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Abstract: Early diagnosis of breast cancer unequivocally improves the survival rate of patients
and is crucial for disease treatment. With the current developments in infrared imaging, breast
screening using dynamic thermography seems to be a great complementary method for clinical breast
examination (CBE) prior to mammography. In this study, we propose a sparse deep convolutional
autoencoder model named SPAER to extract low-dimensional deep thermomics to aid breast cancer
diagnosis. The model receives multichannel, low-rank, approximated thermal bases as input images.
SPAER provides a solution for high-dimensional deep learning features and selects the predominant
basis matrix using matrix factorization techniques. The model has been evaluated using five state-
of-the-art matrix factorization methods and 208 thermal breast cancer screening cases. The best
accuracy was for non-negative matrix factorization (NMF)-SPAER + Clinical and NMF-SPAER for
maintaining thermal heterogeneity, leading to finding symptomatic cases with accuracies of 78.2%
(74.3–82.5%) and 77.7% (70.9–82.1%), respectively. SPAER showed significant robustness when tested
for additive Gaussian noise cases (3–20% noise), evaluated by the signal-to-noise ratio (SNR). The
results suggest high performance of SPAER for preserveing thermal heterogeneity, and it can be used
as a noninvasive in vivo tool aiding CBE in the early detection of breast cancer.

Keywords: breast cancer; thermography; sparse deep convolutional autoencoder; matrix factoriza-
tion; dimensionality reduction; thermomics

1. Introduction

Cancer is the foremost cause of death worldwide and in the United States. Based
on the American Cancer Society and World Health Organization (WHO) reports, newly
diagnosed cancer cases in 2021 accounted for an overall estimation of 608,570 cancer deaths,
where breast cancer alone was 30% of the overall cases [1,2]. Despite better survival rates
and developments in different imaging modalities for screening and therapy, breast cancer
is the most fatal cancer among women (second-most common cancer) [1]. Early detection
of breast cancer has a crucial role in disease treatment planning and patients’ survival. This
study proposes a deep learning-based model for dynamic thermography imaging for a
clinical breast exam (CBE) before performing mammography. We hypothesize that deep
learning features can track thermal heterogeneity in breast tissue, which may associate
with the angiogenesis and vasodilation caused by cancer metabolism.

Appl. Sci. 2021, 11, 3248. https://doi.org/10.3390/app11073248 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-3121-4573
https://orcid.org/0000-0001-9786-3707
https://orcid.org/0000-0002-7078-9620
https://orcid.org/0000-0002-0198-7439
https://orcid.org/0000-0002-8777-2008
https://doi.org/10.3390/app11073248
https://doi.org/10.3390/app11073248
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11073248
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/2076-3417/11/7/3248?type=check_update&version=1


Appl. Sci. 2021, 11, 3248 2 of 15

Since the 1960s, mammography has been a gold standard method for breast cancer
screening. Studies reported some variabilities in the screening results with this modality,
facing various clinical factors such as age, breast density, type of malignancy, and family his-
tory [3–7]. Fibrocystic breasts, hormone replacement therapy, and dense breasts undermine
the strength of mammography imaging for accurate diagnosis (and screening) [8–11]. As
an alternative, magnetic resonance imaging (MRI) is often used as it is relatively expensive
and has lower specificity than mammography [12,13]. A CBE is performed by clinicians,
which helps for detecting breast cancer with reasonable accuracy, but it is not usually
employed alone [14,15]. The proposed system can be used in combination with CBE to
increase the detection rate of breast cancer as a noninvasive low-cost tool.

Infrared imaging captures thermal radiation emitted from tissue within an 8–10 µm
bandwidth. Skin’s emissivity is close to black-body emissivity (0.98) [16,17], which can
transfer thermal fluctuations in such a way as to be observed with an infrared camera.
The main source of thermal radiation is blood circulation, which becomes more hetero-
geneous due to the vasodilation and angiogenesis of tumor-adjacent tissues in abnormal
tissue [18,19]. Additionally, metabolic activity in malignant tissue correlating with ni-
tric oxide and estrogen expression causes increased temperatures, which can be detected
through the skin [6,19–22]. In malignant neoplasia, the tumors’ growth is dependent on
angiogenic sprouts, such that without this vascular support, tumors cannot receive vital
nutrients [23,24]. Angiogenesis also promotes breast cancer progression and metastasis [25]
through the cessation of C–C chemokine ligand 2 (CCL2) inhibitors [26]. The vascular
endothelial growth factor (VEGF) is an important angiogenic factor for growing vascularity
and providing nutrients to cancer cells [27]. Several studies have tried to detect such
metabolic activities through different imaging tools, such as Raman spectroscopy [28,29]
and infrared imaging [30–32]. In this study, we focus on the application of infrared imaging
as an indicator of cancer’s presence (see Figure 1).
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Figure 1. The schematic of angiogenesis (blood vessel formation) surrounding tumor cells in the breast area and vasodilation,
which can be captured through short acquisition interval thermal imaging using dynamic thermography.

The application of infrared thermography in breast cancer screening involves computa-
tional methods to extract thermal heterogeneity. There are many methods for thermography
that capture variance and reduce the dimensionality of thermal images [33–51]. In this
study, we propose an infrared imaging system equipped with deep learning-based ther-
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momics to assist the clinician in the early diagnosis of breast cancer combined with CBE.
Figure 2 shows the workflow of the proposed method. We designed a sparse deep convo-
lutional autoencoder (SPAER) to not only compress the dimensionality of the data but also
perform embedding for low-rank matrix approximations for the thermal matrix. The pro-
posed approach significantly aided in early diagnosis of breast cancer. The system showed
significant robustness in preserving thermal patterns while facing additive Gaussian noise
increasing from 3% to 20%. Moreover, this study performed a comparative assessment
for the state-of-the-art matrix factorization techniques to generate multichannel inputs.
In the next section, the proposed methodology is presented by describing details about
the applied matrix factorization approaches and the SPAER and random forest models to
perform the early diagnosis of breast cancer.
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Figure 2. Scheme of the presented thermographic system to be used prior to mammography for the
initial diagnosis of breast cancer along with clinical breast examination (CBE).

2. Materials and Methods
2.1. Low-Rank Matrix Approximation

Thermal variance during the short acquisition intervals provides an indication of ther-
mal heterogeneity, which can be detected by different matrix factorization (MF) methods
that are widely used in noninvasive evaluation [33–47], such as principal component anal-
ysis (PCA) in thermography, named as PCT [33,34], and non-negative matrix factorization
(NMF) [36–39]. High dimensionality of thermography in various applications is still an
open research challenge in the field. PCT decomposes the vectorized thermal images that
are stacked in a matrix, called a heat matrix. It sorts the thermal base vectors based on
their variance. Some methods, such as fixed eigenvector analysis [36], incremental PCT
(IPCT) [37], and candid covariance-free incremental principal component thermography
(CCIPCT) [40], attempt to overcome the computational load by a fixed set of previously
generated eigenvectors and a covariance-free approach, respectively. SparsePCT [41,42]
(also known as sparse dictionary matrix decomposition [38]) adds regularization terms
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to the PCT to not only restrict the domain of solution, but to also make it nonlinear,
which strengthens the important basis of improving the detection of defective patterns.
NMF [35,39] adds constraints to the basis and coefficients and converts MF to a clustering
problem, which helps in thermography to better evaluate the thermal abnormalities with no
overlapping bases [43,44]. Semi-NMF and sparse NMF are used for infrared, noninvasive
evaluation and extraction of the thermal patterns as well as for preliminary breast cancer
screening, along with all the aforementioned methods for comparison [45–47]. Imaging fea-
tures extracted from thermal images, called thermomics [47], are used to provide diagnostic
solutions along with deep learning-based thermomics [48]. Deep learning approaches are
also used to diagnose breast cancer using thermographic imaging [49,50].

Input data X is the heat matrix obtained by stacking the vectorized thermal images
X ∈ RMN × τ . PCT decomposes the input heat matrix X to eigenvalue and eigenvector
matrices, which are also known as coefficients and bases. The bases matrix represents the
highest variance of thermal patterns, sorted in descending variance order corresponding
to the coefficients. SparsePCT [41,42] adds penalty terms to the original PCT to limit the
domain of the solutions, which leads to nonlinear behavior and a sparse outcome. NMF
modifies the PCA’s decomposition using non-negative constraints, whereas the bases and
coefficients in PCA are allowed to be negative. X can be presented as a linear relation
of τ bases B =

{
β1, β2, . . . , βp

}
, B ∈ R+

MN × τ and A coefficient matrix A ∈ R+
τ × τ , and

X = BA s.t. A ≥ 0, B ≥ 0. The `1 norm penalty term, along with a regularization
parameter, is added to NMF for compensating the bases’ distinctiveness and improving
their presentation, which is shown by the following equation:

CSparseNMF =
1
2
‖X− BA‖2

F + λ‖B‖1 (1)

where ‖B‖p represents the `p norm of B, defined by `p = ∑
d,m
‖Bd,m‖

1/p
p , which is simi-

lar to the `1 penalty term [51,52] calculating B for convex A. Like SparsePCT, low-rank
SparseNMF is obtained by selecting k bases, corresponding to the highest coefficients and
representing the highest variance of the targeted thermal images (here, k = 3).

2.2. Sparse Latent Space Deep Thermomics

The high-dimensional throughput of thermal features, called thermomics [44–48], in-
spired from radiomics [53–55], are often referred to as quantitative feature extraction from
medical images. Thermomics contain quantitative measurements of distinct thermal pat-
terns that may aid in the diagnosis of diseases or assist in the course of treatment. Like
radiomics (well known in radiographic medical imaging), thermomics have proven to have
the capability to find the characteristics of some diseases that cannot be revealed by the
naked eye [44–48]. These features are usually complimentary with clinical covariates to
increase analytical power. Deep neural networks have been recently explored to improve
conventional radiomics [48–50]. Computer-aided diagnosis systems often leverage having
a sufficient number of features to capture the imaging characteristics, whereas the abun-
dance of thermomics impedes the performance of the system and creates an overfitting
problem, known as the curse of dimensionality [48].

Deep features are commonly extracted from the hidden weight layers of pre-trained
models such as ResNet [56], ImageNet [57], and VGG [58]. This often leads to high-
dimensional throughput information and challenges in reducing the dimensionality, which
often overfits the model. Conventional feature selection methods, which are efficient for
traditional radiomics, might not be the best solution to reduce the dimensionality in such
features due to a tight connection among the hidden weights, which can be interpreted as
collinearity. The application of a sparse autoencoder for reducing the dimensionality of
the pre-trained hidden layers of pre-trained deep learning models can be an acceptable
solution for such problems due to training such dimensionality reduction models to be
sensitive to slowly varying high dimensionality [48].
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In this study, we propose a sparse autoencoder directly for the low-rank approxi-
mation of thermal sequences to extract the low-dimensional thermomics and use them
to diagnose breast cancer. This surpasses the use of pre-trained models. The autoen-
coder comprises encoding and decoding pathways to compress the input data to lower
dimensions hierarchically and expand the compressed data to regenerate the input image
and strive to get as similar an output as possible. This measures the loss function and
distance between the original input and the regenerated output, and the parameters of
such a model are optimized through a stochastic gradient descent algorithm and strive
to minimalize the differences between the input and the reconstructed image (otherwise
known as reconstruction loss).

Let x ∈ Rn × m be the input with the spatial dimensions of 512× 512× 3. The latent
space dimension of η, η = Fe(x) = ae(Wx + be) is the compressed representation of the
input image, ae is the encoder activation, and W and be are the weight and encoder bias
matrices, respectively. y = Gd(η) = ad

(
WTη

)
expands the latent features back to the

original input spatial dimensions. y is the equivalent of x, and ad is the decoder’s activation.
A deep autoencoder composed of a multilayer model with several activations a(.)i

, biases
b(.)i

, and weights Wi and matrices with the goal of minimization {Wi, bei}:

JAE = Ex
[
`
(
x, Gdi(Fei(x))

)]
(2)

Following this optimization, the predominant noise invariant representative patterns
of the thermal data are captured. `(.) is our loss function for training our model, for which
we use binary cross-entropy (BCE) as presented below:

LBCE = − 1
F

F

∑
i=1

yi log(p(yi)) + (1− yi) log(1− p(yi)) (3)

where p(y) presents the likelihood of predicting the label y for each point (form i = 1, . . . , F).
The presenting value of the background versus the targeted class binarizes with 1

1+e−y , a
Sigmoid function. To fit a training set through learning a dictionary through the sparse
latent representation, an additional `1 of the latent space as an additional penalty term
with a regularization parameter is added to the model as follows [59,60]:

minWi, ηi

F

∑
j=1

(
‖xj −WT

j ηj‖2 + λ‖ηj‖1

)
(4)

where each Wi and ηi are convex in the objective of this optimization. The aforementioned
objective applies for W1 and η1.

Applying the following procedure, we extracted the low-dimensional deep ther-
momics and used them to train a random forest model, then classified the participants into
symptomatic and healthy groups. Figure 3 shows the configuration of the SPAER network.

This study used 208 participants from the database for mastology research (DMR),
acquired from patients of the Hospital Universitário Antônio Pedro (HUAP) of the Federal
University Fluminense [30]. This study was approved by the ethical committee of the
HUAP under registration number CAAE: 01042812.0.0000.5243 by the Brazilian Ministry of
Health and met the criteria defined by the Declaration of Helsinki. The participants cohort
was divided into healthy (without symptoms) and symptomatic (healthy with symptoms
or cancer patients) groups with a median age of 60 years, while the youngest and the oldest
participants were 20 and 120 years old, respectively. There were 57 African (27.4%), 72
Pardo (34.6%), 77 Caucasian (37%), 1 Mulatto (0.5%), and 1 indigenous (0.5%) woman in
this dataset. Among the participants, 38 went through hormone replacement (18.3%), and
52 had diabetes in their family histories (25%). A forward-looking infrared (FLIR) SC620
model infrared camera (Wilsonville, OR) with a sensitivity range of <0.04 ◦C was used
to perform infrared imaging acquisition with a spatial resolution of 640 × 480 pixels. It
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captured a range of [−40 ◦C, 500 ◦C] [15,30]. Table 1 summarizes the demography and
clinical information of our study set.
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Table 1. Demographics and clinical information of our targeted cohort from the thermography
database.

DMR: Database for Mastology Research.

Age Median (±IQR) 60 (25,120)

Race

Caucasian 77 (37%)
African 57 (27.4%)
Pardo 72 (34.6%)
Mulatto 1 (0.5%)
Indigenous 1 (0.5%)

Martial status

Married 104 (50%)
Single 66 (31.7%)
Widow 26 (12.5%)
Divorced 12 (5.7%)

Diagnosis 1
Healthy 2 128 (61.5%)
Symptomatic 80 (38.5%)
Sick 3 36 (17.3%)

Family history

Diabetes 52 (25%)
Hypertensive 5 (2.4%)
Leukemia 1 (0.5%)
None 150 (72.1%)

Hormone therapy (HT) Hormone replacement 38 (18.3%)
None 170 (81.7%)

1 The diagnostic gold standard for this dataset was mammography, which was verified with a breast biopsy. 2 The
term healthy denotes noncancerous and asymptomatic participants. 3 Sick cases refer to breast cancer patients
who were diagnosed by mammographic imaging and verified by breast biopsy.



Appl. Sci. 2021, 11, 3248 7 of 15

3. Results

Our proposed models were tested on 208 participants. The results of the system were
compared to the ground truth to measure the accuracy of the system.

3.1. Results of Low-Rank Thermal Matrix Approximation

We calculated three predominant low-rank matrices from 23 baseline thermal imag-
ing sequences using matrix factorization. Figure 4 shows the low-rank representation
of thermal patterns captured by PCT, IPCT, NMF, sparse PCT, and sparse NMF for six
examples of healthy and symptomatic participants. With this procedure, a region of interest
(ROI) was identified for each participant for three bases. For every case in Figure 4, the
targeted ROI was magnified to highlight the thermal patterns for the screening cases. These
thermal patterns revealed the potential angiogenesis in thermal images, as there was more
heterogeneity in the ROI of cancerous or healthy with symptoms cases (Figure 4iii–vi) than
the healthy ROI (Figure 4i,ii). Figure 4iii,iv presents healthy participants with pain and
changes in the nipple, but the mammography and biopsy results did not conclude the
presence of cancer. In this analysis, thermal heterogeneity was detected for symptomatic
patients using various low-rank matrix factorizations (see Figure 4a–e), whereas there were
more homogeneous thermal patterns observed for asymptomatic participants (Figure 4a–e,
rows i,ii).

3.2. Sparse Autoencoder and Deep Thermomics

Sixteen (16) deep thermomics were extracted from the proposed SPAER model from
three-channel images with a spatial resolution of 512× 512 as the input. The input channels
were three predominant, low-rank thermal matrix approximations. The proposed deep
autoencoder used in this study contained five convolutional layers (Figure 3) to reduce the
dimensionality of the input from 786,432 to 32,768, where another five sparse, dense layers
reduced the dimensionality of the imaging markers from 16,384 to 2048, 256, 64, and 16
deep thermomics. The SPAER model has 637,507 trainable parameters, which are trained
using the Adam optimizer for 100 epochs for 3000 raw thermal images and validated for
788 baseline thermal images, with a sparsity `1 regularization value of 10−5 in the dense
layers and 16 batch sizes. Consequently, the SPAER model mitigated the dimensionality of
the embedded low-rank thermal matrices slightly less than 50,000 times while striving to
keep the characteristics of the thermal images intact.
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3.3. Classification Outcome

The extracted deep thermomics generated by the SPAER model were used to train
a random forest model and distinguish symptomatic patients from asymptomatic partic-
ipants. The accuracy of this model was evaluated by comparing the model’s suggested
cohort versus the ground truth, which was obtained by mammography and breast biopsy.
We benchmarked the model using 16 extracted deep thermomics biomarkers and other
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clinical and demographic information (e.g., age, marital status, and family history) through
leave-one-out cross-validation. The accuracy of the maximal multivariate model yielded
78.2% (74.3–82.5%) for NMF deep thermomics and clinical information, which was chal-
lenged by NMF-SPAER, PCT-SPAER and sparse PCT-SPAER with clinical information,
having accuracies of 77.7% (70.9–82.1%), 77.7% (73.3–82.1%), and 77.7% (72.3–81.6%), re-
spectively. IPCT-SPAER, PCT-SPAER, and sparse PCT-SPAER showed considerably similar
accuracies of diagnosis, yielding 85.4% (79.6–88.8%) and 86.4% (81.1–88.8%) with and
without clinical information, respectively. IPCT-SPAER showed the lowest diagnostic
accuracy of 74.3% (69.4–80.1%), 74.3% (70.4–79.1%), and 74.3% (69.9–79.6%), respectively.
IPCT-SPAER’s accuracy slightly increased to 76.2% (71.4–79.6%) with demographics. The
minimal full multivariate model, which was for sparse NMF-SPAER with clinical informa-
tion, showed an accuracy of 74.8% (70.9–77.2%), indicating lower performance, probably
due to dual sparsity and non-negative matrix factorization with the models (see Table 2).

Table 2. Results of diagnosis based on the classification of symptomatic versus asymptomatic patients with leave-one-out
cross-validation.

Accuracy of Different Multivariate Models for Breast Cancer Diagnosis

Methods Classification
Accuracy 2 (%) Sensitivity (%) Specificity (%) PPV (%) NPV (%)

T-Test 3

t-Statistic,
Two-Tailed

p-Value

IPCT-SPAER 74.3 (69.4–80.1) 80 81.3 72.7 86.7 5, < 0.0005
PCT-SPAER 74.3 (70.4–79.1) 85.0 85.9 79.1 90.2 4.5, < 0.0005
NMF-SPAER 77.7 (70.9–82.1) 78.7 82.1 73.3 86.1 1.1, < 0.27

Sparse PCT-SPAER 74.3 (69.9–79.6) 86.3 80.5 73.4 90.4 4.9, < 0.0005
Sparse NMF-SPAER 72.3 (68.5–76.2) 81.3 91.4 85.5 88.6 7.8, < 0.0005

Clinical 1 72.8 (70.4–75.3) 73.8 70.3 60.8 81.1 7.1, < 0.0005
IPCT-SPAER + Clinical 76.2 (71.4–79.6) 86.3 82.8 75.8 90.6 2.6, 0.009
PCT-SPAER + Clinical 77.7 (73.3–82.1) 83.7 84.4 77.01 89.3 0.6, 0.5
NMF-SPAER + Clinical 78.2 (74.3–82.5) 80 87.5 80 87.5 -

Sparse PCT-SPAER +
Clinical 77.7 (72.3–81.6) 81.3 88.3 81.3 88.3 0.2, 0.8

SparseNMF-SPAER +
Clinical 74.8 (70.9–77.2) 87.5 81.3 74.5 91.2 4.8, < 0.0005

1 The covariates used for the clinical and demographics were family history, age, and marital status. 2 Classification accuracy reported by
median (±IQR) (Interquartile range-IQR). 3 t-test calculated for each method versus maximal accuracy.

The sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV) were calculated using the optimum point in the receiver operating charac-
teristic (ROC) for the trained model (Table 2). Sparse NMF-SPAER + Clinical showed the
maximum sensitivity (87.5%) among the other methods, where IPCT-SPAER + Clinical
and Sparse PCT-SPAER at 86.3% were the second-best sensitivities among the methods.
Clinical covariates alone showed the minimum sensitivity (73.8%) compared with the other
approaches. The sparse NMF-SPAER (91.4%) and NMF-SPAER + Clinical (87.5%) showed
the maximum specificities, while clinical alone showed the worst specificity of 70.3%. The
sparsity in the model might be the key to having higher specificity and indicating which
cases are not symptomatic. Similarly, sparse NMF-SPAER showed the maximum PPV
(85.5%), while sparse NMF-SPAER + Clinical had the highest NPV among the rest of the
algorithms (91.2%). The clinical covariate was the least significant for the PPV and NPV.

A multivariate model consisting of clinical information and demographics alone
provided an accuracy of 72.8% (70.4–75.3%). We also calculated the statistical difference
of the maximal accuracy (NMF-SPAER + Clinical), with other approaches using a two-
tailed t-test (see Table 2). NMF-SPAER + Clinical showed considerable similarity to NMF-
SPAER with clinical covariates (t-statistic = 1.1, p-value = 0.27) as well as sparse PCT-
SPAER + Clinical (t-statistic = 0.2, p-value = 0.8) and PCT-SPAER+ Clinical (t-statistic = 0.6,
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p-value = 0.5), whereas the rest of the methods showed significant statistical differences.
Figure 5 presents the ROC graphs of the baseline models with different embedding SPAER
methods. The total computation of this study was performed in the Python programming
language using the TensorFlow Python library [61,62].

Appl. Sci. 2021, 11, x FOR PEER REVIEW 10 of 16 
 

showed the maximum specificities, while clinical alone showed the worst specificity of 
70.3%. The sparsity in the model might be the key to having higher specificity and indi-
cating which cases are not symptomatic. Similarly, sparse NMF-SPAER showed the max-
imum PPV (85.5%), while sparse NMF-SPAER + Clinical had the highest NPV among the 
rest of the algorithms (91.2%). The clinical covariate was the least significant for the PPV 
and NPV. 

A multivariate model consisting of clinical information and demographics alone pro-
vided an accuracy of 72.8% (70.4–75.3%). We also calculated the statistical difference of 
the maximal accuracy (NMF-SPAER + Clinical), with other approaches using a two-tailed 
t-test (see Table 2). NMF-SPAER + Clinical showed considerable similarity to NMF-
SPAER with clinical covariates (t-statistic = 1.1, p-value = 0.27) as well as sparse PCT-
SPAER + Clinical (t-statistic = 0.2, p-value = 0.8) and PCT-SPAER+ Clinical (t-statistic = 0.6, 
p-value = 0.5), whereas the rest of the methods showed significant statistical differences. 
Figure 5 presents the ROC graphs of the baseline models with different embedding 
SPAER methods. The total computation of this study was performed in the Python pro-
gramming language using the TensorFlow Python library [61,62]. 

 
Figure 5. The receiver operating characteristic (ROC) curves of different embedding approaches 
used with SPAER, both with and without adding demographics. 

All parameters, including the number of trees, depth, and random state, were opti-
mized in a cross-validation loop through a greed search. This greed search not only guar-
anteed that we optimized the parameters, but it also confirmed that we did not overfit the 
parameters as we did it after leaving one subject out of the optimization. To improve the 
model’s accuracy, we suggest increasing the number of patients to increase the learning 
and statistical power. 

3.4. System’s Robustness 
Thermography is usually affected by noise, as one of the undeniable facts of using 

infrared imagery induced by environmental conditions surrounding the breast cancer 
screening exam. Robustness of the model versus noise can be vital for the system, partic-
ularly on the imaging acquisition and decision-making system. This problem is high-
lighted especially for our study cohort with different ages, races, family histories, and 
body shapes. The proposed SPAER model is presumably robust against noise because of 
the nature of the low-rank matrix approximation and latent space representation of the 

Figure 5. The receiver operating characteristic (ROC) curves of different embedding approaches used
with SPAER, both with and without adding demographics.

All parameters, including the number of trees, depth, and random state, were op-
timized in a cross-validation loop through a greed search. This greed search not only
guaranteed that we optimized the parameters, but it also confirmed that we did not overfit
the parameters as we did it after leaving one subject out of the optimization. To improve
the model’s accuracy, we suggest increasing the number of patients to increase the learning
and statistical power.

3.4. System’s Robustness

Thermography is usually affected by noise, as one of the undeniable facts of using
infrared imagery induced by environmental conditions surrounding the breast cancer
screening exam. Robustness of the model versus noise can be vital for the system, particu-
larly on the imaging acquisition and decision-making system. This problem is highlighted
especially for our study cohort with different ages, races, family histories, and body shapes.
The proposed SPAER model is presumably robust against noise because of the nature of
the low-rank matrix approximation and latent space representation of the input image. To
show such stability in the SPAER model, we measured the signal-to-noise ratio (SNR) of
the model with additive Gaussian noise in the multiple channels of input of the SPEAR
model. We used the following SNR equation to measure the stability of the SPAER model
(from [63]):

SNR = 10 log10
|µS − µN |2

σ2
N

(5)

where µS and µN are the signal and noise averages in the ROI, respectively, and σN denotes
the standard deviation of the noise, obtained from the thermal referencing point in the
images. The low-rank matrix approximation techniques significantly eliminated the noise
of the input data (see [37,46]). The reason we evaluated the SNR only for the multichannel
input of the SPAER model was to have a separate assessment of this model. We included
the additive Gaussian noise, incrementally increasing it from 3% to a 20% noise level for
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the multichannel input of the trained SPAER model and extracting deep thermomics, then
reconstructing the image where the SNR was measured to evaluate the stability of the
SPAER model. With that, we also measured the SNRs for the thermal matrix factorization
techniques separately. Figure 6 presents the robustness of the model, divided into two
parts: low-rank matrix approximation methods and the SPAER model. The results showed
that sparse PCT and the SPAER model demonstrated the highest robustness due to additive
penalty terms, inducing nonlinear behavior and limiting the domain of the solution, which
increased the robustness of the model. This was also seen in sparse NMF, where non-
negative constraints may have weakened the robustness occurring in NMF, with the lowest
robustness among the matrix factorization algorithms. IPCT showed more robustness than
PCT. This might be because of the incremental adjusting of the bases in the algorithm.
We also performed statistical analysis among matrix factorization methods using a t-test
between sparse PCT and other approaches. The results showed a significant difference
between sparse PCT and sparse NMF, IPCT, and PCT. It may be due to the dissimilarity
between PCT and IPCT and the non-negative and sparsity constraints in sparse NMF. NMF
and sparse PCT showed more similarity in SNR while the noise increased, as non-negative
constraints also limited the domain of the solution, similar to the sparsity penalty term in
sparse PCT, despite the lower stability of NMF.
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4. Discussion

In this study, we introduced a sparse deep convolutional autoencoder called SPAER
to generate deep thermomic features. It embedded three predominant thermal bases,
obtained by low-rank matrix approximation in the form of a multichannel input matrix.
We designed the SPAER model to be applicable to any imaging modality, but we tested it
for dynamic thermography. The results indicated that SPAER could identify the potential
symptomatic patients and aid in the early diagnosis of breast abnormality as a noninvasive,
efficient, and fast technique to be used with CBE and before mammography.

SPAER potentially surpasses the use of pre-trained deep neural networks to extract
high-dimensional imaging throughput, which leads to high collinearity among the features
and overfitting the system, known as the curse of dimensionality. The results indicate that
SPAER significantly reduced the noise throughout the process by having sparse regular-
izations in dense layers, which were tested with additive noise (Figure 6). Autoencoders
are often used for noise elimination due to their nonlinearity. SPAER also behaved the
same and showed a significant SNR when facing additive noise [64–66]. Low-rank matrix
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approximation used for the extraction of high variance bases also enhanced the stability of
the system against noise [37,46]. This had the opposite effect on the accuracy of sparse NMF,
and relatively Sparse PCT, as two-folds sparsity with non-negative constraints mitigating
the outcome performance of the overall system. This may be due to reducing the domain
of the solution having two penalty terms, which led to a slight decrease in the overall
accuracy for sparse NMF-SPAER and even for sparse PCT-SPAER (Table 2).

The application of infrared thermography to establish early breast abnormality has
been suggested previously [30,49]. This can be expanded for several nonneoplastic diseases
and normal homeostatic processes [21,22]. Despite some discussions about its reliability
as a single applied system for finding breast cancer [20], dynamic thermography showed
promising outcomes [46–48], and this makes it a valuable complementary mechanism
along with CBE for increasing the possibility of finding abnormalities at an initial stage
(not as a mammography substitute [67,68]). Moreover, the association of heterogeneous
thermal patterns with early breast cancer detection has not been discussed in the literature
and significantly increases the novelty of the proposed model. Besides that, the SPAER
model was tested for dynamic thermography, yet its applications are not limited to this
application, and it can be used for any other imaging modality, which makes SPAER a
generalized model for a variety of applications.

One of the limitations of this study is the number of patients. Despite having a
relatively large cohort of patients, having access to an even larger cohort would increase the
validation of the statistical analysis and improve the accuracy of the system. The maximum
efficiency of the method would be revealed by a higher number of patients. DMR was
the only available dataset with such analyses that we could access, and this limited the
possibility of an independent validation set to confirm the performance of the system.
Another limitation of this study is related to the lack of comprehensive clinical information.
Even with the great effort of the DMR team [30], there could be more potential clinical
information, such as pathology information. This could help to find the correlation of
different factors with thermal heterogeneity. Moreover, there is a limitation regarding the
minimum number of thermal images required for the process, which should be more than
four images, as there is a matrix factorization method involved that selects three bases,
which requires a minimum of four thermal images.

The proposed model provides several advantages. (1) SPAER provides low-dimensional
deep thermomics (imaging biomarkers), which exceeds the use of pre-trained models for
feature extraction with high dimensionality and their complications. (2) The SPAER model
can be trained for the specific data and generate relevant imaging features, rather than
diverse training datasets (e.g., natural images versus medical imaging sets), which pro-
vides another advantage for this application. (3) SPAER uses the multichannel low-rank
thermal matrix approximation that provides embedding for the use of the low-rank matrix
factorization method. This mitigates the use of manual selection of predominant bases.
(4) This model significantly mitigates the noise and motion artifacts during imaging, which
often happens for infrared thermographic imaging. To the best of our knowledge, the
model and the way of embedding multichannels for extracting deep thermomics has not
been proposed before, which makes this research a novel study.

5. Conclusions

The proposed study tackled one of the major challenges of using deep learning
imaging biomarkers by developing a sparse deep convolutional autoencoder, called the
SPAER model, which generates low-dimensional deep thermomics. It used the low-rank
multichannel thermal matrix approximation as an input for the SPAER model. The SPAER
model provided significant dimensionality reduction without lessening the diagnostic
performance, decreasing from 786,432 to 16 imaging biomarkers. Five state-of-the-art
matrix factorizations were employed to extract three initial predominant bases and embed
them, which provided a solution for selecting manual bases. A total of 208 breast cancer
screening cases with dynamic thermography were used for testing the proposed model.
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The best accuracy was for NMF-incorporated SPAER with demographics for preserving
thermal heterogeneity to classify between symptomatic and asymptomatic cases (yielded
to 78.2% (74.3–82.5%)). In addition, SPAER showed significant robustness against additive
Gaussian noise, increasing from 3% to 20%, while the highest SNR was obtained by sparse
PCT, generating multichannel low-rank thermal matrix approximation. Future work would
involve the integration of other available clinical factors to enhance the ability to assess the
thermal characteristics of tissues. This could be better evaluated by increasing the study
cohort and multimodal analysis.
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