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Abstract: Building Information Modeling (BIM) and Virtual reality (VR) have attracted growing
attention within the architecture, engineering, and construction (AEC) industry in recent years.
Integration of BIM and VR technology can develop workflow efficiency through enhanced common
understanding and prepare students in architecture and engineering programs to become leaders
of the AEC industry. However, the current shortage of AEC professionals trained in BIM and VR is
still a barrier to collaborative working practice in this industry. This paper reviews previous work
on the BIM, VR, and BIM-into-VR in AEC education/training to bridge this gap. It also presents
an advanced framework to clarify creating and using the BIM model into VR workflow in the AEC
industry through the integrated definition function (IDEF0) model. The authors further evaluated the
BIM-into-VR applications in literature and real-life by surveying students’ learning performance in
terms of eight characteristics relevant to the VR environment and students’ performance within two
projects, one involving the “NASA Mars Habitat Project” and the other involving the “Norris Center
Project” at Northwestern University. The results confirmed that BIM-into-VR usability and efficiency
in improving students’ main learning performance characteristics: Learnability, Interoperability,
Visualization, Real-world, Interaction, Creativity, Motivation, and Comfort. This study addresses the
advantages of using BIM-into-VR in AEC programs. It also offers suggestions to AEC educators and
students in implementing BIM-into-VR in different courses and creating a roadmap for their future
as professionals in the AEC industry.

Keywords: virtual reality; building information modeling; performance assessment; AEC education

1. Introduction

Recent technological advances in visualization and analytics have helped academic
and industrial researchers take tangible steps toward improving design and construction
projects’ quality and efficiency and succeed on projects’ cost and schedule. Building infor-
mation modeling (BIM) as a database of information that created a multi-dimensional (n-D)
knowledge resource and model are swiftly becoming the standard process for communi-
cating all stages of Architectural, Engineering, and Construction (AEC) details [1]. BIM
is a powerful tool for: design a high-quality 3D model; analyze various design options;
detect clashes among different elements; perform energy simulation; plan and schedule;
achieve quantity takeoff, estimate cost, and generation of procurement plans; coordinate a
model among various project stakeholders and improve communication among project
stakeholders; visualize the as-built model; enhance the quality of inspection; and facility
management [2–7]. BIM encourages all stakeholders to participate in and collaborate to
achieve a high-quality product in all project phases. Thus, specifying, articulating, and
presenting a significant precision and transparency level in BIM models’ consistency and
content is essential [8].

Recent new technologies in Virtual Reality (VR) headsets and software have led
researchers to experiment and view n-D BIM content [8,9]. This innovation allows for
immersive virtualization of a BIM model. As one of the most significant disruptive tech-
nologies, VR headsets have been tried for a range of challenges inherent in the AEC
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industry [10]. These challenges include decision-making during initial conceptual design
and planning processes, design coordination, clash detection, facility management, project
planning, urban design, and safety, design, and construction training. In the last decade,
several companies had initiated VR development and its application that resulted in VR
entering into a new period of full development [3,11–14]. Large construction projects
are inherently complex, and therefore require well-prepared architects and engineers. To
handle such complexity, AEC students are expected to have the proper training and be
well equipped for the latest challenges. Over the last decade. BIM and VR technologies
have manifested unlimited potential for both academic and industrial communities in
many disciplines.

Developing BIM and VR applications can help in solving many educational and
training problems [15]. However, having this virtual educational environment requires
students to understand the process, devices, platforms, and software used in real projects.
Thus, recent research papers on the concept of BIM and VR in the AEC industry and
education/training environment were reviewed. This research offers a structure created
to explain the methods of generating and using the BIM-into-VR model for design and
construction projects through an integrated definition function (IDEF0) model language.
This article also evaluates the effectiveness of BIM-into-VR technologies in literature and
real life by surveying students in the MPM program at Northwestern University in terms
of students’ learning performance (Learnability, Interoperability, Visualization, Real-world,
Interaction, Creativity, Motivation, and Comfort). Figure 1 presents the stages included
in this study: Step 1 presents an extensive state-of-the-art review of the main concepts of
BIM, VR, and BIM-to-VR in the AEC industry and BIM-into-VR in AEC education. Step 2
presents the created IDEF0 model for using BIM-into-VR clearly and comprehensively in
the AEC industry. Step 3 and Step 4 present the evaluation of using this integration in a
two-pronged methodology by conducting a broad literature search and surveying students
after experience in two different case studies. Step 5 presents a discussion of the study
findings, its theoretical and practical contributions, and the present research limitations.
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2. Theoretical Background

This segment summaries significant research projects in the four main areas related to
topic of this research: (1) the evolution of BIM in AEC; (2) visualization of BIM model over
VR (BIM-into-VR); (3) Development of an IDEF0 model for BIM-into-VR workflow; and (4)
application of BIM and VR in AEC education/training.

2.1. The Evolution of BIM in AEC Industry

Saieg, et al. (2018) defines BIM as: “BIM is a set of interacting processes, roles,
policies, and technologies creating virtual information-based models to manage data in the
digital format used within the AEC industry to design, construct, and maintain a project
throughout its life-cycle” [16]. BIM has been accepted as a valued tool for improvement
in the design and construction stages of projects due to its rapid growth, adoption, and
implementation. BIM has become the standard process for communicating design and
construction details in AEC projects. Different vendors have produced many applications



Appl. Sci. 2021, 11, 3225 3 of 23

with powerful BIM functionalities to create, implement, and manage nD BIM models,
which can be used in the project’s lifecycle [17].

Domain professionals must iteratively update BIM data during a project due to the
growing set of requirements and complex systems of a construction project [18]. This
information needs to define and explain by a significant level of trust, precision, and trans-
parency in BIM models. Different disciplines utilizing BIM in the construction environment
have various nomenclatures, varied vocabularies, different data formats and geometries,
diverse computing paradigms, and distinct essential world views [3]. These disciplines
and construction companies have different standards and processes for their communi-
cation and delivery procedures. One way to solve these issues is the standardization of
implementing BIM and utilization of a detailed BIM Execution Plan (BEP) [19]. The appli-
cation of BIM in AEC projects for design, construction, and maintenance would generate,
manage, and support critical data, information, and reports. The BIM application will lead
to realizing a cost-effective design and better communication among AEC professionals.
Table 1 shows some of the different applications for BIM, which have been defined from
the literature.

Table 1. A selection of the most widespread Building information modeling (BIM) advantages based
on academic publications.

No Application Area References

1 Analyze, review, and evaluate the impact of various design options [20–22]
2 Spend more time on design instead of contract documentation [23,24]
4 Enable documentation automation (better accuracy) [25,26]
5 Enable quicker reviews for permits and approvals [19,27]
6 Coordinate Design [28–30]
7 Encourage energy conservation for sustainable building systems [31,32]
8 Plan risk scenario [33,34]
9 4D model of construction process [35–37]

10 Quantity takeoff and cost planning with 5D simulation [38–40]
11 Coordinate and Clash detection [28,41]
12 Reduce in RFI’s, change orders, claims, and conflicts [42,43]
13 Reduce in construction and production costs [44,45]
14 Reduction in project delivery duration [19,45]
15 Facilitate modular construction [46,47]
16 Increase prefabrication [48–50]
17 Reduce in site materials waste [51–53]
18 Improve construction safety [54,55]
20 Increase client engagement [31,56]
21 Increase productivity, efficiency, and quality of project [57,58]

24 Encourage use of other technologies
(Sensors/VR/AR/MR/GIS/etc.) [15,19]

26 Improve collaboration and communication between disciplines [15,59]
27 Allow for long-term data assessment [19,60]

Note: 5D = five dimensional; VR = virtual reality; AR = augmented reality; MR = mixed reality; GIS = geographic
information system.

BIM is an essential piece of the solution, helping to deliver more efficient design,
build, and operations, but its value grows exponentially when shown in a more realistic
way than a 3D model. To understand the VR concept, it needs to be broken into two
characterizations of psychological and technical. Perception and simulation are the two
main keys to VR. Humans’ perception of reality is a blend of sensory information and
how humans manage this information to shape their awareness of what is going on, how
it is going on, where it is going on, when it is, and why it is going on. VR shows these
schemes and processes with information that is not really there but is captivating enough
for us to feel it as reality. VR is an emulation of a situation that humans see or feel as
real. VR defines a digital setting that can be experienced and explored by a person from
a technical perspective. Four significant conditions must be achieved in order for a VR
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experience to be considered a success. It must be believable, interactive, explorable, and
immersive. VR is a simulation and immersive environment projected through a wearable
headset that places the curated world in the user’s sight. The main incentive for using a VR
application is that it provides the possibility to test with those circumstances that “cannot
be accessed physically,” “expensive be accessed physically,” or “dangerous be accessed
physically” [61]. With the continuous development of technology, VR technologies have
attracted the increasing attention of a broad area of applications [62], such as architecture,
cinema and entertainment, risks identification, medical science, video games, engineering,
urban design, education and training, and so on.

Research on VR technology applications in various stages of AEC projects has shown
the benefits these applications can bring to all projects [63]. VR technology has been
effective in project schedule control [64] and construction safety training [65]. It can also
identify design issues [61] to help users comprehend a project complexity, make better
design decisions, and improve collaborative decision-making [3]. VR technology provides
environments for greater collaboration among project participants [66] and enables a
better understanding of complex designs [67]. There are some VR software applications
developed by gaming engine (e.g., Unity, and Unreal) which allow the users to have
the interactive simulated feelings. In addition, the applications like IrisVR and Resolve
provide the multiusers meetings built for instant collaboration in the VR environment. All
stakeholders can benefit from VR at various project design phases—namely, schematic
design, detailed design, construction detailing, and maintenance [68]. Architects and
designers can use VR technology from beginning design mock-ups to project collaboration
to the end of the project. VR has the potential to sell an idea stronger and better than other
applications. Jumping into VR during the concept and layout process allows the designer
to justify a proof of concept. VR enables users to see and interact with the actual design. A
virtual walkthrough experience is superior to the already-great experience of seeing the
project in 3D or 4D on a large screen or a projector [69]. This enhanced experience enables
all stakeholders to get a feeling for space and design that they are not able to get through
other ways, not even with a BIM model. Architects can work through design errors in a
virtual space, improving the chances of spotting problems before starting the project.

VR can provide an entirely new understanding and appreciation of design. This is
because VR offers the ability to test in context [70]. Contractors can now bring the job site
to the office and even walk a fully constructed rendering of their project before breaking
ground. VR can be a highly efficient communication platform for stakeholders who are
not from the AEC industry and have no cognizance of regular construction contracts.
Further, VR reduces the understanding gap among project owners and designers and
visual and non-visual thinkers. The ability of VR to grab the attention of people in a
project presentation session that might otherwise be boring can be considered another
benefit of using VR during project design development and construction. VR provides the
ability for CAD data to be viewed from every direction and helps accelerate the design
workflow. When it comes to clients, immersing them in the model enhances understanding
the concept while validating the overall design. Clients can also experience a more natural
interaction with designs, allowing for walk-throughs that feel more realistic, especially for
non-CAD experts. VR also assists in resolving logistical concerns faster by employing in
a shared, immersive environment. Safety issues, transportation routes, and site staging
can be addressed earlier. During the design process, VR allows problems to be identified
by viewing real scales’ issues. Finally, architectural engineering construction projects
can utilize VR to view remote locations, reduce travel time, and optimize the overall
expense. For the AEC and manufacturing industries, VR provides a new age of efficiency,
connectivity, and mobility that offers new opportunities to advance their competitive
advantages while becoming more productive and safe in their practices. Table 2 shows
some of the different VR applications in the AEC industry, which have been defined
from literature.
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Table 2. A selection of the most widespread Virtual reality (VR) benefits based on academic publica-
tions.

No Application Area References

1 Simulation/visualization [71,72]

2 Communication/ collaboration [73,74]

3 Information access/evaluation [3,13]

4 Risk assessment [34,75]

5 Progress monitoring [76,77]

6 Education/training [61,78]

7 Safety management [77,79]

8 Client satisfaction [63,77]

9 Review design options [74,80]

2.2. Visualization of BIM Model over VR (BIM-into-VR)

The process of BIM usage signifies an advancement compared to customary proce-
dures of developing and managing construction projects. Even though BIM adaptation
has grown in recent years, there are still obstacles and restrictions in its comprehensive
implementation [81]. Using VR to visualize the rich, accurate, and smart data included
in a BIM model can support and produce interactive real-time project visualization for a
consistently shared perception with main participants [3,82]. This arrangement has also
shown a prospect of allowing the project leadership to envision and identify a project’s
intricacy for successful communication in all stages. Table 3 summarizes the published
study works which employed VR with or without BIM for AEC projects.

Table 3. Using VR alongside BIM in diverse areas of design and construction industry.

Number References VR Included BIM Purposes
Phase Evaluation

ApproachesD C

1 [3]
√ √ Construction project

management
√ √

Case study

2 [61]
√ √ Design and construction

education
√ √

Survey

3 [65]
√ √

Construction safety
√ √

Review

4 [82]
√ √

Collaborative decision making
√ √

Case Study

5 [83]
√ √

Construction safety training
√

Case Study

6 [84]
√ √ Review and comparison of VR

and AR
√

Survey

7 [85]
√ √

Collaborative decision making
√ √

Case Study

8 [86]
√ √

Construction safety
√ √

Case Study

9 [87]
√ √

Construction safety
√ √

Case Study

10 [88]
√ √ Goals, challenges, and benefits

of VR in AEC industry
√ Interviewees-Case

Study

11 [89]
√ √ Construction safety

training/jobsite management.
√ √

Case Study

12 [90]
√ √ Building energy performance

gap
√ √

Case study

Note: VR = virtual reality; AR = augmented reality; AEC = architecture, engineering, and construction; BIM= building information
modleing; D = design; C = construction.
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Nowadays, in most design and construction firms, BIM is somewhat a standard for
AEC projects, but most of these firms do not use VR systems. Like BIM, which works
with BEP, the VR needs to work based on a comprehensive workflow. A common VR
development workflow is prepared after a project owner is requested to use VR technology
and approves it. Then, the VR group will be brought to the project. The VR conversion
would be performed by using a commercial software product or in-house. VR requires
headsets and sensors to track location and movement and stereo headphones to produce
surround sound. Figure 2 summarizes all the available processes and steps for converting
a BIM to a VR model.
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Figure 2. BIM-into-VR integration map: From BIM models into VR toolsets (2010–2021).

IDEF0 is an acronym for ICAM definition for function modeling, where ICAM stands
for integrated computer aided manufacturing. IDEF0 is a methodology that can describe
complex functions such as technological practices and that allows for the development,
analysis, and integration of systems such as BIM and VR. The proposed model represents
a safety management model for construction sites. The model is described schematically
as an IDEF0 diagram. The authors describe the BIM-into-VR workflow in this model to
help everyone understand the processes. The boxes in Figure 3. describe key processes.
The model designed by the authors of this manuscript is based on their knowledge from
previous publications, industry case studies, and their experiences as a best practice process.
Figure 3, illustrates all stages of creating a 3D or 4D (3D + time) model (optional) up until
the time that model is used in VR for different purposes in the AEC industry. All steps of
generating models in the design phase until it is converted to use in VR in a construction
project are presented in Figure 3. Step 1 is collecting data that comprises structural, archi-
tectural, and MEP designs in 2-D and 3-D models and essential data regarding schedule
and cost (if 4D BIM is required). Incorporating this information generates a federated
4D-BIM/as-planned model (A31) and (A32). A VR model is created based on specifications,
BIM knowledge, and designers’ and stakeholders’ ideas (A33). The generated VR model
can be utilized to analyze the design and evaluate different design choices to perform
remedial actions on design and make better design choices (A34). When the problems are
fixed and stakeholders have accepted the design, it is then transferred to the construction
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site managers to evaluate and understand the design and implement, analyze, and control
the project (A35).
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2.3. BIM and VR in AEC Education/Training

Institutional education has a vital role in BIM transition. Future AEC community
leaders who can transform the industry paradigm throughout their careers are universities’
products. Numerous researchers have stated the significance of BIM-based education in
AEC-related programs. Sacks and Barak [91] replaced traditional civil engineering graphics
courses with BIM for first-year students. Azhar et al. [92] examined the effectiveness
of BIM instruction by surveying students’ perceptions. They demonstrated how BIM
improved students’ understanding of construction project management. Research by
Clevenger et al. [93] identified several methods in that BIM can be incorporated into
the curriculum. These include providing standalone courses and/or updating existing
courses to embed material on BIM. In another study, Wong et al. [94] studied the status,
weaknesses, strengths, and professional possibilities of BIM-based education. Peterson
et al. [95] added BIM to their construction project management courses and showed how
BIM could support and increase student understanding. Khosrowshahi and Arayici [96]
found teaching BIM is vital in the AEC industry roadmap for BIM execution. Abdirad
and Dossick [97] propose that BIM is an essential subject to be taught in college because
of industry demands and because the development of strategies for delivering BIM is
complex. Shelbourn et al. [98] studied very similar research about integrating BIM into
the USA and UK undergraduate curriculum. The investigation highlighted a discussion
regarding whether BIM should be a standalone unit or integrated into courses. The study
recommended that BIM present students with an opportunity to understand the building’s
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construction methodology further. For instance, Zou et al. [99] observed the necessity to
optimize BIM-based education resources to bridge the gap between academia and industry
practice. Jin et al. [100] researched on students’ understanding of and individual views of
BIM that were intuitive to both BIM instructors and companies.

On the other side, the number of VR scenarios can be broadly applicable to many
education and training areas. Many researchers have remarked on the significance of
VR-based education in programs related to AEC. VR can generate different virtual learning
environments, tough to touch, dangerous to manage, or even things that do not exist in
reality [101]. Pedro et al. [102] results indicated that their BIM-based VR system could
experientially improve hazard identification ability, transfer safety knowledge, and engage
students. VR allows learners to investigate virtual environments from different viewpoints,
empowering them to freely examine creative impulses and provide them with a more
comprehensive understanding of learning targets [103]. Therefore, VR technology is less
risky and more cost-effective than conducting scenarios in reality. Bhagwat and et al. [104]
believed that the advent of new visualization platforms such as building information
modeling (BIM), virtual reality (VR), and gaming technologies provides a unique opportu-
nity for the AEC students to see and experience the new ways of design, implement, and
manage safety. In summary, VR technologies have the potential of:

• Providing outstanding visualizations that were not imaginable in a traditional system;
• Creating curiosity by helping students become more dedicated and inspired;
• Increasing student commitment by grabbing and holding their attention (because

VR makes it challenging and thrilling to interact, create, and manipulate objects in a
virtual setting);

• Helping students realize intricate topics, concepts, and theories;
• Improving the quality of instruction by introducing new practices and opportunities

for learning by doing;
• Reducing barriers of language for international learners;
• Adding precision and permitting the visualization of things, elements, or processes

which difficult to present in a real environment;
• Enabling students to interact collaboratively for the first time and, for those students

already using VR, increasing their ability to interact and collaborate;
• Providing instructors’ instant feedback for students;
• Offering the ability to repeat practice in a safe setting.

From instructors’ perspective, to teach students for BIM-into-VR approaches, there is a
need for necessary and sufficient conditions such as the available VR technologies and their
potentials; how to apply them to our daily life and AEC industry; and the workflows from
BIM-into-VR. With VR, we can review our design and construction with a human scale
and simulate safety issues before exposing them to dangerous conditions. The challenge
instructors have to think about while teaching all kinds of reality technologies is perhaps,
some technical things those students learned this year might not be workable or applicable
next year because of the rapid technological change. They need to encourage students to
understand the concept and learn the methodology instead of the step-by-step procedures.
In addition, students need to explore the latest VR applications and be prepared to apply
that once they graduated and use them in real-world scenarios on the projects.

3. The Research Methodology and Approach
3.1. The Evaluation of BIM-into-VR in AEC Education

VR-powered BIM is a new development in the design and construction training en-
vironments that has already created instructional changes to tertiary education methods.
In contrast to pure BIM, the BIM-into-VR helps students greater design visualization
and contributes to a better understanding of the project data and objectives. If the BIM
model is designed in a high enough level of detail (LOD), visualizing BIM via VR gives
AEC students a more realistic sense of materials, project concerns, and decision-making
processes. This visualization is entirely in line with Bloom’s taxonomy of the cognitive
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domain and supports education, instruction, and assessment. VR-powered BIM can
provide for all the learning steps: remembering, understanding, applying, analyzing,
evaluating, and creating. Visualizing BIM via VR augments BIM functionality for AEC
students by helping students understand how BIM can be used in every field opera-
tion. This section aims to comprehend the usefulness of the BIM-into-VR if employed in
the AEC education environment and students’ performance characteristics, as shown in
Figure 4. Learning is invisible until it is assessed through performance. Assessment design
for students’ performance can be challenging, and the instructor should be cognizant about
the students learning styles. Students must be evaluated for their learning based on factors
that influence their performance. The required new form of teaching and its assessment
is different from the traditional evaluations. Previous research has described some of the
main characteristics that university professors consider in evaluating students’ learning
performance. The VR/AR/MR course instructor, based on previous research and his
teaching experience, has selected the following eight characteristics as the most relevant
factors to assess performance.
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A two-pronged approach was used to assess the BIM-into-VR in the AEC education
setting. (1) The use of BIM-into-VR in the AEC-related education setting was justified by
reviewing previous studies that discussed these technologies. (2) This system was evalu-
ated by twenty-three (23) students of the MPM program of the Department of Civil and
Environmental Engineering at Northwestern University. In this evaluation, the students
were asked about various factors that affect their education quality.
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3.2. Previous Research

Due to this research’s investigative objective, the previously published study was
reviewed on the role of VR in AEC education to justify BIM-into-VR use in such envi-
ronments. Thirteen (13) published research papers were evaluated to collect suggestions
that BIM-into-VR application in the education setting has many advantages. Applying
BIM-into-VR to improve AEC students’ learning outcomes, especially in perceived learning
effectiveness, is a novel area that shows students can operate the objects by simulating the
real scenes in skill training and visualizing them into the virtual environment repeatedly.
The BIM-into-VR framework is enhancing the learning experience and learning outcomes
for construction education within AEC curricula. As shown in Table 4, a number of re-
searchers have considered these eight characteristics to a different level of importance.
Therefore, the instructor considered all different characteristics in his assessment that other
researchers used.

Table 4. Research on BIM-into-VR characteristics related to student’s learning performance.

Number References
Characteristics

Learnability Interoperability Visualization Real World Interaction Creativity Motivation Comfort

1 [61] * * * * * * * *
2 [105] * * * * *
3 [106] * * * * * *
4 [107] * * *
5 [102] * * * *
6 [108] * * * *
7 [109] * * * * *
8 [110] * * * * * * *
9 [111] * * * * * * *
10 [112] * * * * * * *
11 [113] * * * * *
12 [114] * * * *
13 [9] * * * *

Frequency 13 5 10 13 9 10 7 2

Note: * = mentioned.

“Learnability” and “Real World” are the most significant advantages recognized
in the majority of reviewed articles. As shown in Table 4, there is sufficient evidence
that the use of BIM and VR in AEC education environments is desirable and beneficial.
The suggested BIM-into-VR-based structure is expected to improve students’ learning
performance, provide an environment similar to real-world, increase the visualization of
models before they were built, and enhance their creativity.

3.3. Student Evaluation: Case Study
The Sample

The participants in this study were graduate students who registered in an elec-
tive course titled “Integrating VR/AR/MR with Design and Construction” in the Spring
Quarter 2019. The course had 23 students from diverse experiences such as construction
management, architecture, real estate, and sustainability. The goal was for students to
learn the concepts and workflows related to BIM and different available VR devices, get
hands-on experience with these devices, and understand how BIM models into VR devices
are different from what they see on pure BIM models. This project also helped them un-
derstand how BIM and VR integration allow them to see, analyze, and understand project
data, making more precise decisions in real projects in their careers.

The students’ evaluation of the BIM-into-VR environment consisted of five steps
that are shown in Figure 5. Step 1 involved identifying and preparing course goals and
curriculum by the MPM program and the course instructor. Step 2 involved creating two
different evaluation models: (1) Norris Center Project and (2) NASA Mars Habitat Project.
Step 3 involved evaluating all four selected VR devices, software, plugins and converting
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the BIM-into-VR model taught by the instructor. Step 4 involved the process of converting
BIM models to VR models by the students. Step 5 involved a 5-point Likert scale survey
based on the examined students’ perceived learning outcomes and a 10-point Likert scale
survey used to evaluate students’ preference level of using each of four VR devices.
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All students experienced the four commercially available VR headsets in this study
included HTC Vive, Oculus Rift, Acer WMR, and Samsung HMD Odyssey. Table 5 shows
the different features of the VR goggles utilized for this survey.
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Table 5. List of devices used in BIM-into-VR case studies.

Oculus Rift HTC Vive Samsung HMD
Odyssey Acer WMR
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Microsoft Windows
Mixed Reality
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At the end of the quarter, the course lecturer sought the participating students’ opin-
ions regarding the advantages and effectiveness of exercising VR goggles/technology. To
illustrate the effectiveness of this system, the instructor presented two different projects
as test-models. Figure 6 shows the 2D, 3D, and VR models of the Norris Center building
located at Northwestern University. All models were designed by students in Autodesk
Revit 2019, one of the major BIM authoring applications, and then converted to VR models
by Enscape 2.6.1. This model contains architectural, structural, and MEP models in detail.

In the second case study, as shown in Figure 7, VR allowed students to have a virtual
walk-through on the NASA-Mars Habitat model to visualize diverse project setups, com-
pare and examine those setups, and formulate their options for different possible design,
method, and material. The workflow of transforming the NASA-Mars habitat project BIM
model to a VR viewable model is illustrated in Figure 7. These steps begin with creating
and designing a data-rich and comprehensive BIM model by Autodesk Revit software.
In this research, students used BIM 360 cloud server/database to store and get real-time
access to their models. The next step is to convert the BIM model to a VR model by Fuzor
plugin for Revit. Oculus Rift, Samsung HMD, HTC Vive, and Acer WMR headsets were
used for this research.
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4. Analysis and Results

All students were surveyed by using a set of questions addressing eight character-
istics, mentioned in Figure 4 as (1) Learnability, (2) Interoperability, (3) Visualization, (4)
Real-world, (5) Interaction, (6) Creativity, (7) Motivation, and (8) Comfort. The partic-
ipating students presented numerical scoring that stated their evaluation of each fac-
tor’s importance in the BIM-into-VR system. The relative importance index (RII) in
Equation (1) is used to compute the significance of the factors that influence the participants
learning outcomes:

RII = ∑ W
A× N

(1)

where W = the weight specified by the students for each factor, ranging from 1 to 5; A = the
largest weight = 5; N = the total number of students; and RII = Relative Importance Index.

Table 6 shows the means and the RIIs for the responses. The results indicate that the
means of all questions were higher than 3.80 out of 5.00, which can be considered “good”.
The survey’s overall mean shows that students are clearly interested in using and would
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benefit from BIM and VR integration. As to the relative significance of the various aspects,
the question that sought the students’ view about the degree to which the BIM-into-VR
model increases motivation had the highest RII of 0.982. This can be described by the
fact that using BIM and VR constantly creates an immersive experience that motivates
students to learn effectively. This rationale also supports the second-highest-ranked and
third-highest-ranked aspects, i.e., improving the visualization, creativity, and interaction of
students (RII = 0.973) and improving Real World (RII = 0.956). Overall, the results indicate
that respondents acknowledge the value of using the BIM-into-VR model in AEC education
and learning environments.

Table 6. Mean ratings and relative importance indices (RII).

QN Evaluation Question
Number of Responses

Mean Rating RII Ranking
1 2 3 4 5

1 To what extent can BIM+VR
improve your Learnability? 0 0 3 4 16 4.565 0.913 4

2 To what extent can BIM+VR
improve Interoperability? 0 0 5 4 14 4.391 0.878 5

3 To what extent can BIM+VR
improve Visualization? 0 0 0 3 20 4.870 0.973 2

4 To what extent can BIM+VR
improve Real-world? 0 0 1 3 19 4.783 0.956 3

5 To what extent can BIM+VR
improve Creativity? 0 0 1 1 21 4.870 0.973 2

6 To what extent can BIM+VR
improve Interaction? 0 0 0 3 20 4.870 0.973 2

7 To what extent can BIM+VR
improve Motivation? 0 0 0 2 21 4.913 0.982 1

8 To what extent can BIM+VR
improve Comfort? 0 4 6 2 11 3.870 0.773 6

Notes: 1 = strongly disagree to 5 = strongly agree; QN = question number; RII = relative importance indices.

The students considered VR systems a learning motivator for design and construction
principles. It was also thought learnability, match with the real world, and creativity.
The participants regarded the VR technologies to be more engaging and interactive than
traditional lectures. Students were happy to use the VR technologies, but they did not
always feel comfortable wearing some headsets for a long time (they feel discomfort
when moving their heads around). Students must learn several software applications
to deal with the interoperability issue, from a 3D/BIM-based model to a VR-enabled
model. Additionally, students thought that VR technologies are great for visualizing any
architectural model. The survey results regarding their VR technology experience and
their evaluation for each VR headset on the list and their preference level are presented in
Figure 8 respectively.
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A summary of the proposed integration’s strengths and weaknesses in this study is
presented in Table 7.

Table 7. Summary of the findings of the BIM-into-VR in AEC education and training process.

Characteristics Findings

Learnability

• A new way to learn the design and construction with the
human scale.

• Virtual environment to mockup some safety hazards without wasting
any materials or cause damage to equipment.

Interoperability

• Easy to convert the geometry and material/texture if we have the
plugins (e.g., Enscape, Fuzor).

• File size limitation and time-consuming to simplify the detailed BIM
model to “just for the show” VR-ready model.

• Additional time and effort plus the special skillset are needed if we
want some interaction reactors (e.g., door opening, crane moving).

• Some embedded information (properties of the element) might get
lost from BIM to VR.

Visualization

• A real-time photorealistic experience with the first-person (gaming)
perspective and gravity to visualize design objects with the context
rather than the traditional 2D drawings and 3D models from a
computer screen.

• Daylighting and artificial lighting simulation in VR with immersive
walk-through and fly-through experience are phenomenal.
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Table 7. Cont.

Characteristics Findings

Real World

• Easy to discover some design issues or modeling mistakes during
virtual teleportation with eye-level viewing perspective.

• Provide a real-world context in the virtual environment to review the
safety issues like egress, clearance, and traffic maneuver during
construction and operation and maintenance phases.

Interaction

• VR is a different learning experience which provides interaction with
instructor and classmates.

• VR live meeting (e.g., InsiteVR) provides a real-time, dynamic design
collaboration experience for people around the world to
meet virtually.

• Using the controllers to react something like sketching or dragging
the objects inside the virtual environment is a new interactive way
of learning.

Creativity

• Gamification is the application of game-design elements and game
principles in non-game settings. Students will gain more creativity
while using the game principles in their design.

• However, students might spend too much time focusing on
game-design elements but not resolve the real-world
design challenges.

Motivation

• VR is a new tool with many different headsets and BIM-to-VR
software applications being released each year, which provides a
motivation to learn the latest technologies.

• Gaming effect could be a driver for learning with some excitement.

Comfort

• Motion sickness is a consequence of a delays between natural head
motion and a shift in virtual perspective and leads to a disruption in
balance. For years, VR was unusable due to the latency gap between
vision and headset.

• Using teleportation instead of walking and turning around inside VR
may reduce the motion sickness, but this is subjected to the
individuals.

• In addition to motion sickness, the weight of VR headset, the size and
shape of the goggle area (might conflict with glasses), and the texture
of holding bend to our head is all the reasons related to comfort.

• Some people might have sensitive eyes and cannot wear contact
lenses. Moreover, bifocal lenses do not work well with VR viewing.
Nearsighted vision is varied individually, and VR headset is hard to
be custom-made.

Note: BIM = building information modeling; VR = virtual reality; 2D = two dimensional; AEC = architecture,
engineering, and construction.

5. Conclusions and Discussion

It cannot be overstated that it is essential to ensure that future project managers who
graduate from AEC programs are fully prepared to use the latest AEC technologies that they
will need in their future careers. As the digital computer technological revolution continues
to increase in the AEC industry, the impact of their extensive applications for training and
educational objectives is of interest. One of the primary reasons for utilizing BIM and
VR as educational technologies is that they come across young students experientially.
The traditional educational approaches need to add engaging and real experiences that
will drive successful learning. However, having this virtual educational environment
requires students to understand the process, devices, platforms, and software used in AEC
projects. VR can provide this element and its visualization of the real environment is very
close to reality. VR allows simulating dangerous, expensive-to-access, and hard-to-reach
environments. Due to VR characteristics and features, its applications may enhance creative
and imaginative thinking. It can improve the learning process and motivate students to
develop necessary skills for success and innovation. VR has the potential to improve
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traditional approaches with interactive simulations and stunning visuals that immerse
students in genuine learning experiences. It can push the limits of the old-fashioned
classroom to be appealing, inspiring, and responsive to the student’s needs.

This research’s motivation came from the importance of VR technologies in the AEC
education environments and their potential to improve students’ learning performance.
In this research, a summary of worldwide movements regarding BIM and VR in AEC
training and education has been conducted, and the technologies, application areas, and
future research directions have been identified. This study focuses on using BIM and VR
technologies in AEC education and training in the classroom and how these technologies
can improve student grasp of all aspects of AEC concepts. As a primary stage, this
research first did a comprehensive review regarding BIM and VR and their integration
in the AEC industry to highlight the industry’s requirements to apply them in AEC
education environments. This research developed an IDEF0 model to show best practices
for integrating the BIM model into VR technologies. Moreover, it explains the inputs,
controls, mechanisms, and outputs of each process in the BIM-to-VR workflow. The BIM
model’s development into VR technologies is transitioning from desktop-based systems
to mobile ones with enhanced immersion and interaction abilities. Such developments
have benefited many AEC domains and stakeholders, and it needs a root development
from students. Given the potential of BIM and VR for situated learning, the authors
reviewed previous studies that discussed BIM and VR technologies in the AEC training
and education environment. They evaluated this integration by collecting feedback from
students in the MPM program of the Civil and Environmental Engineering Department
at Northwestern University. Through a comprehensive questionnaire, the students were
asked about various factors that affect their education quality. This research evaluated
the performance of the different BIM-into-VR environments and their impact on students’
learning performance aspects (Learnability, Interoperability, Visualization, Real-world,
Interaction, Creativity, Motivation, and Comfort) within two projects, one involving the
“NASA Mars Habitat Project” and the other involving the “Norris Center Project”.

VR in the AEC industry bridges the digital data in BIM to a more understandable
shape and scale for students. As the technology quickly moves to the mainstream, faculty
in the AEC areas have started to embrace VR due to its enormous education promises.
VR is beneficial for generating interest and motivating student participation; assisting
imagination and enabling visualization of complex models that are not possible in tra-
ditional classrooms; and providing several opportunities, such as increasing students’
interaction with instructor and classmates, which improve the quality of education. If
the VR-associated hardware and software could be more affordable and accessible to all
students, it can play an essential role in distance learning during the COVID-19 pandemic
period. More and more universities are doing digital transformation while students are
complying with the stay-at-home order.
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