA module and a DW module. The SSA module offers more
accurate subpixel-wise alignment by a backward warping operation on the high-resolution
grid. Moreover, the DW module generates an error suppression weight to incorporate with
the weighted sum fusion strategy, considering the distance on both values and contents of
features from each frame. Moreover, the qualitative and quantitative analyses show that our
method achieves the-state-of-the-art performances, which demonstrates the effectiveness of
the framework and two modules. We believe our multi-frame fusion approach is applicable
to other temporal computer vision tasks as well, such as multi-frame deblurring and
multi-frame dehazing, which we will explore in future work.
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