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Abstract: Data are crucial to improve decision-making and obtain greater benefits in any type of
activity. However, the large amount of information generated by new technologies has made data
analysis and knowledge generation a complex task. Numerous tools have emerged to facilitate
this generation of knowledge, such as dashboards. Although dashboards are useful tools, their
effectiveness can be affected by poor design or by not taking into account the context in which
they are placed. Therefore, it is necessary to design and create custom dashboards according to
the audience and data domain. This paper presents an application of the software product line
paradigm and the integration of this approach into a web service to allow users to request source
code for customized information dashboards. The main goal is to introduce the idea of creating a
holistic ecosystem of different services to craft and integrate information visualizations in a variety of
contexts. One of the contexts that can be especially favored by this approach is the educational context,
where learning analytics, data analysis of student performance, and didactic tools are becoming very
relevant. Three different use cases of this approach are presented to illustrate the benefits of the
developed generative service.

Keywords: information dashboards; metamodeling; visualization goals; visualization tasks; data
visualization; dashboard ecosystem; code generation

1. Introduction

Information dashboards are very powerful tools. They not only support the under-
standing of complex datasets but also are applicable to a variety of contexts and data
domains. In addition, information dashboards provide support to learn from data and can
also be considered educational tools [1].

However, adapting these tools to different contexts is a compelling task because it
requires the study of the data domain and the audience that will be using the dashboard
to discover knowledge. It is this complexity that makes the development of dashboards a
time-consuming process. That is why reducing the development time of these tools is a
crucial factor in tackling the continuous and exponential generation of data.

Having a dashboard ready to use in any context is beneficial for exploiting data and
learning from them, with the goal of supporting better-informed decision-making processes.
For these reasons, this article presents an ecosystem proposal to manage the generation of
information dashboards that can be tailored attending to fine-grained features.

Although the end goal is the straightforward generation of information dashboards,
this objective can be broken down into different low-level tasks, such as cleaning data,
selecting the right data encodings or dashboard configurations, generating source code,
etc. That is why a technological ecosystem approach can be applicable to this situation.
Technological ecosystems provide a context in which different services are connected
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through information flows, although they can be seen as independent components or
tools [2,3]. The “ecosystem” metaphor transfers properties from the biological to the
technology field, so the relationships among the organisms can be seen as information
flows between the technological ecosystem’s components. On the other hand, the physical
environment can be seen as the mechanisms or methods to support these flows [2].

For these reasons, applying an ecosystem approach to this matter benefits users
by providing access to a whole generative pipeline for information dashboards, with
components that interact and collaborate among them to offer powerful features, but also
to independent services for more specific tasks. In fact, this ecosystem would support
knowledge management, because all the tacit knowledge associated with dashboard
design processes, design decisions, data transformations, etc., would be managed by
the different components.

Besides, the proposed ecosystem’s features rely on a dashboard meta-model that
accounts for other factors that determine the dashboard design process: the users’ charac-
teristics, the data domain, the potential data context, etc.

Several data domains could benefit from these kinds of services—specifically, data
domains in which the variety of data sources and the heterogeneity of data is determinant.
The educational context is one of these domains.

Educational dashboards [4] are instruments that allow their users to identify patterns,
relationships, relevant data, etc., among a set of learning variables [5].

However, in a context such as education, many roles can be involved: from the
students themselves to teachers, heads of studies, or principals; and these roles will have
different objectives when exploring their data, depending on their needs.

This diversity of roles was analyzed in a literature review conducted by [6] regarding
educational dashboards. While the majority of users are usually teachers, students, ad-
ministrators and researchers are also among the primary users of these tools. Educational
dashboards are also diverse in terms of their objectives; self-monitoring, monitoring of
other students, and administrative monitoring [6].

The abovementioned literature review also shows the main types of charts or visual-
izations used to display learning information according to the user’s role. Thus, the most
commonly used graphics in general by all roles are bar charts, line charts, and tables.

This type of research allows us to observe that dashboards are very diverse in the
educational context, both in their functionalities and in their design, since these charac-
teristics are what define the purpose of the instrument (and its efficiency). Due to these
factors, methods have been sought, and proposals made to design educational and learning
analytics dashboards so that they can be adapted according to their purposes and audience,
because there is no one-size-fits-all approach [7]. In the educational context, dashboards not
only seek to inform tutors about student performance but can also become tools to motivate
students. They can even serve as tools for students to self-regulate and compare their own
results. However, not all students may respond in the same way to the information shown
on a dashboard about their performance [7].

Thus, it is not only the variety of user roles in the educational context but the variety
of objectives and profiles among users with the same role, which makes the development
of dashboards that present learning analysis an elaborate activity. In addition, the amount
of data generated and its complex structure can make the process of knowledge discovery
even more difficult for less technical profiles.

As can be seen, dashboards in the educational context have increased in popularity
due to the benefits that their use can bring. However, to take advantage of them, it is
necessary to take into account the users and the context in which they will be used.

However, not only dashboards that show learning variables can be found in the
educational context. As these kinds of tools provide an important means to understand
data and extract information and knowledge from them, they are also employed as didactic
tools for motivation and learning [1], adding more complexity to the domain.
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For all these reasons, the present work describes a proposal to create a technolog-
ical ecosystem for dynamically tailoring dashboards no matter the data context or the
data domain. Specifically, this paper is focused on illustrating how dashboards can be
generated through a web service, providing different use cases within the context of de-
veloping dashboards for educational purposes [1]. To sum up, we pose the following
research question:

RQ1. Is a technological ecosystem approach applicable to provide dashboards in different
contexts and data domains?

The rest of this paper is organized as follows. Section 2 contains background regarding
the automatic generation of dashboards and visualizations. Section 3 describes the method-
ology followed throughout this work. Section 4 presents the dashboard generator service
architecture, and Section 5 illustrates the application and integration of these services to
generate dashboards with different purposes. Finally, Sections 6 and 7 discuss the results
and outline the conclusions obtained through this work.

2. Background

The automatic generation and design of dashboards is a popular research topic, given
its potential benefits for exploiting datasets. This generative process can be pursued
through different methodologies and paradigms.

There are a variety of methods to tackle a generative approach when developing
these tools [8]. One of the most common methods for customizing dashboards is using
configuration wizards that support the users’ decisions when developing dashboards
without requiring programming skills. For example, [9–12] use graphical user interfaces
that assist the selection of widgets to be included in the dashboard. Configuration wizards
could be complemented with visual mapping methods to assist the users in the selection of
visualization types taking into account the data types or structure [13–16].

On the other hand, another common method to generate dashboards is to configure
them by using structured configuration files [17–19]. These files allow users to select the
dashboard components and visualizations through higher levels of abstraction, maintaining
a structured representation of the generated tool.

Some works also take advantage of software engineering methodologies such as the
Software Product Line (SPL) paradigm [20,21] or Model-Driven Development (MDD) [22–24].
These methodologies are focused on the abstraction of features within a domain to reduce
development times and increase flexibility and adaptability when generating final products.

Other methods also include agents [25,26], inclusive user modeling [27], semantic
reasoners [28], and knowledge graphs and ontologies [29].

Pursuing generative approaches when developing information dashboards has several
advantages, such as the decrease of development time. However, another benefit is that
these approaches are mainly based on configuration files or models, providing structured
data regarding the dashboards’ features.

Materializing the dashboards’ features (which are often expressed in unstructured
requirement documentation) in a structured manner provides a high-level layer to specify
dashboards and the possibility to create services that use these structured definitions
programmatically.

3. Materials and Methods
3.1. Metamodeling

Metamodeling is the backbone methodology from the model-driven development
(MDD) paradigm [30,31]. This paradigm enables the abstraction of the systems’ devel-
opment process’s requirements, providing support for moving both data and operations
specifications away from lower-level details.

By abstracting these details, it can be possible to obtain a generic “skeleton” of infor-
mation systems, containing the main structures and relationships among its high-level
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components. Meta-models are very useful resources to understand the systems’ domain be-
cause they ease the identification process of relevant features within the context, separating
these features from technical details or specific technologies.

This methodology increases the reusability of components (thus, decreasing the devel-
opment time) and the reusability of knowledge because the structures and relationships
identified within the systems’ domain can evolve to obtain better solutions when instanti-
ating the meta-model.

The MDD approach can be implemented through the model-driven architecture
(MDA), a guideline proposed by the Object Management Group (OMG). This guide-
line provides an architecture for software development driven by models describing
and defining the target system [32]. The OMG proposal also determines a set of stan-
dards to develop the approach, such as meta-object facility (MOF), unified modeling
language (UML), XML (Extensible Markup Language), metadata interchange (XMI), and
query/view/transformation (QVT).

In this case, the proposed dashboard meta-model is part of this meta-model architec-
ture proposal [33]. Although the first version of the dashboard meta-model [34,35] was an
instance of MOF, it was finally transformed into an instance of Ecore [36] using Graphical
Modelling for Ecore included in Eclipse Modeling Framework (EMF) (Figure 1).
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models) in specific dashboard implementations.

The transformations between the M2 and M1 levels are currently performed through
manual processes: it is necessary to select and define the dashboard configuration manually;
however, we are working on automating this process through artificial intelligence (AI)
approaches. In [37], we explore this AI-based automation theoretically, and we plan to
connect this approach with the M1-to-M0 transformations.
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The M2 meta-model provides the basis to instantiate dashboards in different contexts
and domains, and these models will be ultimately implemented as specific dashboards.
This transition between this M1 model and the M0 model can be done automatically
through the dashboard generator service, which complies with the M2 meta-model’s
structure and features.

As seen in the dashboard meta-model, these tools are composed of different sections or
aspects, such as the layout, operations, visual marks and even the audience characterization.
To adapt this model to an ecosystem proposal, we have divided the sections of the meta-
model into the main tasks that can be found during a dashboard design process (user
characterization, data transformations, data encoding and visualization design). Separating
these phases into services could support the definition of a dashboard design pipeline.

3.2. Code Templates

Although the meta-model can be used as a conceptual resource for driving the devel-
opment of dashboards, it can also have practical implications in this process. In the end,
the meta-model is a structured set of elements and relationships that can be represented in
different formats. One of these formats is XMI (XML-based Metadata Interchange), which
can be quickly processed and converted into other formats, such as JSON objects.

By using a Python generator and an SPL [38–40] development, it has been possible to
build a set of core software assets that can be combined into fully functional dashboards
following the meta-model instance specification.

An example code template, configuration file, and rendered HTML code can be found
at https://github.com/AndVazquez/generation-workflow-example (accessed on 4 April
2021) for further details.

3.3. Code as a Service

The possibility of automatically generating information dashboards by providing
an external configuration enables providing this functionality as a service. The Python
generator can be easily integrated into a web app (through the Django framework [41] and
the Django REST Framework (DRF) module) to accept external requests containing the
configuration of a visualization.

Specifically, this web service takes a JSON object as an input (containing the configu-
ration of the visualization), and the user receives the HTML and JavaScript source code of
the requested visualization.

4. Architecture Proposal

In this section, the architecture proposal for exploiting the previously explained frame-
work will be detailed. As introduced before, one of the goals of applying this architecture is
to obtain an ecosystem for generating and providing information visualizations as a service.

The ecosystem is planned to be a holistic set of well-defined components that provide
unitary services, but that can also be combined to obtain a complete pipeline. Every service
has well-defined interfaces that enable the connection of information flows among them.
These services provide support for the generation of information dashboards that compile
with the previously presented meta-model.

One of these services is the dashboard generator (Figure 2), based on plain JavaScript
through the D3.js framework to allow better integration with external services avoiding
other dependencies. The dashboard generator service accepts HTML requests containing
information about the visualization component to craft. Specifically, this service is devel-
oped as an API in which the input is a JSON object with the configuration of an entire
dashboard or a single visualization:

https://github.com/AndVazquez/generation-workflow-example
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• Information about the dataset or datasets to be displayed. Data sources could be
external APIs or files.

• The disposition or layout of the elements.
• The features of the visualization:

# Number and type (X position, Y position, size, color, etc.) of visual channels;
# Visual mark type (bar, circle, topographic, arc, etc.);
# Dataset’s variables to be represented;
# Interaction events and effects [42].
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The service processes this JSON object; then, the source code is generated using the
previous section’s code templates. These returned source code files are returned to the
client, which could embed them in its own applications or use them standalone.

On the other hand, the ecosystem might support other information visualization-
related tasks, such as data transformations. Formatting data is essential to support some
encodings or layouts [43], so a service that carries out this task and unburdens the front-end
with these computations can be connected to the dashboard generator component to offer
a complete pipeline.

As the dashboard generator, this service is also developed as an API (Figure 3). In
this case, the input data will provide information regarding the computations to perform.
Target data must be sent along with the following configuration parameters to enable the
service to perform the requested operations:

• The set of variables from the dataset that will take part in the computations;
• The operation or operations to be performed (summary statistics, regressions, ra-

tios, etc.);
• Filters (optional);
• Groupings (optional);
• Output data layout: tabular (default), nested, linked, etc.
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5. Use Cases

This section aims to illustrate the generative process of the dashboard generator service.
Through three use cases, we want to show not only the flexibility in terms of the data
domain but also the flexibility in terms of necessities: the services can be used when data are
stored in files locally (CSV, XLSX) or even make petitions to external endpoints (proprietary
endpoints or even the ecosystem’s computational service). Also, the generated source code
could be stored as files or dynamically embedded or loaded in other applications.

5.1. Requesting Source Code to Obtain a Standalone Dashboard

The services’ independence allows the integration of the dashboard generator with
other technologies of the educative domain. In this example, part of the Open University
(OU) dataset has been used to show a dashboard request [44].

Two visualizations will be requested, one to display the scores obtained in different
assessments by the students and the other to display the range of scores by assessment. To
obtain the source code, we need to build an HTTP POST request containing the dashboard
layout and each visualization’s configuration to generate both the HTML and the JavaScript
code (Figure 4).
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Once the HTTP request has been sent, the service gets the payload data (i.e., the
dashboard configuration) and performs the application engineering process to yield the
personalized source code. To do so, the input JSON object is processed by the dashboard
generator process, which is in charge of filling the code templates with the specific infor-
mation handed by the client.

This process’ outcomes will be the source code of the dashboard, which is included
in text format inside the API call response to the client. The source code could be used
standalone and embedded within other applications by injecting the HTML and dynam-
ically loading the JavaScript code. Figure 5 shows an excerpt of one of the generated
JavaScript files.
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Every generated JavaScript file follows the same structure:

1. Creation of the SVG container;
2. Declaration of the scales;
3. Creation of the visual marks;
4. Addition of each visual mark’s channels.

The obtained source code can be deployed as a standalone web page: Figure 6 displays
the rendered dashboard with the configured features at the beginning of the example.
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5.2. Integration with Other Components

In the previous use case, a dashboard was generated based on a configuration file
and a dataset. This generation was straightforward because data were already in the right
format for the chosen visualizations (in this case, simple visualizations such as bar charts),
and no additional computations were needed.

However, data are not always in the right format for every visualization [43], and
most times, it is necessary to transform the datasets before visualizing them. That is why a
complementary data transformation service is included within the ecosystem. As will be
discussed, adding this component benefits users in terms of delegating data transforma-
tions to an independent component and captures the implicit knowledge that is contained
in the execution of data preprocessing tasks.

The data transformation component provides a solution for performing data computa-
tions and also to format data to different formats. As explained in Section 4, this component
is also based on API calls. This example performs calculations on sociodemographic data
to offer a Sankey diagram (which can be classified as a “flow layout” [43] or “parallel sets
layout” [45]) in which its links represent the count of each category within each variable
(Figure 7).
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As with the dashboard generator service, the HTTP POST is processed by the data
transformation service. In this case, the operation specification contains the information
needed for the service to perform the data transformations requested by the client. Once
the data are processed, they are returned within an HTTP response.

The API call results can be subsequently used with the dashboard generator service to
create a visualization: in this case, a Sankey diagram (Figure 8).
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5.3. Dynamic Implementation of a Dashboard with Educative Purposes

The last use case is focused on the possibility of integrating source code dynamically
within an existing web application. A user interface has been designed to explore and
visualize a dataset within the medical domain in the following example.
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The user interface allows users to explore the variables within the dataset and to craft
personalized visualizations based on their variables’ selection. Users can drag and drop
the variables, select a visualization, and then, once confirmed, the front end computes the
dashboard configuration and sends it to the dashboard generator service, which follows
the same workflow as explained in the first example.

The final source code returned from the service can be dynamically loaded through
JavaScript’s DOM manipulation functions. In this sense, the existing web application is
benefited by not carrying out all the data visualization logic, only focussing on offering a
usable didactic tool for the medical domain (Figure 9).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 14 
 

As with the dashboard generator service, the HTTP POST is processed by the data 
transformation service. In this case, the operation specification contains the information 
needed for the service to perform the data transformations requested by the client. Once 
the data are processed, they are returned within an HTTP response. 

The API call results can be subsequently used with the dashboard generator service 
to create a visualization: in this case, a Sankey diagram (Figure 8). 

 
Figure 8. Rendered Sankey visualization that formats data as flows. 

5.3. Dynamic Implementation of a Dashboard with Educative Purposes 
The last use case is focused on the possibility of integrating source code dynamically 

within an existing web application. A user interface has been designed to explore and 
visualize a dataset within the medical domain in the following example. 

The user interface allows users to explore the variables within the dataset and to craft 
personalized visualizations based on their variables’ selection. Users can drag and drop 
the variables, select a visualization, and then, once confirmed, the front end computes the 
dashboard configuration and sends it to the dashboard generator service, which follows 
the same workflow as explained in the first example. 

The final source code returned from the service can be dynamically loaded through 
JavaScript’s DOM manipulation functions. In this sense, the existing web application is 
benefited by not carrying out all the data visualization logic, only focussing on offering a 
usable didactic tool for the medical domain (Figure 9). 

 
Figure 9. Fragment of the user interface integrated with the ecosystem’s services. The right section 
of the figure shows the drag and drop space in which users are allowed to configure their visuali-
zations graphically. The left section shows the generated visualization, which is dynamically em-
bedded. 
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generated visualization, which is dynamically embedded.

6. Discussion

This paper set the foundations for developing a technological ecosystem for designing
and building information visualizations through holistic web services. Two of these
ecosystem services are presented in this work: a service to generate information dashboards
(transforming M1 models into M0 models) and a service to perform data transformations.

Adding a high-level layer to the design process of dashboards reduces their develop-
ment time and their complexity in terms of programming. Another benefit is the possibility
of structuring dashboard features in documents, which allow version control and further
processing to identify interesting or useful features in different contexts.

A web service has been developed to serve this functionality through HTTP requests.
This approach aims at the integration of different services programmatically. Returning
the whole source code in plain JavaScript and HTML allows the users to retrieve a fully
functional set of visualizations and rely on a template if they want to modify the generated
code to match further requirements.

The generator service relies on a meta-modeling and software product line approach.
The meta-model has been a useful resource for designing and developing the service;
however, the domain engineering process has enabled a better dashboard domain under-
standing by identifying the primitive components generic to information dashboards and
visualizations.

Relying on fine-grained features allows more variability points, meaning more el-
ements can be customized when requesting a visualization source code. Fine-grained
features also enable the analysis of the visualizations’ primitives at a low level, thus pro-
viding a characterization of potentially useful visualizations. Suppose a data visualization
works well in a specific context or use case. In that case, their features could be examined
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to identify which of them are beneficial and subsequently adapt them to other datasets
or domains.

Another benefit that could yield a generative dashboard ecosystem is transparency
and traceability, and knowledge management. By relying on services with well-defined
interfaces, it is possible to follow the users’ design decisions by analyzing their requests to
the different services.

Sometimes it is difficult to materialize the implicit knowledge within design processes,
as several times developers rely on heuristics, guidelines, or even default configurations.
The generative dashboard ecosystem captures this implicit knowledge and structures it
through the API calls’ schema (which relies on the dashboard meta-model). This sets the
foundations for reusing previously generated knowledge; if specific dashboard configura-
tions worked well in a particular environment, they could be reused for similar contexts.

As mentioned before, the educational context can be a clear beneficiary of applying the
software product lines to the dashboard domain. The amount of learning data generated
due to the popularization of new technologies in education [46] makes it necessary to
have new methods and instruments that allow obtaining benefits from such information.
Nevertheless, as seen in the third use case, this service can be used for other educational
purposes, such as creating didactic tools that let users exploring data without the necessity
of having programming skills.

Although dashboards are handy tools for these analysis processes, it is necessary to
consider the audience that will use them, especially in educational environments where
user roles and profiles can be very heterogeneous in terms of objectives, characteristics,
and preferences [6].

Being able to generate dashboards quickly, and dedicating more time to the design
and conceptualization of the dashboard than its implementation, allows having products
better designed and adapted to concrete situations in less time [47,48].

However, it is necessary to deeply evaluate this proposal. We plan to carry out meta-
model validations through the automatic generation of already developed dashboards, to
test the usability of the generated products against “manually” developed ones.

7. Limitations

Relying on web services implies the transference of data between systems, which
could be critical if data are sensitive. This proposal addresses this problem by not storing
the data after performing the operations or transformations. However, it is necessary to
define a policy and even anonymization mechanisms if these services are exploited in
production. In fact, not storing data could result in performance issues for large datasets
and repetitive operations, so this challenge needs to be tackled both in terms of security
and efficiency.

8. Conclusions

This work provides the foundation for designing an ecosystem for developing infor-
mation dashboards based on different services with different well-defined functionalities.
Specifically, this paper presents a web service to request the source code of customized
dashboards and another web service to perform data operations. The dashboard gener-
ator service is implemented as an API that takes as an input the requested dashboard or
visualization configuration and returns a set of HTML and JavaScript files containing the
source code. On the other hand, the data transformation service takes as an input the
transformation parameters and the dataset and returns the modified dataset.

Future steps will involve the addition of more services to the ecosystem to complement
the dashboard generator and obtain services that could be connected to provide a whole
dashboard developing pipeline: for example, a recommendation service of potentially
features, a detector of potentially misleading information visualizations, data cleaning
services, etc. In this proposal, we tested the approach’s viability and flexibility; however,
we also plan to test its acceptance, performance, and usability with users.



Appl. Sci. 2021, 11, 3249 12 of 14

Author Contributions: Conceptualization, A.V.-I., F.J.G.-P. and R.T.; methodology, A.V.-I., F.J.G.-P.
and R.T.; software, A.V.-I.; validation, A.V.-I., F.J.G.-P. and R.T; formal analysis, A.V.-I., F.J.G.-P. and
R.T.; investigation, A.V.-I., F.J.G.-P. and R.T.; resources, A.V.-I., F.J.G.-P. and R.T.; writing—original
draft preparation, A.V.-I.; writing—review and editing, F.J.G.-P. and R.T.; visualization, A.V.-I.;
supervision, F.J.G.-P. and R.T.; project administration, F.J.G.-P. and R.T.; funding acquisition, F.J.G.-P.
and R.T. All authors have read and agreed to the published version of the manuscript.

Funding: This research was partially funded by the Spanish Government Ministry of Economy
and Competitiveness throughout the DEFINES project grant number [TIN2016-80172-R] and by the
Spanish Government Ministry of Economy and Competitiveness and EU CHIST-ERA agreement
throughout the PROVIDEDH project grant number [PCIN-2017-064]. This research was supported
by the Spanish Ministry of Education, Culture and Sport under a FPU fellowship (FPU17/03276).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study. Data sharing is
not applicable to this article.

Acknowledgments: The authors would like to thank the InterAction and eLearning Research
Group (GRIAL) for its support to conduct the present research https://grial.usal.es (accessed on 4
April 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Sarikaya, A.; Correll, M.; Bartram, L.; Tory, M.; Fisher, D. What Do We Talk About When We Talk About Dashboards? IEEE Trans.

Vis. Comput. Graph. 2018, 25, 682–692. [CrossRef] [PubMed]
2. García-Holgado, A.; García-Peñalvo, F.J. The evolution of the technological ecosystems: An architectural proposal to enhancing

learning processes. In Proceedings of the First International Conference on Technological Ecosystems for Enhancing Multiculturality
(TEEM’13), Salamanca, Spain, 14–15 November 2013; ACM International Conference Proceeding Series (ICPS); García-Peñalvo, F.J.,
Ed.; ACM: New York, NY, USA, 2013; pp. 565–571.

3. García-Holgado, A.; García-Peñalvo, F.J. A metamodel proposal for developing learning ecosystems. In Learning and Collaboration
Technologies. Novel Learning Ecosystems. 4th International Conference, LCT 2017. Held as Part of HCI International 2017, Vancouver, BC,
Canada, 9–14 July 2017. Proceedings, Part I; Lecture Notes in Computer Science, No. 10295; Zaphiris, P., Ioannou, A., Eds.; Springer
International Publishing: Cham, Switzerland, 2017; pp. 100–109.

4. Yoo, Y.; Lee, H.; Jo, I.-H.; Park, Y. Educational dashboards for smart learning: Review of case studies. In Emerging Issues in Smart
Learning; Springer: Berlin/Heidelberg, Germany, 2015; pp. 145–155.

5. Álvarez-Arana, A.; Villamañe-Gironés, M.; Larrañaga-Olagaray, M. Improving Assessment Using Visual Learning Analytics.
Educ. Knowl. Soc. 2020, 21. [CrossRef]

6. Schwendimann, B.A.; Rodriguez-Triana, M.J.; Schwendimann, B.A.; Vozniuk, A.; Prieto, L.P.; Boroujeni, M.S.; Holzer, A.; Gillet,
D.; Dillenbourg, P. Perceiving learning at a glance: A systematic literature review of learning dashboard research. IEEE Trans.
Learn. Technol. 2017, 10, 30–41. [CrossRef]

7. Teasley, S.D. Student facing dashboards: One size fits all? Technol. Knowl. Learn. 2017, 22, 377–384. [CrossRef]
8. Vázquez-Ingelmo, A.; García-Peñalvo, F.J.; Therón, R. Information Dashboards and Tailoring Capabilities A Systematic Literature

Review. IEEE Access 2019, 7, 109673–109688. [CrossRef]
9. Filonik, D.; Medland, R.; Foth, M.; Rittenbruch, M. A Customisable Dashboard Display for Environmental Performance

Visualisations. In Persuasive Technology. PERSUASIVE 2013; Springer: Berlin/Heidelberg, Germany, 2013; pp. 51–62.
10. Mayer, B.; Weinreich, R. A dashboard for microservice monitoring and management. In Proceedings of the 2017 IEEE International

Conference on Software Architecture Workshops (ICSAW), Gothenburg, Sweden, 5–7 April 2017; pp. 66–69.
11. Michel, C.; Lavoué, E.; George, S.; Ji, M. Supporting awareness and self-regulation in project-based learning through personalized

dashboards. Int. J. Technol. Enhanc. Learn. 2017, 9, 204–226. [CrossRef]
12. Miotto, G.L.; Magnoni, L.; Sloper, J.E. The TDAQ Analytics Dashboard: A real-time web application for the ATLAS TDAQ control

infrastructure. J. Phys. Conf. Ser. 2011, 331, 022019. [CrossRef]
13. Nascimento, B.S.; Vivacqua, A.S.; Borges, M.R. A flexible architecture for selection and visualization of information in emergency

situations. In Proceedings of the 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Budapest,
Hungary, 9–12 October 2016; pp. 003317–003322.

14. Elias, M.; Bezerianos, A. Exploration views: Understanding dashboard creation and customization for visualization novices. In
IFIP Conference on Human-Computer Interaction; Springer: Berlin/Heidelberg, Germany, 2011; pp. 274–291.

15. Yalçın, M.A.; Elmqvist, N.; Bederson, B.B. Keshif: Rapid and expressive tabular data exploration for novices. IEEE Trans. Vis.
Comput. Graph. 2018, 24, 2339–2352. [CrossRef] [PubMed]

https://grial.usal.es
http://doi.org/10.1109/TVCG.2018.2864903
http://www.ncbi.nlm.nih.gov/pubmed/30136958
http://doi.org/10.14201/eks.21554
http://doi.org/10.1109/TLT.2016.2599522
http://doi.org/10.1007/s10758-017-9314-3
http://doi.org/10.1109/ACCESS.2019.2933472
http://doi.org/10.1504/IJTEL.2017.084500
http://doi.org/10.1088/1742-6596/331/2/022019
http://doi.org/10.1109/TVCG.2017.2723393
http://www.ncbi.nlm.nih.gov/pubmed/28692978


Appl. Sci. 2021, 11, 3249 13 of 14

16. Petasis, G.; Triantafillou, A.; Karstens, E. YourDataStories: Transparency and Corruption Fighting Through Data Interlinking and
Visual Exploration. In International Conference on Internet Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 95–108.

17. Kumar, K.; Bose, J.; Soni, S.K. A Generic Visualization Framework based on a Data Driven Approach for the Analytics data. In
Proceedings of the 2017 14th IEEE India Council International Conference (INDICON), Roorkee, India, 15–17 December 2017;
pp. 1–6.

18. Cardoso, A.; Teixeira, C.J.V.; Pinto, J.S. Architecture for Highly Configurable Dashboards for Operations Monitoring and Support.
Stud. Inform. Control 2018, 27, 319–330. [CrossRef]

19. Pastushenko, O.; Hynek, J.; Hruška, T. Generation of test samples for construction of dashboard design guidelines: Impact of
color on layout balance. In World Conference on Information Systems and Technologies; Springer: Berlin/Heidelberg, Germany, 2018;
pp. 980–990.

20. Vázquez-Ingelmo, A.; García-Peñalvo, F.J.; Therón, R. Domain engineering for generating dashboards to analyze employment
and employability in the academic context. Presented at the 6th International Conference on Technological Ecosystems for
Enhancing Multiculturality, Salamanca, Spain, 24–26 October 2018.

21. Logre, I.; Mosser, S.; Collet, P.; Riveill, M. Sensor data visualisation: A composition-based approach to support domain variability.
In European Conference on Modelling Foundations and Applications; Springer: Berlin/Heidelberg, Germany, 2014; pp. 101–116.

22. Kintz, M. A semantic dashboard description language for a process-oriented dashboard design methodology. In Proceedings of
the 2nd International Workshop on Model-based Interactive Ubiquitous Systems (MODIQUITOUS 2012), Copenhagen, Denmark,
25–28 June 2012; Volume 947, pp. 31–36.

23. Kintz, M.; Kochanowski, M.; Koetter, F. Creating User-specific Business Process Monitoring Dashboards with a Model-driven
Approach. In Proceedings of the MODELSWARD, Porto, Portugal, 19–21 February 2017; pp. 353–361.

24. Palpanas, T.; Chowdhary, P.; Mihaila, G.; Pinel, F. Integrated model-driven dashboard development. Inf. Syst. Front. 2007, 9,
195–208. [CrossRef]
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