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Abstract: The optimisation of the design method for verification of slender steel beam-columns is
still a current issue not only from scientific point of view, but also for design practice. Therefore,
the main objective of this paper is comparison of the suitability of established design approaches,
according to the European standards for steel and aluminium structures, on the basis of numerical
simulations. Thus, a finite element model was validated on the basis of experimental analysis
available in the scientific literature. To perform the comparison of accuracy of design approaches
according to European standards, a commercial software program ANSYS was used for observation
of the resistances of beam-columns. The resistance of european I beams with parallel flanges (IPE) and
a rectangular hollow cross-section (RHS) were investigated for four load cases on a simply supported
member and also on a pinned-fixed beam column with linear bending moment distribution, where
the resistance of the cross-section governs. Finally, the conclusions for suitability of the respective
design approaches are discussed, together with some findings that arose from this work.

Keywords: beam-columns; steel structures; imperfections; numerical analysis; second-order theory

1. Introduction

The high strength properties of steel are one of the greatest advantages of construc-
tional steel compared to the other materials used in civil engineering, and allows us to
design lighter, slender and, therefore, more economical structures. However, the material’s
utilization is also reaching its limits. The resistance of steel members subjected to a com-
bination of axial compressive forces and bending moments, the so-called beam columns,
is affected by stability problems, which occur with increasing slenderness of structural
elements. The basis of this scientific discipline was set by Euler in the 18th century [1].
Since then, thanks to the hard work of researchers dealing with buckling phenomena,
development in this field of study has gone a long way, as various design approaches have
been developed to include these phenomena into design calculations.

The equivalent column method was adopted in European standards for design of
steel members subjected to an axial compressive force and bending moment about either or
both principal axes of cross-section, as summarised in papers [2–4]. This design approach
is simple and general for a wide range of applicability. On the other hand, these attributes
cause the loss of accuracy in a variety of load cases, and discrepancies can occur due to
the complexity of creation of the equivalent member. Therefore, a huge amount of effort is
still dedicated by researchers to either optimise or replace this design procedure, which
recently resulted in the development of several alternative design approaches.

The first alternative method for verification of beam columns susceptible to out-of-
plane buckling was proposed by Tankova et al. [5,6], on the basis of a derivation performed
by Szalai and Papp [7]. The result of this derivation was a design formula based on the
well-known Ayrton-Perry format. However, as the authors themselves acknowledged that
for practical applications the proposal for in-plane buckling of beam-columns has to be
derived, covering the combined effects of in-plane and lateral torsional buckling modes [5].
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The overall interaction concept [8], the direct strength method [9] and continuous
strength method [10] are other design methods, which are being currently developed.
These design methods are based on a similar approach to the general method included in
clause 6.3.4 of EN 1993-1-1:2005 [11], which uses generalised relative slenderness as the
key parameter for interaction between resistance and instability. The main advantages of
these design methods are their ability to account for beneficial strain hardening effects
of stocky members and avoidance of complex and burdensome calculation of effective
cross-sectional properties in the case of local buckling of slender cross-sections.

Nowadays, as more sophisticated numerical software is commonly used in design
practice, the possibility of inclusion of local and global imperfections [12–14] directly into
numerical analysis is more relevant. So, as the imperfections are already included in the
nonlinear global analysis, the consecutive verification for stability effects is not necessary.
However, this advantage seems to be less significant with the growing complexity
and size of the numerical models, because in these cases the computational time is
markedly increasing.

It seems that the design method of Eurocode 9 has been forgotten in the shadow of
the aforementioned design methods. Even though aluminium and steel are two different
materials, because of their similar mechanical behaviour similarities in the concepts of
calculating aluminium and steel constructions can be seen. The possibility of application
of a unified design method according to Eurocode 9 [15] was, therefore, presented for
steel members by Höglund [16]. The fact that this design method was originally used for
verification of steel members in Sweden is another proof for its possible utilization for
steel members.

A few comparable studies between this design method and the equivalent column
method can be found in [16], but extensive comparison between the design methods of
Eurocode 3 and Eurocode 9 is missing. The aim of this paper is to reduce this gap, compare
the accuracy of the two design methods by geometrically and materially nonlinear analysis
with imperfections (GMNIA), summarize the benefits and disadvantages of the unified
design method of Eurocode 9, and assess the possibility of application of this design
method for steel structures.

2. Numerical Analysis

Modern numerical methods are commonly used to study a wide range of civil engi-
neering problems [17–20], as they are able to a burdensome and, in most cases financially
unfeasible, experimental methods. One of the greatest advantages of numerical analysis is
that it allows the isolation of the governing parameters. Therefore, the commercial finite
element software ANSYS [21] was used for comparison of the equivalent column method
and the unified method according to Eurocode 9. Because the objective of this paper is
to compare these two approaches, the same members and material properties of steel
were used to determine the analytical member resistances according to these approaches.
Members with IPE 100 and RHS 200/100/10 cross-sections were used in this analysis to
simulate the behaviour of sections susceptible and not susceptible to fail in lateral-torsional
buckling mode. Both sections belong to the 1.class of cross-section classification.

The members were subjected to a combination of axial compressive force and uniaxial
bending moment about both cross-sectional axes separately (NEd + My,Ed, NEd + Mz,Ed).
The definition of the cross-sectional axes for the appropriate type of cross-sections can be
found in in Figure 1. Five different load cases were studied, four on simply supported
member and one on a pinned-fixed beam-column, as seen in Figure 2. These load cases
represent some of the elementary load cases, which are used by the equivalent column
method to transform the buckling case of members with different boundary conditions
to the standard case of a simply supported member using an appropriate beam-column
model. The transformation of a pinned-fixed beam column to a simply supported member
with linear bending moment gradient is also presented using this method.



Appl. Sci. 2021, 11, 3269 3 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 30 
 

model. The transformation of a pinned-fixed beam column to a simply supported member 
with linear bending moment gradient is also presented using this method. 

 
Figure 1. Definition of the internal forces and cross-sectional axes of the members. 

 
Figure 2. Load cases investigated in the numerical analysis. 

The ultimate resistances for these load cases were investigated for both in-plane (y-y, 
z-z) and also for out-of-plane buckling modes. To represent a wide range of results, four 
nondimensional slenderness ratios ̅ߣ = 0.5;  1.0;  1.5;  2.0 were observed. 

2.1. Finite Element Modelling 
The assumptions for finite element modeling (FEM) are presented. However, as the 

concept of modelling is similar for both IPE and RHS cross-sections, the assumptions for 
members with an IPE cross-section are presented, mentioning only differences for mem-
bers with RHS cross-section in the Section 3.2. 

The shell element SHELL181 was used for the FE model. This is a four-node element 
with six degrees of freedom in every node and is applicable for nonlinear analysis includ-
ing large strain and/or large rotation problems. Five integration points through the ele-
ment layer were used, as only one layer through element thickness was assumed in the 
model. Since the objective of the numerical analysis was to determine ultimate beam-col-
umn resistances, the Newton-Raphson iteration method was chosen for the calculation. 
The cross-section parts consisted of twelve elements per flange width and twenty ele-
ments for web height. 

The connection between web and flange elements of hot-rolled I sections can be ac-
complished in various ways. A small material overlap is generated by the direct connec-
tion of the web and flange elements in their common nodes. One of the few approaches to 
avoid this material overlap is the use of a modified element in the location of the web-
flange connection with dimensions such that area of this modified element is the same as 
the difference between radius zones and the overlapped area [22,23]. Another method is 
to offset the web boundary elements by half of a flange thickness and connect the web and 
flange nodes by rigid constraint elements [24]. Finally, the direct connection of web and 
flange elements in their common nodes with a small material overlap was used in this 

Figure 1. Definition of the internal forces and cross-sectional axes of the members.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 3 of 30 
 

model. The transformation of a pinned-fixed beam column to a simply supported member 
with linear bending moment gradient is also presented using this method. 

 
Figure 1. Definition of the internal forces and cross-sectional axes of the members. 

 
Figure 2. Load cases investigated in the numerical analysis. 

The ultimate resistances for these load cases were investigated for both in-plane (y-y, 
z-z) and also for out-of-plane buckling modes. To represent a wide range of results, four 
nondimensional slenderness ratios ̅ߣ = 0.5;  1.0;  1.5;  2.0 were observed. 

2.1. Finite Element Modelling 
The assumptions for finite element modeling (FEM) are presented. However, as the 

concept of modelling is similar for both IPE and RHS cross-sections, the assumptions for 
members with an IPE cross-section are presented, mentioning only differences for mem-
bers with RHS cross-section in the Section 3.2. 

The shell element SHELL181 was used for the FE model. This is a four-node element 
with six degrees of freedom in every node and is applicable for nonlinear analysis includ-
ing large strain and/or large rotation problems. Five integration points through the ele-
ment layer were used, as only one layer through element thickness was assumed in the 
model. Since the objective of the numerical analysis was to determine ultimate beam-col-
umn resistances, the Newton-Raphson iteration method was chosen for the calculation. 
The cross-section parts consisted of twelve elements per flange width and twenty ele-
ments for web height. 

The connection between web and flange elements of hot-rolled I sections can be ac-
complished in various ways. A small material overlap is generated by the direct connec-
tion of the web and flange elements in their common nodes. One of the few approaches to 
avoid this material overlap is the use of a modified element in the location of the web-
flange connection with dimensions such that area of this modified element is the same as 
the difference between radius zones and the overlapped area [22,23]. Another method is 
to offset the web boundary elements by half of a flange thickness and connect the web and 
flange nodes by rigid constraint elements [24]. Finally, the direct connection of web and 
flange elements in their common nodes with a small material overlap was used in this 

Figure 2. Load cases investigated in the numerical analysis.

The ultimate resistances for these load cases were investigated for both in-plane (y-y,
z-z) and also for out-of-plane buckling modes. To represent a wide range of results, four
nondimensional slenderness ratios λ = 0.5; 1.0; 1.5; 2.0 were observed.

2.1. Finite Element Modelling

The assumptions for finite element modeling (FEM) are presented. However, as the
concept of modelling is similar for both IPE and RHS cross-sections, the assumptions for
members with an IPE cross-section are presented, mentioning only differences for members
with RHS cross-section in the Section 3.2.

The shell element SHELL181 was used for the FE model. This is a four-node element
with six degrees of freedom in every node and is applicable for nonlinear analysis including
large strain and/or large rotation problems. Five integration points through the element
layer were used, as only one layer through element thickness was assumed in the model.
Since the objective of the numerical analysis was to determine ultimate beam-column
resistances, the Newton-Raphson iteration method was chosen for the calculation. The
cross-section parts consisted of twelve elements per flange width and twenty elements for
web height.

The connection between web and flange elements of hot-rolled I sections can be ac-
complished in various ways. A small material overlap is generated by the direct connection
of the web and flange elements in their common nodes. One of the few approaches to avoid
this material overlap is the use of a modified element in the location of the web-flange
connection with dimensions such that area of this modified element is the same as the
difference between radius zones and the overlapped area [22,23]. Another method is to
offset the web boundary elements by half of a flange thickness and connect the web and
flange nodes by rigid constraint elements [24]. Finally, the direct connection of web and
flange elements in their common nodes with a small material overlap was used in this
analysis (Figure 3), although the tabular cross-sectional dimensions were used for ana-
lytically derived beam-columns resistances. These assumptions were chosen to simplify
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modelling in case of members with an RHS cross-section. Moreover, it was also observed
that the radius zones had negligible influence in the case of lateral-torsional buckling [25].
This is also valid because the material overlap is almost at the same location as the radius
zones, so the material overlap partly compensates the effect of the radius zones on the
member resistance.
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The material properties of steel grade S235 were considered in the analysis, with a
yield stress fy = 235 MPa and modulus of elasticity E = 210,000 MPa. According to Annex
C of Eurocode 3 part 1–5 [26], the following material models can be used while modelling
plated structures:

• elastic-plastic without strain hardening,
• elastic-plastic with a nominal plateau slope of 1 MPa or a similar low value,
• elastic-plastic with a strain hardening slope of E/100,
• true stress-strain curve modified from test results.

The elastic-plastic material model with insignificant hardening slope was used because
the strains at ultimate resistance of slender structures are small, so strain hardening has little
effect on the ultimate resistance. On the other hand, the bilinear material model without
strain-hardening could be the cause of convergence issues during numerical analysis [27].
Strain-hardening gains higher importance for stocky members, where the strains reach
higher magnitudes at ultimate limit states.

Imperfections are other phenomena which affect the resistance and behaviour of real
members under combination of loading. In the case of numerical analysis of beam-columns,
it is typical to consider geometric imperfections in the form of member bow curvature,
and structural imperfections in the form of residual stresses. The initial imperfections
have to be included in the nonlinear numerical analysis, not only due to the effect on the
member resistance but also because buckling may not occur in the case of perfect straight
members without any imperfections under axial compressive force and symmetric element
distribution. The commonly used amplitude of initial bow imperfection L/1000 [2,28]
(Figure 4) was used in these numerical simulations. The shape of the initial geometric
imperfection was extracted from preliminary linear buckling analysis.
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The structural imperfections were included in the numerical analysis in the form of
residual stresses. The commonly used distribution of residual stresses for hot rolled I
and H-profiles can be seen in Figure 5. Although a parabolic distribution according to
measurements seems to be more appropriate, simplified linearized stress distributions
provided more conservative but similar results. Therefore, the linear stress distribution
of residual stresses was used in the numerical analysis. The measurements of residual
stresses performed by Alpsten or ECCS also proved [2] that the magnitudes of the residual
stresses are not dependent on steel grade, so the magnitude of the residual stresses for
higher strength steels should be also considered with relevance to steel grade S235. More
detailed background research about this topic can be found in [2].
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The boundary conditions on both member ends were modelled in one “Master node”,
which were located in the centre of gravity of end cross-sections, and these nodes were
shifted 1 mm away from them. Therefore, the lengths of the members were shorter by 2 mm.
These master nodes were modelled by one node element, MASS 21, which has six degrees of
freedom. The master nodes were coupled to all nodes of end cross-sections by “constraint
equations” in a such way that they behaved like a rigid plate, and the displacements
and rotations of end cross-sections were dependent on the motion of the master node.
Therefore, it was possible to apply the boundary conditions and loads directly to one node,
simplifying the modelling process. This also compensates for modelling material zones in
the ends of the member with the higher value of Young’s modulus of elasticity [29], which
prevents the development of stress concentrations under concentrated loads. As there is
also analysis of IPE members with free warping of the end cross-sections in this paper, a
different modelling technique of such boundary conditions is explained later in the paper.

2.2. Validation of the FEM Model

Validation of this modelling approach was performed using the experimental analysis
performed by Galambos and Kuren [30]. This experimental programme contains a descrip-
tion of 42 hot-rolled wide-flange columns subjected to axial force and bending moments.
Most of the columns were subjected to bending moments about their major principal axis,
except two specimens, T25 and T27, which were subjected to a bending moment about
their minor principal axis. The boundary conditions were pin ended in the plane of applied
bending moments and almost fixed in the perpendicular plane, as the buckling length was
approximately 0.6 L for this plane. The five load cases investigated by this experimental
analysis can be seen on Figure 6.
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Figure 6. Load cases investigated by Kuren and Galambos; simply supported beam-column with
unequal end moments (a); pinned-fixed beam-column (b); simply supported beam-column with
equal end moments (c); simply supported beam-column with linear bending moment distribution
(d); centrically loaded beam-column (e).

The loading components were applied independently of each other. Most of the
specimens were first loaded to a certain level by an axial force, and after that the application
of bending moments was continued until failure.

Appropriate material properties and column dimensions were adopted in the numeri-
cal analysis for each member, as various cross-sections and steel properties were used for
the specimens. Also, a linear residual stress distribution according to Figure 5. for members
with a ratio h/b ≤ 1.2 was used. As the initial geometric imperfections are not presented in
this report, the initial bow imperfections were applied in the shape of first buckling mode
with an amplitude of L/1000.

To sum up, a total of 16 specimens were used for this validation, covering a wide range
of load cases and also relative slenderness and axial force ratios. The ultimate resistances of
specimens from experimental analysis were compared to the ultimate resistances gathered
by numerical analysis. The comparison of these specimens can be seen in Table 1. The
specimens, which were firstly loaded by a bending moment and then by an increasing axial
force till failure, are denoted by “*”, and the specimens which were pinned in the plane of
the minor axis are denoted by “z”.

As can be seen, the resistances given by the numerical analysis are in good agreement
with the resistances gathered by the experimental loading tests. A similar level of accuracy
was also achieved in an analysis performed by Kucukler [31]. The deviations were both
higher and also lower than the resistances from the experimental analysis with a maximum
deviation of 13%. Also it can be seen that whether the resistances were higher or lower
than the “real” resistances was not dependent on the load case, as the specimens T8 and
T12 had the same relative slenderness and boundary conditions and the difference between
their deviations was 9%. Therefore it can be stated that the model provides consistently
accurate results, as the resistances are not strictly on the safe or unsafe side. The reason
for these deviations could be the difference between the real and assumed geometrical
imperfections involved in the numerical analysis, as they were not reported by authors.

Moreover, a good agreement has to be highlighted in the case of specimen T2, where
the bending moment resistance achieved by the experimental test was higher than the
analytical cross-sectional plastic resistance. Therefore, it can be concluded that this model
also provides good results in cases where the large plastic strains should be considered.
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Table 1. Comparison of ultimate resistance of beam-columns determined by numerical and experimental analysis.

Specimen Section Load Case ¯
λ Ned,exp/Npl Ned,FEM/Npl Mult,exp/Mpl Mult,FEM/Mpl ζ

T1 8 WF 31 d 0.4 0.130 0.130 1.03 1.01 0.98
T2 8 WF 40 d 0.23 0.148 0.148 1.13 1.03 0.91
T3 8 WF 31 b 0.45 0.496 0.496 0.59 0.58 0.98

T8 * 8 WF 31 c 0.63 0.588 0.665 0.16 0.16 1.13
T11 * 8 WF 31 e 0.64 0.862 0.836 - - 0.97
T12 8 WF 31 c 0.64 0.122 0.122 0.76 0.79 1.04
T13 8 WF 31 d 0.63 0.122 0.122 1.02 0.97 0.95
T14 8 WF 31 a 0.64 0.230 0.230 0.88 0.93 1.06
T16 8 WF 31 c 0.48 0.123 0.123 0.75 0.85 1.13

T18 * 8 WF 31 e 0.32 0.882 0.933 - - 1.06
T19 8 WF 31 c 0.32 0.121 0.121 0.78 0.88 1.13
T23 4 WF 13 d 0.96 0.114 0.114 0.93 0.93 1.00

T25z * 8 WF 31 e 0.88 0.696 0.631 - - 0.91
T26 4 WF 13 c 0.96 0.122 0.122 0.72 0.76 1.05
T27z 8 WF 31 c 0.825 0.503 0.503 0.21 0.20 0.94
T32 4 WF 13 c 1.29 0.122 0.122 0.64 0.63 0.98

x = 1.01
σ = 0.073

ζmax = 1.13
ζmin = 0.91

* Nomenclature: λ—slenderness ratio of the appropriate buckling axis, Npl, Mpl—the cross-section resistance in compression/bending,
Ned,exp, Mult,exp—the ultimate resistances in compression/bending acquired by the experiment, Ned,FEM, Mult,FEM—the ultimate resistances
in compression/bending acquired by the numerical analysis, ζ—the ratio of the experimentally acquired ultimate compression/bending
resistances to the resistance obtained by numerical analysis.

3. Verification According to European Standards

A comparison of ultimate resistance of the beam-column using design methods accord-
ing to Eurocode 3 and Eurocode 9 with the numerical analysis is presented in this section.
As was mentioned earlier in this paper, the comparison was performed for beam-columns
with IPE and RHS cross-sections for five load cases. The flexural buckling resistance was
investigated for both axes for both cross-sections. Moreover, in the case of members with
IPE cross-section, which are prone to torsional deformations, the lateral-torsional buckling
resistances were compared. This comparison was performed for members with two types
of boundary conditions, both for warping restrained and unrestrained end cross-sections.
The reason is that these types of constraints can produce different results and, therefore,
they can provide another perspective from the viewpoint of this analysis.

To provide better understanding of this chapter, the organization of the following sec-
tions is here briefly discussed. The analysis for members with IPE cross-section according
to different loading conditions is presented first, followed by analysis for members with an
RHS cross-section. The interaction curves according to design approaches and numerical
analysis are presented in the following sections, together with a short discussion of the
results.

The design of beam-columns according to Eurocode 3 have to satisfy multiple design
equations; two equations providing buckling resistance according to clause 6.3.3 of this
standard, and also equations determining cross-sectional resistance according to the appro-
priate class of cross-section specified in Section 6.2 in Eurocode 3. Therefore, the lowest
resistance from these equations is considered in the interaction curves below. The buckling
resistance design equations according to this standard are as follows:

NEd
χy NRk

γM1

+ kyy
My,Ed + ∆My,Ed

χLT
My,Rk
γM1

+ kyz
Mz,Ed + ∆Mz,Ed

Mz,Rk
γM1

≤ 1, (1)
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NEd
χz NRk
γM1

+ kzy
My,Ed + ∆My,Ed

χLT
My,Rk
γM1

+ kzz
Mz,Ed + ∆Mz,Ed

Mz,Rk
γM1

≤ 1, (2)

where: NEd, My,Ed, and Mz,Ed are the design values of the compression force and the
maximum bending moments about the y-y and z-z axis along the member, ∆My,Ed and
∆Mz,Ed are the bending moments due to the shift of the centroid axis for class 4 of cross-
sections, χy and χz are the reduction factors due to flexural buckling, χLT is the reduction
factor due to lateral torsional buckling, kyy, kyz, kzy, kzz are the interaction factors that are
relative to either method Annex A or Annex B of standard EN 1993-1-1, NRk, My,Rk, and
Mz.Rk are the characteristic values of resistances to normal force and bending moments y-y
and z-z axis, and γM1 is the partial factor for resistance of members to instability assessed
by member checks.

A cross-sectional check is included in the buckling resistance formulas according to
Eurocode 9 Section 6.3.3, so that only the lowest resistance from the buckling resistance
formulas is considered in the verification. This is especially true in the case of a laterally
unrestrained beam-column subjected to a combination of axial compressive force and
bending moment about the major axis, as the failure can occur due to the large bending
moment in the plane of bending and to the large axial force in the direction perpendicular
to the plane of bending.

Flexural buckling verification of beam-column with open double-symmetric cross-
section has to satisfy two expressions according to Eurocode 9:(

NEd
χy ωx NRd

)ξyc

+
My,Ed

My,Rd
≤ 1, (3)

(
NEd

χz ωx NRd

)ηc

+

(
Mz,Ed

Mz,Rd

)ξzc

≤ 1, (4)

The hollow cross-sections and tubes have to be verified according to the design
equation: (

NEd
Nb,Rd,min

)Ψc

+

(My,Ed

My,Rd

)1.7

+

(
Mz,Ed

Mz,Rd

)1.7
0.6

≤ 1.00, (5)

The beam-columns with open double-symmetric or monosymmetric cross-sections
have to be verified for lateral torsional buckling about the weak axis of cross-section
according to the following expression:(

NEd
χz ωx NRd

)ηc

+

(
My,Ed

χLT ωxLT My,Rd

)γc

+

(
Mz,Ed

Mz,Rd

)ξzc

≤ 1, (6)

ωx =
ω0

χ + (1 − χ)sin πx
lc

, (7)

ωxLT =
ω0

χLT + (1 − χLT)sin πx
lc

. (8)

where: ξyc = 0.8 or alternatively ξyc = ξ0χy, bu ξyc ≥ 0.8; ηc = 0.8 or alternatively ηc = η0χz,
but ηc ≥ 0.8; ξzc = 0.8 or alternatively ξzc = ξ0χz, but ξzc ≥ 0.8; η0, ξ0, γ0 are defined
in the Section 6.2.9.1 of the standard; NEd, My,Ed, and Mz,Ed are the design values of the
compression force and the bending moments about the y-y and z-z axis in the verified
cross-section; NRd, My,Rd, and Mz,Rd are the design values of resistances to normal force
and bending moments about the y-y and z-z axis in the verified cross-section; Nb,Rd,min =
min(χyωxNRd; χzωxNRd) depending on the direction of buckling Ψc = max(1.3χy; 0.8) or
Ψc = max(1.3χz; 0.8) depending on direction of buckling; ωx and ωxLT are the coefficients
taking into account the distribution of the secondary bending moment along the member;
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xs is the distance between support or point of inflection in the case of elastic flexural
buckling and the point of verification;

ω0 is the coefficient taking into account the effect of cross welds, for a cross-section
with no cross welds ω0 = 1; γc = γ0, χ = χy, or χz are the reduction factors due to flexural
buckling depending on the direction of buckling and lc is the flexural buckling length.

3.1. Resistance of Beam-Columns with IPE 100 Type of Cross-Section
3.1.1. Axial Compression and Major-Axis Bending Laterally Restrained

The objective of these loading conditions is to study the flexural buckling in the plane
of bending about the major axis. This type of failure occurs for beam-columns with double
symmetric I sections subjected to a combination of axial compressive force and bending
moment only if the sufficient lateral restraints are present. The lateral restraints were
modelled in the place where web and flanges are connected, as can be seen in Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 9 of 30 
 

ω0 is the coefficient taking into account the effect of cross welds, for a cross-section with 
no cross welds ω0 = 1; γc = γ0, χ = χy, or χz are the reduction factors due to flexural buckling 
depending on the direction of buckling and lc is the flexural buckling length. 

3.1. Resistance of Beam-Columns with IPE 100 Type of Cross-Section 
3.1.1. Axial Compression and Major-Axis Bending Laterally Restrained 

The objective of these loading conditions is to study the flexural buckling in the plane 
of bending about the major axis. This type of failure occurs for beam-columns with double 
symmetric I sections subjected to a combination of axial compressive force and bending 
moment only if the sufficient lateral restraints are present. The lateral restraints were mod-
elled in the place where web and flanges are connected, as can be seen in Figure 7. 

 
Figure 7. Lateral restraints of beam-columns. 

Method 2, according to Eurocode 3, also differentiates between members susceptible 
and not susceptible to torsional deformations. Therefore, the appropriate interaction fac-
tors kij have to be used. 

The interaction curves according to design approaches compared to the results of 
numerical analysis are presented on the Figures 8–12. There is also introduced an equiva-
lent member in the case of a pinned-fixed beam column. 

 
Figure 8. Interaction curves for laterally restrained beam-columns with IPE 100 cross-section. 

Figure 7. Lateral restraints of beam-columns.

Method 2, according to Eurocode 3, also differentiates between members susceptible
and not susceptible to torsional deformations. Therefore, the appropriate interaction factors
kij have to be used.

The interaction curves according to design approaches compared to the results of
numerical analysis are presented on the Figures 8–12. There is also introduced an equivalent
member in the case of a pinned-fixed beam column.
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Nomenclature: λ—slenderness ratio for the appropriate buckling axis, NRd, My,Rd, Mz,Rd—design
values of compression and plastic bending moment resistances, NEd, My,Ed, Mz,Ed—design values of
axial compressive force and bending moments.

As can be seen, in the case of pin ended beam-column Methods 1 and 2 of Eurocode
3 are calibrated correctly. The interaction curves have the same tendencies as the curves
obtained by the numerical analysis, especially in the high levels of axial force. Moreover,
Methods 1 and 2 generally provide conservative resistances for all load cases. The difference
in these methods is in the case of the pinned-fixed beam column being higher, but the results
are always on the safe side compared to numerical analysis. The accuracy of these methods
is highly dependent on the kij interaction factors, which for both methods evaluated in
a different way. The differences in resistances between these two methods are also the
consequence of different values of interaction factors.

The interaction curves according to the method of Eurocode 9 are generally unsafe for
all load cases. The resistances are on the safe side mostly for beam columns with relative
slenderness λy = 2.0. Despite these results, it can be seen that interaction curves have the
same character as the curves acquired by the numerical analysis.

The beneficial effect of the bending moment diagram on the beam-column resistance
can be seen from the comparison of the numerical curves for different load cases, as it plays
a role in the extent of yielding at the ultimate limit state [4]. This is most notable for the
slenderness ratio λz = 0.5, where the beam-columns subjected to concentrated load in the
middle of the span reached the highest values of resistance. This effect is accounted in
the Eurocode 3 by means of the Cm factor. However, it can be seen that this effect is not
included in the interaction formulae for the method of Eurocode 9, as this method provided
the same values of resistances for all load cases.

3.1.2. Axial Compression and Major-Axis Bending without Lateral Restraints

In the case of beam-columns without sufficient lateral restraints, lateral deflections
may occur due to the action of an axial compressive force; therefore, the behaviour of
such restrained members is different compared to previous loading conditions. Moreover,
twisting can also occur to members with cross-sections prone to torsional deformations
subjected to bending moments, which generates additional normal stresses in the flanges.
However, warping is often restrained in design practice by end plates, which affect the
distribution of normal stresses and warping torsion. Therefore, two loading conditions
were observed in this section, with restrained and free warping member ends. A loading
condition with restrained warping is presented first, as the modelling technique of end



Appl. Sci. 2021, 11, 3269 12 of 30

cross-sections remains the same. Reduction factors for lateral-torsional buckling for all
methods were calculated according to clause 6.3.2.2 of Eurocode 3 [8].

However, another adjustment was needed in the case of members loaded by con-
centrated force in the middle of the span with relative slenderness λz = 0.5. Due to the
member lengths, the forces which created high bending moments had to be so high that
they also trigger local instabilities in the web beneath. Therefore, one approach about how
to treat this effect is to consider a web stiffener (Figure 13), which was also used in the
study performed by Boissonnade [32].
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In the case of the pin ended beam-column, the resistances according to Methods 1
and 2 were significantly lower than resistances predicted by the FEM model, especially
for the lower slenderness ratios where the differences were up to 20%. For these loading
conditions Method 1 seems to be more accurate than Method 2, although the relevant
differences were visible only for slenderness λz = 0.5. In the case of the pinned-fixed
beam-column, Method 1 provided far more accurate results, even though the accuracy
was lower with the rising value of bending moment. This is because in this distribution of
first-order bending moment the resistance of the cross-section governs, and these methods
cannot handle such situations.

It can be seen that the accuracy of Eurocode 9 method was significantly better than
for methods of Eurocode 3. In cases of pin-ended beam columns, the method according to
Eurocode 9 provided generally lower resistances compared to the numerical simulations.
The unsafe values of resistances are provided for members with relative slenderness
λz = 0.5. Hovewer, it can be seen that the curves according to method of Eurocode 9 have
the same behaviour compared to the FEM curves. This is most visible for members with
constant bending moment and slenderness λz = 1.0. This method also provided more
accurate results in the case of pinned-fixed beam-columns, especially for the lower values
of bending moments. This is because the coefficients ωx and ωxLT modified the effect of
reduction factors for flexural and lateral-torsional buckling at the places, where they do
not have reasonable impact and, therefore, the formulas for stability verification change to
cross-sectional verification formulas.

Finally, it has to be mentioned that the accuracy of the compared design methods
was highly dependent on the accurate determination of the limiting cases for the pure
compression and bending. Whereas the reduction factors for flexural bending were found
to be in a good agreement with the FEM simulations, the values of reduction factors for
lateral-torsional buckling were, for most cases, more conservative. Findings were identical
to results presented in [23,33]. However, this issue is assumed to be solved in the new
version of Eurocodes [34].

The analysis of beam-columns with free warping of end cross-sections is further
presented. As was mentioned, to allow a free warping of the end cross-sections the
modelling of boundary conditions had to be modified. Therefore, a similar approach to
the modelling concept applied in the studies performed by Jönsson or Boissonnade was
adopted. [2,24]. The deformation of such restrained member can be seen in Figure 19.
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A noticeable reduction of bending resistance can be seen compared to beam-columns
with restrained warping in the member ends. This is due to the bigger impact of warping
torsion at the most stressed cross-section. This difference increases with higher slenderness
and is almost 13% in the case of a member with a parabolic bending moment diagram and
relative slenderness λz = 2.0. Moreover, the plasticity effects due to the higher impact of
warping torsion were less significant, as the curves of members with lower slenderness had
more linear behaviour. It should be noted that the method of Eurocode 9 doesn’t consider
this effect explicitly, as was not accounted in the calculation of exponents in the interaction
formulae. Therefore, the methods of Eurocode 3 were more accurate for lower slenderness
ratios, as they are based on the linear interaction formula.

3.1.3. Axial Compression and Minor-Axis Bending

The resistance of beam-columns with an IPE type of cross-section with out-of-plane
flexural buckling is presented in this section. Warping torsion does not occur in this loading
combination, so the boundary conditions were modelled with the method of rigid plates
in the end cross-sections. The lower lateral rigidity of members with this type of section
induces lateral deformations in the same direction as the bending moment, so no additional
adjustments were needed in the model. The Figures 26–30. presents the interaction curves
for out-of-plane buckling mode with an IPE type of cross-section.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 30 
 

 
Figure 26. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 27. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 

Figure 26. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-section.



Appl. Sci. 2021, 11, 3269 18 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 30 
 

 
Figure 26. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 27. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 

Figure 27. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-section.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 30 
 

 
Figure 26. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 27. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 

Figure 28. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-section.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 30 
 

Figure 28. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 29. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 30. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

From the presented diagrams it can be concluded that with relative slenderness λ୸ഥ =
0.5 the methods of Eurocode 3 provided similar results in case of pin-ended beam-col-
umns. The deviations seem to be much higher for pinned-fixed beam-columns, where the 
Method A provided too conservative results. 

The accuracy of the method of Eurocode 9 was higher with increased slenderness, 
similar to methods of Eurocode 3. However, unlike the previous methods, the resistances 
were mostly on the unsafe side for lower slenderness ratios. The positive effect of coeffi-
cients ω୶ and ω୶୐୘ in the case of the pinned-fixed beam column showed up again, as the 
accuracy was higher for stockier members. 

On another note, the more convex behaviour of the interaction curve for slenderness 
௭ഥߣ = 0.5 can be a consequence of the higher plastic capacity of the weak axis of an IPE 
cross-section. 

3.2. Resistance of Beam-Columns with RHS 200/100/10 Cross-Section 

Figure 29. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-section.



Appl. Sci. 2021, 11, 3269 19 of 30

Appl. Sci. 2021, 11, x FOR PEER REVIEW 19 of 30 
 

Figure 28. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 29. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

 
Figure 30. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-
section. 

From the presented diagrams it can be concluded that with relative slenderness λ୸ഥ =
0.5 the methods of Eurocode 3 provided similar results in case of pin-ended beam-col-
umns. The deviations seem to be much higher for pinned-fixed beam-columns, where the 
Method A provided too conservative results. 

The accuracy of the method of Eurocode 9 was higher with increased slenderness, 
similar to methods of Eurocode 3. However, unlike the previous methods, the resistances 
were mostly on the unsafe side for lower slenderness ratios. The positive effect of coeffi-
cients ω୶ and ω୶୐୘ in the case of the pinned-fixed beam column showed up again, as the 
accuracy was higher for stockier members. 

On another note, the more convex behaviour of the interaction curve for slenderness 
௭ഥߣ = 0.5 can be a consequence of the higher plastic capacity of the weak axis of an IPE 
cross-section. 

3.2. Resistance of Beam-Columns with RHS 200/100/10 Cross-Section 

Figure 30. Interaction curves for weak axis flexural buckling of beam-columns with IPE 100 cross-section.

From the presented diagrams it can be concluded that with relative slenderness
λz = 0.5 the methods of Eurocode 3 provided similar results in case of pin-ended beam-
columns. The deviations seem to be much higher for pinned-fixed beam-columns, where
the Method A provided too conservative results.

The accuracy of the method of Eurocode 9 was higher with increased slenderness, sim-
ilar to methods of Eurocode 3. However, unlike the previous methods, the resistances were
mostly on the unsafe side for lower slenderness ratios. The positive effect of coefficients ωx
and ωxLT in the case of the pinned-fixed beam column showed up again, as the accuracy
was higher for stockier members.

On another note, the more convex behaviour of the interaction curve for slenderness
λz = 0.5 can be a consequence of the higher plastic capacity of the weak axis of an IPE
cross-section.

3.2. Resistance of Beam-Columns with RHS 200/100/10 Cross-Section

Rectangular hollow sections are cross-sections which are not susceptible to torsional
deformations and, therefore, exhibit different behaviour under loading. The RHS 200/100/10
cross-section was chosen for analysis presented in the following sections, as this cross-
section was used for verification of design methods according to Eurocode 3 [4]. The model
was created from shell elements and the boundary conditions were modelled using a rigid
plate technique, as described in Section 2.1.

The tabular cross-sectional dimensions were used for analytical determination of
resistances. The radius zones at the plate intersections were replaced by skewed fillets. The
wider plate of cross-section was built up from twenty elements; ten elements were used for
the narrow plates and three for fillets.

The magnitude and distribution of residual stresses, which were adopted from the
work of Ofner [35], are presented Figure 31. The other input parameters remained the same
as described in Section 2.1.
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3.2.1. Axial Compression and Major-Axis Bending Laterally Restrained

The purpose of these loading conditions was to study the flexural buckling behaviour
about the major axis (y-y). Therefore, to prevent possible lateral deflections, the lateral
restraints were also applied at the centre of top and bottom flanges along the whole member,
as shown in Figure 32.
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In the case of pin ended beam-columns, the curves according to Method 1 and 2 of
Eurocode 3 were found to be in a good agreement with the results from the numerical
simulations. The differences seem to be larger only for lower slenderness ratios, but they
seem to be smaller than in the case of the IPE cross-section. Moreover, the interaction
curves of these two methods were mostly on the safe side, the only exception being for
Method 2 in the case of a member subjected to concentrated force in the middle of the span
and low values of axial force. The higher deviations of these methods compared to FEM
simulations can be seen in the case of pinned-fixed beam-columns.

It can be seen that the accuracy of interaction curves obtained by the method of
Eurocode 9 was significantly lower. The results were on the unsafe side for slenderness
ratios λy = 0.5 and 1.0, whereas for the slenderness ratios λz = 1.5 and 2.0 the results were
noticeably lower. However, the interaction curves obtained by this method had the same
behaviour as the curves obtained by numerical analysis.

3.2.2. Axial Compression and Major-Axis Bending without Lateral Restraints

The behaviour of beam-columns subjected to bending moments about the major axis
and susceptible to flexural buckling about the perpendicular axis (minor axis) was also
observed. Therefore, no lateral restraints were modelled. Moreover, no local instabilities
were caused by transversal loads and no stiffeners were needed.

The comparison of analytical methods and FEM simulations is presented on the
Figures 38–42.
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The methods of Eurocode 3 were not able to provide such accurate results, as in the
previous case of the IPE-profile. The resistances according to these methods were lower
compared to the FEM curves.

The method for verification of beam-columns according to Eurocode 9 provided too
conservative values of resistances for these loading conditions. The deviations increased
with growing slenderness ratio and were significantly lower than deviations according to
the methods of Eurocode 3.

3.2.3. Axial Compression and Minor-Axis Bending

In the case of a weak axis bending scenario, similar behaviour to flexural buckling
about the major axis was expected for double symmetric rectangular hollow sections. This
is due to the fact that the shape of the cross-section and, therefore, cross-sectional properties
remain similar for both axes. The best examples of such cross-sections are circular hollow
sections (CHS) or square hollow sections (SHS) sections. To make this analysis complete, a
comparison of design methods for weak axis flexural buckling is also presented. Therefore
the Figures 43–47 presents the interaction curves for out-of-plane buckling mode with a
RHS type of cross-section.
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It can be seen that in case of beam-columns with RHS cross-sections subjected to the
axial force and bending moment acting in the same direction as the buckling mode, the
GMNIA interaction curves had similar behaviour. However, the GMNIA curves showed
lower plastic capacity, as the interaction curves were slightly concave for lower slenderness
ratios. Therefore, the accuracy of design methods was different for lower slenderness ratios.
This was particularly visible for Method 2 of Eurocode 3, which used the same value of ky
and kz factors for both axes. The resistances provided by Eurocode 9 for higher slenderness
ratios remained too conservative, as in the previous loading conditions.

4. Results and Discussion

The comparison of design methods according to European standards for steel beam-
columns with IPE and RHS types of cross-sections is presented in the previous sections.
In and out-of plane buckling behaviour was the objective of the study. As was presented
on the interaction diagrams, the accuracy of Methods 1 and 2 of Eurocode 3 was generally
sufficient for loading conditions where the bending plane was the same as the buckling
plane for both cross-sections. On the other hand, the accuracy of these design methods
was lower for the combination of strong axis bending moment and out-of-plane buckling
mode, especially for the IPE cross-section with warping restraints on the member ends.
The reason seems to be in the linear interaction formulae and interaction factors kij, whose
values don’t allow development of full plastic resistance. Moreover, the different values
of the kij interaction factors were the reason of different resistance values between these
two methods, as they were developed on different principles. The interaction factors
according to Method 1 were derived, as far as possible, on theoretical aspects to provide
a general and transparent design procedure where each coefficient represented a single
phenomenon. On the contrary, Method 2 provided a design procedure with a reduced
number of coefficients to minimize the amount of calculation work. The interaction factors
were, therefore, determined on the basis of numerical simulations, although they were
still dependent on physical parameters [4]. The example of the pinned-fixed beam column
illustrates that the accuracy of these methods was lower in cases of loading conditions
where the maximum values of primary and secondary moments did not occur in the same
place. This was due to the fact that the resistance of cross-sections is the governing factor,
and these methods can’t handle such situations. Therefore, a cross-section check is also
needed. The accuracy of these methods changed with the buckling modes, loading cases,
or slenderness ratio; therefore, it was difficult to decide which method was more accurate.

The design method according to Eurocode 9 for aluminium structures was also com-
pared to the numerical analysis. This method also provides various degree of accuracy
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for different loading conditions. The resistances were mostly higher for lower slenderness
ratios but, on the other hand, the resistances were lower than the resistances acquired by
numerical simulations for higher slenderness ratios. This similarity was seen for all loading
conditions and for both types of cross-section. In of this, in the case of lateral-torsional
buckling of beam-columns with an IPE type of cross-section (strong axis bending and
out-of-plane buckling mode) with restrained warping at the member ends, the accuracy
seemed to be higher compared to the methods of Eurocode 3, although the resistances were
found to be also on unsafe side for slenderness λz = 0.5. However, the most specific was
the out-of-plane buckling case with strong axis bending moment and an RHS cross-section,
where the resistances were lower than the FEM resistances for all observed slenderness
ratios. With rising slenderness, the differences were in order of tens of percents.

Nevertheless, as was already mentioned, the interaction curves provided by this
method had the same parabolic behaviour as the interaction curves gathered by GMNIA
analysis for all slendernesses and both types of cross-section. This was especially visible in
the example of lateral-torsional buckling of an IPE member subjected to constant bending
moment diagram with relative slenderness ratio λz = 1.0 (Figure 15), as the interaction
curve was almost identical to the curve acquired by numerical analysis. This is possibly
due to the exponential form of the interaction formula, which was based on the plastic
cross-sectional criterion. Therefore, it can be concluded that a suitable design method
could be developed by an appropriate modification of the exponents in the interaction
formula. The effect of the exponents on the behaviour of the interaction curves is illustrated
in Figure 48. If the exponents are higher than one the curve is convex, and if the exponents
are lower than one the curves are concave. However, as was mentioned, additional effects
have to be accounted for in the calculation of the exponents, such as the primary bending
moment diagram.

Figure 48. Influence of the exponents on the shape of the interaction curves.

In addition, in load cases where the stability failure doesn’t occur and the cross-section
resistance is the governing criterion, the design method of Eurocode 9 can provide more
accurate resistances compared to design methods of Eurocode 3. The coefficients ωx and
ωxLT are used to reduce the effect of flexural or lateral-torsional buckling reduction factors
in places where the second order bending moments don’t have the maximum impact, and
the interaction formulae, therefore, change to cross-section resistance formulae. The cross-
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section resistance verification is therefore not necessary, as it is included in the member
resistance verification.

The biggest advantage of this design method is its simplicity. It is also less liable
to mechanical mistakes due to its simple physical principles, universal utilization for a
wide range of cross-section shapes and loading conditions, as well as reduced number of
coefficients involved in the interaction formulae.

Finally, it has to be noted that this analysis was developed only for two cross-section
sizes, which both belong to the first class of cross-section classification. The results for mem-
bers with cross-sections belonging to the third and fourth class of cross-section classification
can be different and, therefore, should be verified.

5. Conclusions

In this paper, a comparison of the design approaches according to Eurocode 3 and
Eurocode 9 is presented. Beam-columns subjected to a combination of axial force and
bending moment were investigated. Members with two types of cross-section were used:
with an IPE 100 type of cross-section and with an RHS 200/100/100 type of cross-section.
Five different load cases were investigated: the pinned-fixed beam column and four
simply supported members with different bending moment diagrams along the member.
To accomplish this objective, numerical analysis was performed to compare results to
analytical results.

It was seen that, in principle, the method of Eurocode 9 was not more accurate than
the Methods 1 and 2 according to Eurocode 3. Nevertheless, it can be more accurate in
cases where the place of maximum impact of the first order bending moment differs from
the place of the maximum impact of the second order bending moment. Moreover, this
method provides very similar interaction curves compared to numerical analysis for a
member with IPE type of cross section and with warping restraints in both member ends
of the member assuming minor axis buckling mode. As was mentioned in Section 4, the
accuracy was highly dependent on the value of the exponents in the interaction formulae.
Therefore, it can be assumed that it is possible to obtain improved accuracy by calibrating
the exponents for the quotients in the interaction formulae. Nevertheless, the formulation
of the method according to Eurocode 9 reduces the amount of calculation work, is easier to
understand and still remains general compared to methods established in Eurocode 3.
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