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Abstract: Esophageal cancer (EC) is one of the deadliest cancers worldwide. However, reliable
biomarkers for early diagnosis, or those for the prognosis of therapy, remain unfulfilled goals for
its subtype esophageal squamous cell carcinoma (ESCC). The purpose of this study was to identify
reliable biomarkers for the diagnosis and prognosis of ESCC by gene chip re-annotation technique
and downstream bioinformatics analysis. In our research, the GSE53624 dataset was downloaded
from the GEO database. Then, we reannotated the gene expression probe and obtained the gene
expression matrix. Differential expressed genes (DEGs) were found by R packages and they were
subjected to Gene Ontology enrichment analysis and protein–protein interaction (PPI) network
construction. As a result, a total of 28,885 mRNA probes were reannotated, among which 210
down-regulated and 80 up-regulated DEGs were screened out. By combining these genes set in
clinical prognosis information and Western blot analysis, we found four genes with diagnostic and
prognostic significance, including MMP13, SPP1, MMP10, and COL1A1. Furthermore, markers of
infiltrating immune cells exhibited different DEG-related immune infiltration patterns.

Keywords: esophageal squamous cell carcinoma; chip re-annotation; DEGs; bioinformatics analyses;
prognostic biomarkers

1. Introduction

Esophageal cancer (EC) is the seventh most common cancer globally, with an estimated
572,000 cases and 509,000 deaths in 2018 [1]. According to the current reports [1–3], the
mortality rate of esophageal cancer patients is in the front row of malignant tumors,
seriously endangering people’s quality of life. A newly released analysis of China’s
malignant cancer epidemic has esophageal cancer as the sixth most common cancer in
China, with 250,000 patients dying of esophageal cancer every year [4]. Unlike Western
countries, China has more EC patients with esophageal squamous cell carcinoma (ESCC),
with the proportion reaching 90% [2,5]. The exploration of prognostic markers for tumor
diagnosis in ESCC patients can improve the diagnosis and treatment effect of EC.

In recent years, represented by gene chip and the next-generation sequencing of
rapidly developing high throughput sequencing technology, and used to analyze the high-
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throughput data processing of bioinformatics research for cancer basic and clinical research
provides a new train of thought and reference [6]. While esophageal adenocarcinoma (EAC)
is the dominant subtype of esophageal cancer in developed countries [7], the reference of
the significance for esophageal squamous carcinoma research was extremely limited. The
study on ESCC lacks effective high-throughput sequencing data. Hence, the research on
prognostic markers of ESCC is of great clinical significance. In this work, we re-annotated
the gene chip used in the database to detect the LncRNA of ESCC by using bioinformatics
technology, successfully obtained the mRNA expression profile in the study sample. We
also performed a bioinformatics analysis and prognosis analysis on the expression profile
based on the clinical data provided in the database, providing the value data for further
research and clinical reference.

2. Materials and Methods
2.1. Gene Expression Data Set

The GSE53624 [8] Gene Expression profile data set of patients with ESCC was down-
loaded from the Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.
gov/geo/query/acc.cgi?acc=GSE53624 (accessed on 4 December 2020)). This data set was
profiled using the Agilent-038314 CBC Homo sapiens V2.0 platform (GPL18109; Agilent
Technologies, Inc., Santa Clara, CA, USA). There were 119 patients with ESCC included in
this data set. The clinical characteristics of the ESCC patients in this study are shown in
Table S1.

We downloaded the CEL file containing gene expression information and the RMA
method was used for the background correction and standardization to obtain the gene
expression matrix containing all the samples. The corresponding excel file containing
clinical prognosis information was subsequently downloaded.

2.2. Chip Re-Annotation

In addition to probes for non-coding genes, Agilent has also designed a large number
of detectable probes for the expression of unknown sequence tags (EST) in the human
genome, most of which have been proven to be complementary gene sequences. In this
study, we re-annotated the mRNA of these probes, with the specific process as follows:

1. Downloaded the matrix file of these unknown expression sequence tags and obtained
the nucleic acid sequence of these probes;

2. SeqMap software [9] was used to match the nucleic acid sequences of these probes to
the human genome library (ENCODE database, version 31, CA, USA) [10,11] which
required matching sequences and no mismatches, and obtained the corresponding
chromosome positions of the probes;

3. Removed probes matching lncRNA at the same time. A total of 28,885 reannotated
mRNA probes were obtained, none of which duplicated each other.

2.3. Differential Expression Analysis and Functional Enrichment Analysis

The R package “limma” [12] was used to normalize, log transform, and analyze
the differential expression of the original array data. The p-value and log2 fold change
(log2FC) were calculated. Subsequently, |log2FC| > 3 and p < 0.05 were considered to be
differentially expressed. R packages “clusterProfiler” [13], “ggplot2” [14], and “DOSE” [15]
were used to perform the Gene Ontology (GO) enrichment analysis and Kyoto Encyclopedia
of Genes and Genome (KEGG) pathway enrichment analysis on the DEGs. Only GO terms
and KEGG pathways with p <0.05 were considered statistically significant and selected for
visualization.

2.4. Construction of Protein-Protein Interaction Network (PPI)

To further clarify the underlying molecular mechanism and gene effect of ESCC, we
used the STRING database (http://www.string-db.org/ (accessed on 3 January 2021))
to retrieve the DEGs, as mentioned above, and construct a PPI network of DEGs [16].

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53624
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE53624
http://www.string-db.org/
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The obtained PPI network was visualized using Cytoscape software (version 3.7.0, Free
Software Foundation, Inc. Boston, MA, USA) [17]. Then, we analyzed the network’s
topological properties using the cytoHubba plugin (Free Software Foundation, Inc. Boston,
MA, USA), calculated and sequenced the node scores of each gene, and visualized the
interactions among the top ten key genes [18].

2.5. Identification of Prognostic Genes in Key Genes

To further obtain the genes related to prognosis in DEGs, we extracted the patient
prognosis information corresponding to each chip in the data set. Perl language was used
to extract the expression level of the DEGs in each sample in the gene expression array and
the patient prognosis information provided in each sample was linked at the same time. R
packages “survival” [19] and “ggplot2” [14] were used to conduct a survival curve analysis
and log-rank tests for the above corresponding data. The significant cut-off was taken
and p < 0.05.

2.6. Exploration of the Diagnostic Efficacy of Prognostic Genes

Subsequently, to explore the diagnostic efficacy of the prognostic genes, we conducted
receiver operating characteristic (ROC) curves based on the specific gene expression in all
gene chips. Area Under the Curve (AUC) was used to assess the diagnostic efficacy of the
genes. AUC > 0.9 indicated a high diagnostic efficiency.

2.7. Cell Culture

Human esophageal carcinoma cell line, ESCC cell lines (KYSE-150 and KYSE-510),
and normal esophageal cell line (Het-1A) were obtained from ATCC (Manassas, VA, USA).
ESCC cell lines were cultured in RPMI 1640 Medium (Gibco, GlutaMAX™, #61870036,
Waltham, MA, USA) with 10% fetal bovine serum (Gibco, #10099141, Waltham, MA, USA)
and 1% antibiotics (penicillin and streptomycin, Gibco, #15070063, Waltham, MA, USA).
Het-1A cell line was cultured in Dulbecco’s Modified Eagle’s Medium (DMEM, Gibco, High
Glucose, GlutaMAX™, #10566016, Waltham, MA, USA) with 10% FBS and 1% antibiotics.
All cells were maintained in a humidified atmosphere containing 5% CO2 at 37 ◦C.

2.8. Validation Using Independent External Database and Western Blot

The online database Gene Expression Profiling Interactive Analysis 2 (GEPIA2)
(http://gepia2.cancer-pku.cn/ (accessed on 10 February 2021)) was used to analyze the
differential expression of ELN, MMP13, SPP1, MMP10, COL1A1, CSF2, MMP1, SERPINE1,
CXCL8, MMP3.

Western blot analysis was also performed using the standard procedures. KYSE-150,
KYSE-510, and Het-1A cells were lysed with RIPA buffer (Solarbio, #R0010, Beijing, China).
Protein was extracted from the cells and the concentration was determined using the
BCA Protein Assay Kit (Solarbio, #PC0020, Beijing, China). Protein was separated using
12% SDS-PAGE and transferred onto 0.45 µm PVDF membranes (Millipore, #IPVH00010,
Burlington, MA, USA). The membranes were subsequently blocked with 5% fat-free milk
(Sangon, #A600669, Shanghai, China) for 1.5 h at room temperature (RT) and incubated at
4 ◦C overnight with the following primary antibodies: Anti-MMP13 (1:1000; Proteintech,
#18165-1-AP, Rosemont, IL, USA), Anti-SPP1 (1:1000; Proteintech, #22952-1-AP, Rose-
mont, IL, USA), Anti-COL1A1 (1:1000; Proteintech, #67288-1-Ig, Rosemont, IL, USA), and
Anti-MMP10 (1:1000; Bioss, #bs-1344R, Beijing, China). The next day, following washing
10 times with 1x TBST (Solarbio, #T1085, Beijing, China), the membranes were incubated
with secondary antibodies (1:2500; ZSGB-BIO, #ZB-5301, #ZB-5305, Beijing, China) for 1.5 h
at RT. Immunoreactive bands were visualized using Immobilon Western Chemiluminescent
HRP Substrate (Millipore, #WBKLS0500, Burlington, MA, USA).

http://gepia2.cancer-pku.cn/
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3. Results
3.1. LncRNA Probe Reannotation

The base sequences of all probes were compared with the human genome library
using SeqMap software, and lncRNA-related probes were excluded. A total of 28,885 probe
sites containing different genetic information were re-annotated (Figure 1).
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Figure 1. The Volcano plot of differential genes. 210 down-regulated genes and 80 up-regulated
differential genes were screened out (|log2FC| > 3, p < 0.05).

3.2. The Acquisition of Differential Genes

A total of 210 down-regulated and 80 up-regulated DEGs were obtained by R package
“limma”. Subsequently, a heatmap containing the DEGs in each sample was drawn based
on the variation multiples of the DEGs in the cancer samples and the normal samples. The
cluster analysis and heatmap showed that these gene changes could distinguish between
cancer samples and normal samples (Figure 2).

3.3. Genetic Ontology (GO) Analysis

Next, we focused on the potential function of these DEGs. To clarify this issue, we
performed GO analysis on these DEGs and visualized the functional clusters enriched in
biological process (BP), cell composition (CC), and molecular function (MF) (p < 0.05). The
results showed that these DEGs were enriched in many different functional clusters. Specif-
ically, in the BP term, the DEGs were concentrated in the extracellular matrix organization,
extracellular structural organization, retinoic acid metabolic process, collagen metabolic
process, extracellular matrix disassembly, etc. In the CC term, the DEGs were concentrated
in collagen-containing, extracellular matrix, fibrillar collagen trimer, collagen trimer, etc. In
the MF term, the DEGs were concentrated in extracellular matrix structural constituent,
cytokine activity, endopeptidase activity, metalloendopeptidase activity, serine-type en-
dopeptidase activity, and others (Figure 3). Complete GO enrichment results are available
in Table S2.
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3.4. Kyoto Encyclopedia of Genes and Genome (KEGG) Pathway Enrichment Analysis

Moreover, KEGG pathway enrichment analysis showed that DEGs were enriched into
protein digestion and absorption, retinol metabolism, amoebiasis, cytokine-cytokine recep-
tor interaction, chemical carcinogenesis, ECM-receptor interaction, rheumatoid arthritis,
IL-17 signaling pathway, and pancreatic secretion (Figure 4). The complete KEGG pathway
enrichment results are available in Table S3.
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3.5. Protein–Protein Interaction Networks of DEGs

To clarify the functional proteins encoded by differential genes, a PPI network was
constructed (Figure 5). Key proteins in the network can regulate many other proteins. We
analyzed the above-mentioned PPI network with the cytoHubba plugin, sorted the proteins
by the number of Unicom nodes, and obtained the top 10 key proteins, including ELN,
MMP13, SPP1, MMP10, COL1A1, CSF2, MMP1, SERPINE1, CXCL8, and MMP3 (Figure 6).
The complete degree results are available in Table S4.



Appl. Sci. 2021, 11, 3229 8 of 14
Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 
Figure 5. The PPI network analysis between different encoded proteins. 

 
Figure 6. The top 10 hub genes in the PPI network of the upregulated DEGs and their interaction 
relationships (the darker red represents higher node degree). 

 

Figure 5. The PPI network analysis between different encoded proteins.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 15 
 

 
Figure 5. The PPI network analysis between different encoded proteins. 

 
Figure 6. The top 10 hub genes in the PPI network of the upregulated DEGs and their interaction 
relationships (the darker red represents higher node degree). 

 

Figure 6. The top 10 hub genes in the PPI network of the upregulated DEGs and their interaction
relationships (the darker red represents higher node degree).

3.6. Prognostic Analysis and Diagnostic Efficacy Analysis

The survival analysis shows that the higher expression of four key genes MMP13,
SPP1, MMP10, and COL1A1 are associated with the prognosis of ESCC (Figure 7a). Besides,
the ROC curve analysis indicated that the four genes had a high diagnostic efficacy (AUC:
MMP13 0.885, SPP1 0.932 MMP10 0.909, COL1A1 0.890, Figure 7b).
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3.7. Validation of DEGs Expression

A GEPIA2 database and Western blot were performed to validate the expression level
of DEGs. The GEPIA analysis results showed that the expression level of COL1A1, CXCL8,
SPP1, MMP13, SERPNE1, MMP1, MMP3, and MMP10 was significantly upregulated in
ESCA (Figure 8a, p < 0.05). In addition, the Western blot results showed that MMP13,
SPP1, MMP10, and COL1A1 expression were upregulated in ESCC cell lines (KYSE-150
and KYSE-510) compared with that in the normal cell (Het-1A) (Figure 8b,c).

Consistent with these results, DEGs were found to be significantly over-expressed
in ESCC by using distinct ESCC datasets via pooled analysis in the Oncomine database
(Figure S1), and significant over-expression was also found in the TIMER database
(Figure S2a–d).
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4. Discussion

In this study, we re-annotated the lncRNA chip of GSE53624 in GEO, which contained
119 normal tissues and matched cancer tissues and completed the follow-up information.
Then, we obtained the expression profile of 28,885 genes and a total of 210 down-regulated
and 80 up-regulated DEGs were obtained by R package “limma”. To reveal the underlying
molecular mechanisms of the DEGs, functional enrichment analysis, pathway enrichment
analysis, and PPI analysis were performed. The PPI network analysis showed that the 10
DEGs with top degrees (ELN, MMP13, SPP1, MMP10, COL1A1, CSF2, MMP1, SERPINE1,
CXCL8, and MMP3) may play central roles in ESCC. GO analysis showed that DEGs
were mainly related to the extracellular matrix, such as extracellular matrix organization,
extracellular structural organization, extracellular matrix disassembly, and cytokine activity,
which indicated that it is valuable to further study the DEGs and the key genes may
become new diagnostic and therapeutic targets for ESCC. Pathway enrichment analysis
revealed that DEGs enrichment of ESCC involved cytokine–cytokine receptor interaction,
chemical carcinogenesis, ECM–receptor interaction, IL17 signaling pathway, and other
related pathways. On the one hand, this finding confirmed that the DEGs play an essential
role in ESCC’s occurrence and development. On the other hand, it also suggested that
the abnormal changes in the IL-17 signaling pathway might be of great significance in
developing ESCC.

The IL-17 signaling pathway is involved in the body’s immune response [20] and
inflammatory response [21]. Hence, we used GEPIA2 to explore the relationship between
DEGs expression and immune markers and found that the DEG expression level was signif-
icantly correlated with immune cell markers in ESCC. Specifically, MMP10 expression level
was significantly correlated with 12 out of 42 immune cell markers, MMP13 expression
level was significantly correlated with 30 out of 42 immune cell markers, SPP1 expression
level was significantly correlated with 26 out of 42 immune cell markers, and COL1A1 ex-
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pression level was significantly correlated with 27 out of 42 immune cell markers (Table S5).
Our results indicated that the immune response and inflammatory response may promote
the development of ESCC.

We further validated the expression of the DEGs through the online database GEPIA2
and Western blot. In the GEPIA2 database, COL1A1, CXCL8, SPP1, MMP13, SERPNE1,
MMP1, MMP3, and MMP10 were significantly higher expressed. We also, based on the
TCGA data, analyzed the expression levels of the MMP13, MMP10, COL1A1, and SPP1 in
the main pathological stages of ESCA. Violin plots showed that stage II and stage III have
higher gene expression levels than stage I, which suggested an association of increased
key genes expression with tumor progression (Figure S3). The results of the Western blot
further confirmed that the expression levels of SPP1, COL1A1, MMP13, and MMP10 were
consistent with the expression trends in our bioinformatics analysis.

SPP1, also known as osteopontin (OPN), is an ECM protein that has been involved in
a range of physiological and pathological processes [22]. Studies have shown that SPP1
is overexpressed in a variety of tumors and can be involved in tumor cell proliferation,
angiogenesis, chemotherapeutic resistance, migration, and invasion [22–24]. It is valuable
in tumor diagnosis and prognosis prediction of breast [23,24], lung [25], liver [26], ovar-
ian [27], and bladder cancers [28]. In breast cancer, SPP1 activates the NF-κB signaling
pathway [29]. In ESCC, SPP1 was associated with poor prognosis in patients with locally
advanced ESCC receiving preoperative chemoradiotherapy [30].

Matrix metalloproteinases (MMPs) are widely regarded as important regulators of the
tumor microenvironment [31]. According to the gene structure and substrate specificity of
the enzyme, MMPs can be divided into six different subgroups. Collagenases (MMP1, 8, 13,
18) are able to degrade type I, II, and III collagen. Gelatinases (MMP2 and MMP9) cleave
denatured type IV collagen. Matrix lysozymes (MMP3, 7, 10, 11, 26, 27) can effectively
degrade type III, IV, V collagen, proteoglycan, glycoprotein, and gelatin, etc. MMP12 is
also known as macrophage metalloelastase. MMP14, 15, 16, 17, 24, 25 are closely related to
the activation of MMP2. Additionally, other unclassified MMPs (MMP19, 20, 21, 22, 23, 28).
In the early stage ESCC tissues, MMP10 is highly expressed and is associated with poor
prognosis in patients (Figure S3). MMP10 expression is also closely related to lymph node
metastasis, TNM stage, and tumor invasion [32]. MMP13 is a proteolytic enzyme belonging
to the endopeptidase family of extracellular matrix degradation and it is characterized by
zinc binding motif at its catalytic site [33]. MMP13 is produced by many types of cancer
and is a key regulator in the process of human malignant tumor metastasis [34–36]. It is
overexpressed in a variety of malignancies [37]. MMP13 was originally identified from
overexpressed breast cancer, and its role in breast tumorigenesis has been reported [38–40].
TP53 has a high mutation rate in esophageal cancer. Studies have shown that 59–93% of
patients with esophageal cancer have a TP53 mutation [41,42], suggesting that TP53 may be
involved in the regulation of MMP expression level in esophageal cancer. Previous studies
have shown that Ajuba promotes the migration and invasion of esophageal squamous cell
lines KYSE450 and KYSE510 by up-regulating the expression of MMP10 and MMP13 [43].

COL1A1, as a type of group I collagen, is abnormally highly expressed in breast
cancer [44], gastric cancer [45], non-small cell lung cancer [46], and is associated with the
progression and prognosis of cancer. It is an important protein component in the adhesion
of the tumor cell and extracellular matrix [47]. In ESCC, Yin et al. found that COL1A1
enhanced cell proliferation, migration, and invasion [48].

Combined with PPI network analysis, survival analysis, and the ROC curve, the
results showed that SPP1, MMP13, MMP10, and COL1A1 were four reliable predictors
of diagnosis and prognosis of esophageal cancer. Meanwhile, we analyzed the MMP13,
MMP10, SPP1, and COL1A1 expression profile in numerous human solid tumors via
Oncomine and TIMER2 databases. The results demonstrated that MMP13, MMP10, SPP1,
and COL1A1 gene expression were higher in breast cancer, colorectal cancer, head and neck
cancer, liver cancer, stomach cancer, and others, than in their matched adjacent normal
tissues. This opens up possibilities for follow-up pan-cancer analysis.
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However, there are some limitations in our study. In public databases, datasets on
ESCC are relatively scarce. More relevant clinical samples should be collected for ESCC
research. The reliability of the analyses of molecular mechanism and immune infiltration
levels, especially the correlation between immune signatures and these key genes, is not
supported by experiments in vivo and in vitro. These key genes need to be verified in a
larger cohort of ESCC. Some studies have pointed out that there is a correlation between
ESCC and Human papillomavirus (HPV) [49,50]. However, others hold the opposite
view [51]. A study suggested that the overexpression of p16 could be used to predict HPV
infection [52]. We analyzed the correlation between p16 expression and the expression of
MMP10, MMP13, SPP1, and COL1A1 in ESCC samples through the GEPIA2 database and
showed that these genes are not correlated (Table S6). This result may be related to the
study sample size.

5. Conclusions

Our study revealed some cell functional clusters and signaling pathways associated
with ESCC by re-annotating a gene chip dataset with prognostic information and sub-
sequent bioinformatics and medical statistical analysis. ELN, MMP13, SPP1, MMP10,
COL1A1, CSF2, MMP1, SERPINE1, CXCL8, and MMP3 were identified as the key genes
driving the occurrence and development of esophageal squamous carcinoma. By combin-
ing clinical prognosis information and Western blot analysis, we found four genes with
diagnostic and prognostic significance, including MMP13, SPP1, MMP10, and COL1A1.
Additionally, MMP13, SPP1, MMP10, and COL1A1 in ESCC also had significant correla-
tions with immune markers. Follow-up studies on the mechanism and clinical value of
these genes will vigorously promote the ESCC diagnosis and treatment.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/app11073229/s1, Figure S1: Expression of MMP13, MMP10, COL1A1 and SPP1 in different
types of human cancers in the Oncomine database, Figure S2: Expression of DEGs in different types
of human cancers in the TIMER database, Figure S3: Based on the TCGA data, the expression levels of
the MMP13, MMP10, COL1A1 and SPP1 gene were analyzed by the main pathological stages (stage
I, stage II, stage III and stage IV) of ESCA. Log2 (TPM + 1) was applied for log-scale. Violin plots
showed that stage II and stage III had higher gene expression level than stage I, which suggested an
association of increased key gene expression with tumor progression, Table S1: Clinical characteristics
of ESCC patients in the research, Table S2: GO enrichment results, Table S3: The enriched pathways
of DEGs, Table S4: The node scores of top 10 DEGs, Table S5: Correlation analysis between DEGs and
immune cell infiltrations in ESCC samples using GEPIA2, Table S6: Correlation analysis between
DEGs and HPV marker in ESCC samples using GEPIA2.
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